metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-phen­oxy­acetato-κ2O:O′)bis­­[(1,10-phenanthroline-κ2N,N′)manganese(II)] methanol hemisolvate

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: jgq3518@163.com

(Received 6 November 2007; accepted 3 December 2007; online 12 December 2007)

The title complex, [Mn2(C8H7O3)4(C12H8N2)2]·0.5CH3OH, is a carboxyl­ate-bridged dinuclear MnII complex with four phenoxy­acetate ions and two 1,10-phenanthroline mol­ecules as ligands. Each of the four phenoxy­acetate anions bridges the pair of Mn atoms. The asymmetric unit is completed by a half-occupancy methanol solvent mol­ecule. Face-to-face ππ stacking inter­actions between the aromatic rings of 1,10-phenanthroline molecules belonging to adjacent Mn2 complexes, with an inter­planar separation of circa 3.4 Å, and weak C—H⋯O hydrogen bonds connect the dinuclear units into a three-dimensional supra­molecular framework.

Related literature

For related literature, see: Jiang et al. (2005[Jiang, G.-Q., Li, Y.-Z., Wang, S.-N., Li, F.-F., Xu, Z.-J. & Bai, J.-F. (2005). Acta Cryst. E61, m1517-m1519.], 2006[Jiang, G.-Q., Li, Y.-Z., Hua, W.-J., Song, Y., Bai, J.-F., Li, S.-H., Scheer, M. & You, X.-Z. (2006). CrystEngComm, 8, 384-387.]); Sessoli et al. (1993[Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.]); Yaghi et al. (1997[Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861-2868.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C8H7O3)4(C12H8N2)2]·0.5CH4O

  • Mr = 1090.86

  • Triclinic, [P \overline 1]

  • a = 12.4627 (10) Å

  • b = 12.8334 (10) Å

  • c = 17.1377 (13) Å

  • α = 77.421 (1)°

  • β = 87.635 (1)°

  • γ = 84.629 (1)°

  • V = 2662.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 193 (2) K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.879

  • 14596 measured reflections

  • 10273 independent reflections

  • 6679 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.149

  • S = 1.08

  • 10273 reflections

  • 675 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.250 (3)
Mn1—O3 2.094 (2)
Mn1—O5 2.289 (2)
Mn1—O7 2.112 (3)
Mn1—N1 2.299 (3)
Mn1—N2 2.302 (3)
Mn2—O2 2.087 (2)
Mn2—O4 2.227 (3)
Mn2—O6 2.102 (2)
Mn2—O8 2.351 (3)
Mn2—N3 2.327 (3)
Mn2—N4 2.299 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O10i 0.93 2.70 3.627 (5) 175
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design, synthesis and characterization of novel supramolecular frameworks are currently of great interest. One of the greatest challenges in this area is the construction of porous materials from metal ions and organic ligands as building blocks (Yaghi et al., 1997). As part of our search for new porous metal-organic frameworks, we are studying complexes of transition metals with phenoxyacetate ligands (Jiang et al., 2005, 2006). Here, the title compound, (I), a novel dinuclear MnII complex with 1,10-phenanthroline as co-ligands, is reported.

Complex (I) exists as a dinuclear unit, with four bidentate phenoxyacetate anions bridging the pair of MnII atoms (Fig. 1). Two N atoms from 1,10-phenanthroline molecules bind to the MnII atoms, and both MnII atoms thus possess a distorted octahedral coordination geometry. The asymmetric unit is completed by 1/2 methanol solvate. The Mn—O distances are in the range 2.087 (2) to 2.351 (3) Å, and the average distance for Mn—N bonds is 2.31 Å. The planes of two coordinated phenanthroline molecules are set approximately perpendicular to each other.

Interestingly, The Mn2 units further link to each other into a microporous framework (Fig. 2) by π-stacking from the plane of 1,10-phenanthroline of symmetry-related molecules and C—H···O hydrogen bond interactions between alternating molecules. These supramolecular interactions are illustrated in Fig. 3. The C—H···O hydrogen bonds that exist in the peripheral ligands of adjacent Mn2 complexes are formed via the H donor atoms from phenyl group and acceptor O atoms of OCH2 groups of phenoxyacetate ligands. It is noteworthy that the contacts are almost linear (C—H···O: 174.9°). The structural significance is that the dipole-monopole and dipole-dipole contributions to electrostatic energy are maximum at 180° and zero at 90°. Therefore, this interaction may be considered as an efficient C—H···O hydrogen bond.

The overall three-dimensional supramolecular structure is also stabilized by significant offset face-to-face π···π stacking interactions between the aromatic rings of 1,10-phenanthroline molecules belonging to adjacent Mn2 complexes, with an interplanar separation of ca 3.4 Å and θ = 21.9° (Fig. 3).

Related literature top

For related literature, see: Jiang et al. (2005, 2006); Sessoli et al. (1993); Yaghi et al. (1997).

Experimental top

[Mn3O(O2CCH2OPh)6(pyridine)2(H2O)] was synthesized according to the literature method of Sessoli et al., (1993). To a solution of [Mn3O(O2CCH2OPh)6(pyridine)2(H2O)] (0.15 mmol 0.18 g) in MeCN (8 ml) and CH3OH (2 ml), powdered 1,10-phenanthroline (0.15 mmol 0.030 g) was added. The resulting solution was stirred for 0.5 h., filtered and layered with two volumes of Et2O. After two weeks, light brown crystals of (I) were collected by filtration, washed with Et2O, and dried in vacuo. The yield was approximately 20%.

