metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The one-dimensional polymer poly[[aqua­(2,2′-bi­pyridine)cadmium(II)]-μ-trans-stilbene-4,4′-di­carboxyl­ato]

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: shangao67@yahoo.com

(Received 11 November 2007; accepted 3 December 2007; online 12 December 2007)

In the title polymer, [Cd(C16H10O4)(C10H8N2)(H2O)]n, the CdII ion is in a strongly distorted octa­hedral geometry, being coordinated by two N atoms from a 2,2′-bipyridine ligand, three carboxylate O atoms from two symmetry-related trans-stilbene-4,4′-dicarboxyl­ate dianions and one water mol­ecule. The stilbene ligand lies on an inversion centre at the midpoint of the central C=C bond. This feature generates the polymeric structure: adjacent CdII ions are bridged by trans-stilbene-4,4′-dicarboxyl­ate dianions, giving rise to a one-dimensional structure. The coordinated water mol­ecule is involved in interchain O—H⋯O hydrogen bonds.

Related literature

A closely related NiII complex with 1,10-phenanthroline and the trans-stilbene-4,4′-dicarboxyl­ate dianion as ligands has been characterized by X-ray diffraction (Wang et al., 2006[Wang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2006). Acta Cryst. E62, m3395-m3397.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C16H10O4)(C10H8N2)(H2O)]

  • Mr = 552.84

  • Triclinic, [P \overline 1]

  • a = 10.543 (2) Å

  • b = 10.838 (2) Å

  • c = 11.442 (2) Å

  • α = 98.90 (3)°

  • β = 115.07 (3)°

  • γ = 102.95 (3)°

  • V = 1107.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 295 (2) K

  • 0.35 × 0.26 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.715, Tmax = 0.861

  • 10929 measured reflections

  • 5024 independent reflections

  • 4482 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.08

  • 5024 reflections

  • 313 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O2 2.209 (2)
Cd1—O1 2.745 (2)
Cd1—O3 2.2129 (19)
Cd1—O1W 2.291 (2)
Cd1—N1 2.316 (3)
Cd1—N2 2.375 (2)
O1—Cd1—O1W 139.33 (8)
O1—Cd1—O2 51.29 (8)
O1—Cd1—O3 120.67 (8)
O1—Cd1—N1 94.47 (8)
O1—Cd1—N2 74.71 (8)
O2—Cd1—O3 115.76 (8)
O2—Cd1—O1W 94.06 (8)
O3—Cd1—O1W 91.48 (8)
O2—Cd1—N1 144.70 (8)
O3—Cd1—N1 87.35 (8)
O1W—Cd1—N1 112.58 (8)
O2—Cd1—N2 89.94 (8)
O3—Cd1—N2 154.30 (8)
O1W—Cd1—N2 86.30 (8)
N1—Cd1—N2 70.07 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.850 (10) 1.918 (18) 2.697 (3) 152 (3)
O1W—H1W2⋯O4i 0.85 (4) 1.81 (4) 2.639 (3) 167 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are interested in the solid-state coordination chemistry of trans-stilbene-4,4'-dicarboxylic acid, combined with specific transition metal ions, to fabricate versatile coordination polymers. In our previous work, a one-dimensional NiII-organic framework had been reported (Wang et al., 2006). In order to further explore the behavior of trans-stilbene-4,4'-dicarboxylic acid as ligand, a new one-dimensional CdII complex has been obtained and characterized.

The molecular structure of the title compound is illustrated in Fig. 1. The CdII ion is in a strongly distorted octahedral geometry and is coordinated by two N atoms of a 2,2'-bipyridine ligand, three carboxyl O atoms of two symmetry-related trans-stilbene-4,4'-dicarboxylato dianions, which adopted two different coordination modes, and one water molecule. One of the two carboxylic ligands is found in the bis-monodentate mode, and the other in the chelating bis-bidentate mode, linking the adjacent CdII ions into a zigzag chain structure. In addition, the chains are interconnected through intermolecular hydrogen bonds involving water molecules, and ππ interactions involving 2,2'-bipyridine ligands, [centroid-to-centroid separation: 3.8749 (10) Å], forming a three-dimensional supramolecular network (Table 2 and Fig. 2).

Related literature top

A closely related NiII complex with 1,10-phenanthroline and the trans-stilbene-4,4'-dicarboxylate dianion as ligands has been characterized by X-ray diffraction (Wang et al., 2006).

Experimental top

A mixture of CdCl2.6H2O (1 mmol), 2,2'-bipyridine (1 mmol), trans-stilbene-4,4'-dicarboxylic acid (1 mmol) and water (10 ml) was stirred for 15 min. in air, then transferred and sealed in a 23 ml Parr teflon-lined