Refinement top

Carbon-bound H atoms were positioned geometrically, with C—H = 0.97 Å for methylene groups, 0.93 Å for aromatic groups, and 0.96 Å for the methyl groups of MeOH. They were refined using a riding model, with Uiso(H) = 1.2Ueq(carrier C) for the complex and Uiso(H) = 1.5Ueq(C57) for the MeOH molecule. The hydroxyl H atom H13a was positioned geometrically and freely refined. Occupancy for the methanol molecule was refined in preliminary cycles and fixed to 1/2 for final refinement. Finally, geometry for phenyl ring C1···C6 was constrained by fitting the six C atoms to a regular hexagon with C?C bond lengths of 1.39 Å.

Structure description top

The rational design, synthesis and characterization of novel supramolecular frameworks are currently of great interest. One of the greatest challenges in this area is the construction of porous materials from metal ions and organic ligands as building blocks (Yaghi et al., 1997). As part of our search for new porous metal-organic frameworks, we are studying complexes of transition metals with phenoxyacetate ligands (Jiang et al., 2005, 2006). Here, the title compound, (I), a novel dinuclear MnII complex with 1,10-phenanthroline as co-ligands, is reported.

Complex (I) exists as a dinuclear unit, with four bidentate phenoxyacetate anions bridging the pair of MnII atoms (Fig. 1). Two N atoms from 1,10-phenanthroline molecules bind to the MnII atoms, and both MnII atoms thus possess a distorted octahedral coordination geometry. The asymmetric unit is completed by 1/2 methanol solvate. The Mn—O distances are in the range 2.087 (2) to 2.351 (3) Å, and the average distance for Mn—N bonds is 2.31 Å. The planes of two coordinated phenanthroline molecules are set approximately perpendicular to each other.

Interestingly, The Mn2 units further link to each other into a microporous framework (Fig. 2) by π-stacking from the plane of 1,10-phenanthroline of symmetry-related molecules and C—H···O hydrogen bond interactions between alternating molecules. These supramolecular interactions are illustrated in Fig. 3. The C—H···O hydrogen bonds that exist in the peripheral ligands of adjacent Mn2 complexes are formed via the H donor atoms from phenyl group and acceptor O atoms of OCH2 groups of phenoxyacetate ligands. It is noteworthy that the contacts are almost linear (C—H···O: 174.9°). The structural significance is that the dipole-monopole and dipole-dipole contributions to electrostatic energy are maximum at 180° and zero at 90°. Therefore, this interaction may be considered as an efficient C—H···O hydrogen bond.

The overall three-dimensional supramolecular structure is also stabilized by significant offset face-to-face π···π stacking interactions between the aromatic rings of 1,10-phenanthroline molecules belonging to adjacent Mn2 complexes, with an interplanar separation of ca 3.4 Å and θ = 21.9° (Fig. 3).

For related literature, see: Jiang et al. (2005, 2006); Sessoli et al. (1993); Yaghi et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. View of the microporous network of (I) along [001]. The guest CH3OH molecules and H atoms are omitted for clarity.
[Figure 3] Fig. 3. The π···π interactions and C—H···O hydrogen interactions in (I) are shown (dashed lines). Cg1 is the centroid of the interacting aromatic ring of 1,10-phenanthroline molecule in the asymmetric unit.
Tetrakis(µ-phenoxyacetato-κ2O:O')bis[(1,10- phenanthroline-κ2N,N')manganese(II)] methanol hemisolvate top
Crystal data top
[Mn2(C8H7O3)4(C12H8N2)2]·0.5CH4OZ = 2
Mr = 1090.86F(000) = 1126.0
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.4627 (10) ÅCell parameters from 14596 reflections
b = 12.8334 (10) Åθ = 2.4–28.1°
c = 17.1377 (13) ŵ = 0.54 mm1
α = 77.421 (1)°T = 193 K
β = 87.635 (1)°Prism, light brown
γ = 84.629 (1)°0.30 × 0.24 × 0.22 mm
V = 2662.8 (4) Å3
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
10273 independent reflections
Radiation source: fine-focus sealed tube6679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1215
Tmin = 0.848, Tmax = 0.879k = 1515
14596 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0726P)2]
where P = (Fo2 + 2Fc2)/3
10273 reflections(Δ/σ)max < 0.001
675 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mn2(C8H7O3)4(C12H8N2)2]·0.5CH4Oγ = 84.629 (1)°
Mr = 1090.86V = 2662.8 (4) Å3
Triclinic, P1Z = 2
a = 12.4627 (10) ÅMo Kα radiation
b = 12.8334 (10) ŵ = 0.54 mm1
c = 17.1377 (13) ÅT = 193 K
α = 77.421 (1)°0.30 × 0.24 × 0.22 mm
β = 87.635 (1)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
10273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
6679 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.879Rint = 0.030
14596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.97 e Å3
10273 reflectionsΔρmin = 0.53 e Å3
675 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.14992 (18)0.29242 (18)0.19427 (14)0.0413 (8)
C20.2086 (2)0.29890 (17)0.12587 (12)0.0528 (10)
H20.19870.35320.08110.063*
C30.28204 (19)0.2243 (2)0.12443 (12)0.0400 (8)
H30.32130.22860.07870.048*
C40.29687 (19)0.14321 (18)0.19139 (14)0.0448 (9)
H40.34600.09330.19040.054*
C50.2382 (2)0.13673 (19)0.25979 (12)0.0525 (11)
H50.24810.08250.30460.063*
C60.1647 (2)0.2113 (2)0.26123 (12)0.0533 (11)
H60.12550.20700.30700.064*
C70.0082 (3)0.3575 (3)0.2531 (2)0.0420 (9)
H7A0.03710.29110.25580.050*
H7B0.04860.35210.30320.050*
C80.0627 (3)0.4501 (3)0.24232 (19)0.0309 (7)
C90.5655 (3)0.5993 (3)0.1346 (2)0.0354 (7)
C100.6748 (3)0.5765 (3)0.1533 (2)0.0393 (8)
H100.70770.50770.15600.047*
C110.7337 (3)0.6559 (3)0.1676 (2)0.0408 (8)
H110.80640.64020.17920.049*
C120.6876 (3)0.7566 (3)0.1652 (2)0.0445 (9)
H120.72880.80950.17410.053*
C130.5785 (3)0.7801 (3)0.1493 (2)0.0399 (8)
H130.54580.84830.14900.048*
C140.5185 (3)0.7011 (3)0.1337 (2)0.0442 (9)
H140.44570.71720.12260.053*
C150.4190 (3)0.5449 (3)0.0745 (2)0.0389 (8)
H15A0.40780.48730.04800.047*
H15B0.42830.60860.03330.047*
C160.3174 (3)0.5660 (3)0.1243 (2)0.0310 (7)
C170.3770 (3)1.0392 (3)0.1738 (2)0.0393 (8)
C180.3870 (3)1.0841 (3)0.2409 (2)0.0452 (9)
H180.37411.04490.29230.054*
C190.4157 (3)1.1856 (3)0.2287 (2)0.0438 (9)
H190.41901.21660.27270.053*
C200.4399 (3)1.2444 (3)0.1549 (2)0.0480 (10)
H200.46201.31300.14850.058*
C210.4307 (3)1.1994 (4)0.0907 (3)0.0535 (11)
H210.44511.23890.03970.064*
C220.4008 (3)1.0974 (4)0.0996 (2)0.0508 (10)
H220.39671.06780.05490.061*
C230.3286 (4)0.8737 (3)0.2547 (2)0.0484 (11)
H23A0.28000.91260.28620.058*
H23B0.39690.85620.28190.058*
C240.2811 (3)0.7703 (3)0.2477 (2)0.0335 (7)
C250.1736 (4)0.7864 (3)0.4493 (2)0.0498 (10)
C260.2615 (3)0.8525 (3)0.4155 (3)0.0514 (10)
H260.26770.87090.36020.062*
C270.3402 (3)0.8912 (3)0.4640 (2)0.0439 (9)
H270.39790.93740.44120.053*
C280.3331 (3)0.8612 (3)0.5466 (2)0.0410 (8)
H280.38570.88740.57930.049*
C290.2472 (3)0.7921 (3)0.5800 (2)0.0440 (9)
H290.24300.77080.63530.053*
C300.1684 (3)0.7548 (4)0.5324 (2)0.0461 (9)
H300.11110.70820.55560.055*
C310.0959 (3)0.7740 (3)0.3230 (2)0.0464 (9)
H31A0.09510.85110.30610.056*
H31B0.16330.75440.30630.056*
C320.0029 (3)0.7204 (3)0.28230 (19)0.0360 (8)
C330.1833 (3)0.9173 (3)0.0287 (2)0.0370 (8)
H330.23240.90840.06950.044*
C340.1832 (3)1.0099 (3)0.0315 (2)0.0450 (9)
H340.23071.06120.03040.054*
C350.1116 (3)1.0241 (3)0.0925 (2)0.0446 (9)
H350.10991.08540.13310.054*
C360.0412 (3)0.9455 (3)0.0928 (2)0.0389 (8)
C370.0465 (3)0.8542 (3)0.02921 (19)0.0313 (7)
C380.0349 (3)0.9524 (3)0.1547 (2)0.0484 (10)
H380.03971.01250.19640.058*
C390.0986 (3)0.8749 (3)0.1535 (2)0.0400 (9)
H390.14800.88220.19400.048*
C400.0930 (3)0.7803 (3)0.0912 (2)0.0404 (9)
C410.0215 (3)0.7696 (3)0.0285 (2)0.0341 (7)
C420.1555 (3)0.6923 (3)0.0897 (2)0.0398 (8)
H420.20460.69510.12960.048*
C430.1425 (3)0.6043 (4)0.0292 (2)0.0494 (10)
H430.18040.54510.02870.059*
C440.0725 (3)0.6034 (3)0.0315 (2)0.0420 (8)
H440.06730.54390.07370.050*
C450.4660 (3)0.4104 (3)0.3261 (2)0.0489 (10)
H450.46300.42430.27060.059*
C460.5584 (3)0.3533 (4)0.3622 (2)0.0520 (11)
H460.61510.32900.33190.062*
C470.5625 (4)0.3341 (3)0.4441 (3)0.0555 (12)
H470.62320.29660.46970.067*
C480.4771 (3)0.3700 (3)0.4897 (3)0.0520 (11)
C490.4763 (3)0.3541 (3)0.5763 (3)0.0514 (11)
H490.53640.31930.60420.062*
C500.3923 (3)0.3878 (3)0.6161 (2)0.0427 (9)
H500.39400.37560.67150.051*
C510.2991 (3)0.4425 (3)0.5758 (2)0.0429 (9)
C520.2071 (3)0.4781 (3)0.6160 (2)0.0407 (9)
H520.20500.46600.67150.049*
C530.1195 (3)0.5313 (3)0.5726 (2)0.0430 (9)
H530.05740.55370.59860.052*
C540.1259 (4)0.5508 (4)0.4887 (2)0.0514 (10)
H540.06740.58790.45990.062*
C550.2979 (3)0.4632 (3)0.4909 (2)0.0407 (9)
C560.3875 (3)0.4251 (3)0.4477 (2)0.0396 (9)
C570.0849 (6)0.9332 (6)0.4635 (5)0.0479 (19)0.50
H57A0.03560.92780.42330.072*0.50
H57B0.11321.00220.45020.072*0.50
H57C0.04780.92500.51440.072*0.50
Mn10.10626 (4)0.68940 (4)0.13078 (3)0.03282 (14)
Mn20.23017 (4)0.55146 (4)0.31185 (3)0.03575 (15)
N10.1173 (2)0.8407 (2)0.03126 (18)0.0357 (6)
N20.0120 (2)0.6833 (2)0.03250 (16)0.0330 (6)
N30.3823 (3)0.4459 (2)0.36634 (18)0.0380 (7)
N40.2115 (3)0.5187 (2)0.44880 (17)0.0392 (7)
O10.0482 (2)0.5285 (2)0.18646 (15)0.0429 (6)
O20.1310 (2)0.4354 (2)0.29637 (15)0.0419 (6)
O30.23937 (19)0.6113 (2)0.08234 (13)0.0364 (5)
O40.3193 (2)0.5381 (2)0.19865 (14)0.0407 (6)
O50.2302 (2)0.7683 (2)0.18841 (14)0.0422 (6)
O60.2997 (2)0.6956 (2)0.30779 (14)0.0421 (6)
O70.0072 (2)0.7512 (2)0.20771 (14)0.0419 (6)
O80.0669 (2)0.6563 (2)0.32082 (14)0.0429 (6)
O90.0808 (2)0.3710 (2)0.18956 (16)0.0488 (7)
O100.5155 (2)0.5172 (2)0.11822 (17)0.0502 (7)
O110.34476 (19)0.93894 (19)0.17765 (14)0.0364 (5)
O120.0909 (2)0.7446 (2)0.40745 (14)0.0436 (6)
O130.1737 (5)0.8490 (6)0.4676 (4)0.0653 (17)0.50
H13A0.14930.79180.46780.098*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (18)0.047 (2)0.048 (2)0.0083 (16)0.0017 (16)0.0154 (17)
C20.039 (2)0.064 (3)0.059 (3)0.0034 (19)0.0030 (19)0.020 (2)
C30.041 (2)0.047 (2)0.0373 (19)0.0152 (16)0.0023 (16)0.0153 (16)
C40.052 (2)0.048 (2)0.040 (2)0.0109 (18)0.0000 (17)0.0187 (17)
C50.047 (2)0.069 (3)0.041 (2)0.036 (2)0.0106 (18)0.0006 (19)
C60.054 (2)0.063 (3)0.042 (2)0.028 (2)0.0052 (19)0.0007 (19)
C70.046 (2)0.040 (2)0.038 (2)0.0128 (17)0.0056 (16)0.0006 (16)
C80.0352 (18)0.0359 (18)0.0220 (16)0.0106 (14)0.0027 (13)0.0045 (13)
C90.0341 (18)0.0407 (19)0.0306 (18)0.0041 (14)0.0080 (14)0.0066 (14)
C100.0315 (18)0.041 (2)0.043 (2)0.0055 (15)0.0025 (15)0.0088 (16)
C110.0355 (19)0.055 (2)0.0354 (19)0.0203 (17)0.0029 (15)0.0103 (16)
C120.043 (2)0.039 (2)0.051 (2)0.0162 (17)0.0105 (18)0.0062 (17)
C130.040 (2)0.0389 (19)0.0410 (19)0.0214 (15)0.0001 (15)0.0022 (15)
C140.041 (2)0.052 (2)0.036 (2)0.0127 (17)0.0000 (16)0.0011 (17)
C150.046 (2)0.0366 (19)0.0373 (19)0.0051 (15)0.0008 (16)0.0141 (15)
C160.0316 (17)0.0262 (16)0.0341 (19)0.0034 (13)0.0061 (14)0.0027 (13)
C170.0369 (19)0.0340 (19)0.046 (2)0.0066 (14)0.0044 (16)0.0050 (15)
C180.044 (2)0.048 (2)0.051 (2)0.0303 (18)0.0025 (18)0.0148 (18)
C190.0401 (19)0.055 (2)0.050 (2)0.0270 (17)0.0058 (16)0.0336 (19)
C200.063 (3)0.035 (2)0.045 (2)0.0208 (18)0.0022 (19)0.0008 (16)
C210.040 (2)0.060 (3)0.052 (2)0.0241 (19)0.0029 (18)0.014 (2)
C220.054 (2)0.058 (3)0.042 (2)0.022 (2)0.0002 (18)0.0060 (18)
C230.078 (3)0.035 (2)0.0332 (19)0.0255 (19)0.0205 (19)0.0022 (15)
C240.0406 (19)0.0219 (16)0.0368 (19)0.0077 (13)0.0052 (15)0.0008 (14)
C250.057 (2)0.049 (2)0.042 (2)0.0091 (19)0.0114 (18)0.0055 (17)
C260.050 (2)0.041 (2)0.058 (3)0.0090 (18)0.0098 (19)0.0052 (18)
C270.041 (2)0.042 (2)0.046 (2)0.0180 (16)0.0153 (17)0.0147 (17)
C280.043 (2)0.042 (2)0.039 (2)0.0013 (16)0.0110 (16)0.0127 (16)
C290.047 (2)0.045 (2)0.043 (2)0.0116 (17)0.0154 (17)0.0158 (17)
C300.038 (2)0.064 (3)0.038 (2)0.0127 (18)0.0077 (16)0.0131 (18)
C310.049 (2)0.050 (2)0.038 (2)0.0007 (18)0.0033 (17)0.0077 (17)
C320.047 (2)0.0372 (19)0.0220 (16)0.0050 (15)0.0011 (14)0.0018 (14)
C330.0399 (19)0.0396 (19)0.0289 (17)0.0075 (15)0.0081 (14)0.0014 (14)
C340.047 (2)0.041 (2)0.042 (2)0.0131 (17)0.0026 (17)0.0049 (16)
C350.047 (2)0.044 (2)0.035 (2)0.0064 (17)0.0016 (17)0.0102 (16)
C360.046 (2)0.040 (2)0.0242 (17)0.0077 (16)0.0019 (15)0.0005 (14)
C370.0304 (17)0.0383 (18)0.0235 (16)0.0053 (14)0.0006 (13)0.0070 (13)
C380.054 (2)0.050 (2)0.034 (2)0.0077 (19)0.0127 (17)0.0049 (17)
C390.042 (2)0.044 (2)0.0320 (18)0.0144 (17)0.0149 (15)0.0081 (15)
C400.0336 (18)0.060 (2)0.0252 (17)0.0065 (17)0.0031 (14)0.0077 (16)
C410.0268 (16)0.0376 (19)0.0351 (18)0.0027 (13)0.0019 (13)0.0017 (14)
C420.0388 (19)0.048 (2)0.041 (2)0.0062 (16)0.0086 (16)0.0249 (17)
C430.044 (2)0.062 (3)0.044 (2)0.0156 (19)0.0107 (18)0.0097 (19)
C440.043 (2)0.052 (2)0.0322 (19)0.0139 (17)0.0020 (16)0.0065 (16)
C450.058 (3)0.045 (2)0.045 (2)0.0003 (19)0.022 (2)0.0084 (18)
C460.052 (2)0.061 (3)0.044 (2)0.008 (2)0.0162 (19)0.015 (2)
C470.061 (3)0.045 (2)0.059 (3)0.0033 (19)0.044 (2)0.0002 (19)
C480.049 (2)0.041 (2)0.063 (3)0.0059 (18)0.028 (2)0.0015 (19)
C490.033 (2)0.053 (2)0.060 (3)0.0105 (17)0.0170 (19)0.011 (2)
C500.036 (2)0.044 (2)0.041 (2)0.0145 (16)0.0165 (16)0.0147 (16)
C510.045 (2)0.047 (2)0.0339 (19)0.0225 (17)0.0198 (16)0.0090 (16)
C520.040 (2)0.043 (2)0.039 (2)0.0278 (16)0.0008 (16)0.0012 (16)
C530.051 (2)0.042 (2)0.037 (2)0.0132 (17)0.0002 (17)0.0077 (16)
C540.058 (3)0.062 (3)0.0269 (19)0.006 (2)0.0062 (17)0.0067 (17)
C550.048 (2)0.0348 (18)0.0367 (19)0.0167 (16)0.0159 (16)0.0060 (15)
C560.053 (2)0.0313 (18)0.0329 (18)0.0128 (16)0.0225 (17)0.0052 (14)
C570.035 (4)0.043 (4)0.055 (5)0.009 (3)0.008 (3)0.016 (3)
Mn10.0289 (3)0.0314 (3)0.0355 (3)0.0038 (2)0.0041 (2)0.0000 (2)
Mn20.0364 (3)0.0314 (3)0.0366 (3)0.0078 (2)0.0083 (2)0.0024 (2)
N10.0320 (15)0.0337 (15)0.0381 (16)0.0000 (12)0.0022 (12)0.0015 (12)
N20.0281 (14)0.0394 (16)0.0318 (15)0.0061 (12)0.0016 (12)0.0064 (12)
N30.0462 (17)0.0304 (15)0.0382 (16)0.0065 (13)0.0141 (14)0.0050 (12)
N40.0487 (18)0.0388 (17)0.0282 (15)0.0106 (14)0.0076 (13)0.0009 (12)
O10.0521 (15)0.0384 (14)0.0366 (14)0.0138 (12)0.0076 (12)0.0012 (11)
O20.0519 (15)0.0366 (14)0.0357 (13)0.0156 (11)0.0117 (12)0.0026 (10)
O30.0327 (12)0.0483 (15)0.0283 (12)0.0008 (11)0.0049 (10)0.0093 (10)
O40.0439 (14)0.0495 (15)0.0262 (13)0.0004 (11)0.0043 (10)0.0038 (11)
O50.0565 (16)0.0384 (14)0.0318 (13)0.0130 (12)0.0175 (12)0.0012 (10)
O60.0509 (15)0.0380 (14)0.0333 (13)0.0109 (11)0.0137 (11)0.0066 (11)
O70.0435 (14)0.0519 (16)0.0258 (13)0.0047 (12)0.0031 (10)0.0016 (11)
O80.0459 (15)0.0510 (16)0.0263 (12)0.0064 (12)0.0057 (11)0.0000 (11)
O90.0467 (15)0.0524 (16)0.0472 (16)0.0239 (13)0.0109 (12)0.0003 (12)
O100.0340 (14)0.0604 (18)0.0550 (17)0.0028 (12)0.0024 (12)0.0129 (14)
O110.0392 (13)0.0359 (13)0.0351 (13)0.0214 (10)0.0053 (10)0.0017 (10)
O120.0621 (17)0.0379 (14)0.0248 (12)0.0096 (12)0.0077 (11)0.0011 (10)
O130.055 (4)0.069 (4)0.077 (5)0.015 (3)0.019 (3)0.026 (4)
Geometric parameters (Å, º) top
C1—O91.374 (3)C31—H31B0.9700
C1—C21.3900C32—O81.243 (4)
C1—C61.3900C32—O71.255 (4)
C2—C31.3900C33—N11.332 (5)
C2—H20.9300C33—C341.394 (5)
C3—C41.3900C33—H330.9300
C3—H30.9300C34—C351.372 (5)
C4—C51.3900C34—H340.9300
C4—H40.9300C35—C361.399 (6)
C5—C61.3900C35—H350.9300
C5—H50.9300C36—C371.415 (5)
C6—H60.9300C36—C381.434 (5)
C7—O91.415 (4)C37—N11.361 (4)
C7—C81.521 (5)C37—C411.436 (5)
C7—H7A0.9700C38—C391.327 (6)
C7—H7B0.9700C38—H380.9300
C8—O11.234 (4)C39—C401.429 (5)
C8—O21.256 (4)C39—H390.9300
C9—O101.358 (5)C40—C411.400 (5)
C9—C141.378 (5)C40—C421.425 (5)
C9—C101.402 (5)C41—N21.347 (4)
C10—C111.379 (5)C42—C431.358 (6)
C10—H100.9300C42—H420.9300
C11—C121.356 (5)C43—C441.382 (5)
C11—H110.9300C43—H430.9300
C12—C131.390 (5)C44—N21.332 (5)
C12—H120.9300C44—H440.9300
C13—C141.391 (5)C45—N31.327 (5)
C13—H130.9300C45—C461.396 (5)
C14—H140.9300C45—H450.9300
C15—O101.418 (4)C46—C471.374 (6)
C15—C161.533 (5)C46—H460.9300
C15—H15A0.9700C47—C481.397 (7)
C15—H15B0.9700C47—H470.9300
C16—O41.247 (4)C48—C561.401 (5)
C16—O31.254 (4)C48—C491.452 (6)
C17—C221.364 (6)C49—C501.315 (6)
C17—O111.371 (4)C49—H490.9300
C17—C181.408 (5)C50—C511.422 (5)
C18—C191.354 (5)C50—H500.9300
C18—H180.9300C51—C521.405 (6)
C19—C201.364 (6)C51—C551.421 (5)
C19—H190.9300C52—C531.385 (5)
C20—C211.361 (6)C52—H520.9300
C20—H200.9300C53—C541.405 (5)
C21—C221.369 (6)C53—H530.9300
C21—H210.9300C54—N41.324 (5)
C22—H220.9300C54—H540.9300
C23—O111.419 (4)C55—N41.373 (5)
C23—C241.532 (5)C55—C561.421 (6)
C23—H23A0.9700C56—N31.365 (5)
C23—H23B0.9700C57—O131.465 (10)
C24—O51.227 (4)C57—H57A0.9600
C24—O61.257 (4)C57—H57B0.9600
C25—O121.366 (5)C57—H57C0.9600
C25—C261.385 (6)Mn1—O12.250 (3)
C25—C301.397 (6)Mn1—O32.094 (2)
C26—C271.386 (5)Mn1—O52.289 (2)
C26—H260.9300Mn1—O72.112 (3)
C27—C281.388 (5)Mn1—N12.299 (3)
C27—H270.9300Mn1—N22.302 (3)
C28—C291.382 (6)Mn2—O22.087 (2)
C28—H280.9300Mn2—O42.227 (3)
C29—C301.369 (5)Mn2—O62.102 (2)
C29—H290.9300Mn2—O82.351 (3)
C30—H300.9300Mn2—N32.327 (3)
C31—O121.417 (4)Mn2—N42.299 (3)
C31—C321.515 (5)O13—H13A0.8200
C31—H31A0.9700
O9—C1—C2115.15 (19)N1—C37—C41117.6 (3)
O9—C1—C6124.84 (19)C36—C37—C41120.0 (3)
C2—C1—C6120.0C39—C38—C36121.3 (4)
C3—C2—C1120.0C39—C38—H38119.3
C3—C2—H2120.0C36—C38—H38119.3
C1—C2—H2120.0C38—C39—C40121.4 (3)
C2—C3—C4120.0C38—C39—H39119.3
C2—C3—H3120.0C40—C39—H39119.3
C4—C3—H3120.0C41—C40—C42116.6 (3)
C3—C4—C5120.0C41—C40—C39120.0 (4)
C3—C4—H4120.0C42—C40—C39123.4 (3)
C5—C4—H4120.0N2—C41—C40123.4 (3)
C6—C5—C4120.0N2—C41—C37117.9 (3)
C6—C5—H5120.0C40—C41—C37118.7 (3)
C4—C5—H5120.0C43—C42—C40119.3 (3)
C5—C6—C1120.0C43—C42—H42120.4
C5—C6—H6120.0C40—C42—H42120.4
C1—C6—H6120.0C42—C43—C44119.6 (4)
O9—C7—C8111.8 (3)C42—C43—H43120.2
O9—C7—H7A109.3C44—C43—H43120.2
C8—C7—H7A109.3N2—C44—C43123.3 (4)
O9—C7—H7B109.3N2—C44—H44118.3
C8—C7—H7B109.3C43—C44—H44118.3
H7A—C7—H7B107.9N3—C45—C46123.8 (4)
O1—C8—O2127.6 (3)N3—C45—H45118.1
O1—C8—C7120.6 (3)C46—C45—H45118.1
O2—C8—C7111.9 (3)C47—C46—C45117.6 (4)
O10—C9—C14125.8 (3)C47—C46—H46121.2
O10—C9—C10115.7 (3)C45—C46—H46121.2
C14—C9—C10118.4 (3)C46—C47—C48121.3 (4)
C11—C10—C9120.0 (3)C46—C47—H47119.4
C11—C10—H10120.0C48—C47—H47119.4
C9—C10—H10120.0C47—C48—C56116.6 (4)
C12—C11—C10121.3 (4)C47—C48—C49124.4 (4)
C12—C11—H11119.3C56—C48—C49119.0 (4)
C10—C11—H11119.3C50—C49—C48121.5 (4)
C11—C12—C13119.6 (3)C50—C49—H49119.2
C11—C12—H12120.2C48—C49—H49119.2
C13—C12—H12120.2C49—C50—C51121.2 (4)
C12—C13—C14119.7 (4)C49—C50—H50119.4
C12—C13—H13120.2C51—C50—H50119.4
C14—C13—H13120.2C52—C51—C55117.8 (3)
C9—C14—C13120.9 (4)C52—C51—C50123.0 (3)
C9—C14—H14119.6C55—C51—C50119.2 (4)
C13—C14—H14119.6C53—C52—C51119.7 (3)
O10—C15—C16115.2 (3)C53—C52—H52120.1
O10—C15—H15A108.5C51—C52—H52120.1
C16—C15—H15A108.5C52—C53—C54118.9 (4)
O10—C15—H15B108.5C52—C53—H53120.6
C16—C15—H15B108.5C54—C53—H53120.6
H15A—C15—H15B107.5N4—C54—C53123.0 (4)
O4—C16—O3127.3 (3)N4—C54—H54118.5
O4—C16—C15119.7 (3)C53—C54—H54118.5
O3—C16—C15113.0 (3)N4—C55—C56118.6 (3)
C22—C17—O11116.7 (3)N4—C55—C51121.6 (4)
C22—C17—C18119.2 (4)C56—C55—C51119.8 (3)
O11—C17—C18124.1 (3)N3—C56—C48123.1 (4)
C19—C18—C17118.3 (4)N3—C56—C55117.7 (3)
C19—C18—H18120.8C48—C56—C55119.2 (4)
C17—C18—H18120.8O13—C57—H57A109.5
C18—C19—C20122.9 (3)O13—C57—H57B109.5
C18—C19—H19118.6H57A—C57—H57B109.5
C20—C19—H19118.6O13—C57—H57C109.5
C21—C20—C19117.9 (4)H57A—C57—H57C109.5
C21—C20—H20121.1H57B—C57—H57C109.5
C19—C20—H20121.1O3—Mn1—O7165.10 (9)
C20—C21—C22121.6 (4)O3—Mn1—O189.02 (10)
C20—C21—H21119.2O7—Mn1—O185.90 (10)
C22—C21—H21119.2O3—Mn1—O585.75 (10)
C17—C22—C21120.0 (4)O7—Mn1—O585.38 (10)
C17—C22—H22120.0O1—Mn1—O5123.41 (9)
C21—C22—H22120.0O3—Mn1—N191.36 (10)
O11—C23—C24110.2 (3)O7—Mn1—N199.24 (10)
O11—C23—H23A109.6O1—Mn1—N1154.47 (10)
C24—C23—H23A109.6O5—Mn1—N182.06 (9)
O11—C23—H23B109.6O3—Mn1—N296.27 (9)
C24—C23—H23B109.6O7—Mn1—N296.98 (10)
H23A—C23—H23B108.1O1—Mn1—N282.86 (10)
O5—C24—O6127.7 (3)O5—Mn1—N2153.72 (10)
O5—C24—C23119.8 (3)N1—Mn1—N271.72 (10)
O6—C24—C23112.5 (3)O2—Mn2—O6164.69 (10)
O12—C25—C26125.1 (4)O2—Mn2—O490.14 (10)
O12—C25—C30115.6 (4)O6—Mn2—O488.70 (10)
C26—C25—C30119.2 (4)O2—Mn2—N495.76 (10)
C25—C26—C27120.1 (4)O6—Mn2—N492.14 (10)
C25—C26—H26120.0O4—Mn2—N4153.09 (11)
C27—C26—H26120.0O2—Mn2—N3101.55 (10)
C26—C27—C28120.2 (4)O6—Mn2—N393.36 (10)
C26—C27—H27119.9O4—Mn2—N381.30 (10)
C28—C27—H27119.9N4—Mn2—N371.79 (11)
C29—C28—C27119.4 (3)O2—Mn2—O884.33 (10)
C29—C28—H28120.3O6—Mn2—O883.89 (10)
C27—C28—H28120.3O4—Mn2—O8125.25 (9)
C30—C29—C28120.7 (4)N4—Mn2—O881.54 (10)
C30—C29—H29119.6N3—Mn2—O8153.09 (10)
C28—C29—H29119.6C33—N1—C37117.5 (3)
C29—C30—C25120.3 (4)C33—N1—Mn1126.4 (2)
C29—C30—H30119.9C37—N1—Mn1116.1 (2)
C25—C30—H30119.9C44—N2—C41117.7 (3)
O12—C31—C32112.3 (3)C44—N2—Mn1125.9 (2)
O12—C31—H31A109.1C41—N2—Mn1116.4 (2)
C32—C31—H31A109.1C45—N3—C56117.7 (3)
O12—C31—H31B109.1C45—N3—Mn2126.5 (2)
C32—C31—H31B109.1C56—N3—Mn2115.7 (3)
H31A—C31—H31B107.9C54—N4—C55118.9 (3)
O8—C32—O7127.1 (3)C54—N4—Mn2125.1 (2)
O8—C32—C31122.1 (3)C55—N4—Mn2116.0 (3)
O7—C32—C31110.8 (3)C8—O1—Mn1143.6 (2)
N1—C33—C34123.9 (3)C8—O2—Mn2123.9 (2)
N1—C33—H33118.0C16—O3—Mn1121.8 (2)
C34—C33—H33118.0C16—O4—Mn2144.6 (2)
C35—C34—C33118.8 (4)C24—O5—Mn1148.5 (2)
C35—C34—H34120.6C24—O6—Mn2117.4 (2)
C33—C34—H34120.6C32—O7—Mn1121.6 (2)
C34—C35—C36119.4 (3)C32—O8—Mn2145.0 (2)
C34—C35—H35120.3C1—O9—C7116.4 (3)
C36—C35—H35120.3C9—O10—C15116.7 (3)
C35—C36—C37118.0 (3)C17—O11—C23117.4 (3)
C35—C36—C38123.4 (3)C25—O12—C31116.4 (3)
C37—C36—C38118.6 (4)C57—O13—H13A109.5
N1—C37—C36122.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O10i0.932.703.627 (5)175
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn2(C8H7O3)4(C12H8N2)2]·0.5CH4O
Mr1090.86
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)12.4627 (10), 12.8334 (10), 17.1377 (13)
α, β, γ (°)77.421 (1), 87.635 (1), 84.629 (1)
V3)2662.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.848, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
14596, 10273, 6679
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.149, 1.08
No. of reflections10273
No. of parameters675
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected bond lengths (Å) top
Mn1—O12.250 (3)Mn2—O22.087 (2)
Mn1—O32.094 (2)Mn2—O42.227 (3)
Mn1—O52.289 (2)Mn2—O62.102 (2)
Mn1—O72.112 (3)Mn2—O82.351 (3)
Mn1—N12.299 (3)Mn2—N32.327 (3)
Mn1—N22.302 (3)Mn2—N42.299 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O10i0.932.703.627 (5)174.9
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of JiangSu Education Department (grant No. 06KJD150154).

References

First citationBruker (2000). SMART (Version 5.0), SAINT (Version 6.02a), SADABS (Version 2.01) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, G.-Q., Li, Y.-Z., Hua, W.-J., Song, Y., Bai, J.-F., Li, S.-H., Scheer, M. & You, X.-Z. (2006). CrystEngComm, 8, 384–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, G.-Q., Li, Y.-Z., Wang, S.-N., Li, F.-F., Xu, Z.-J. & Bai, J.-F. (2005). Acta Cryst. E61, m1517–m1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSessoli, R., Tsai, H. L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804–1816.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861–2868.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds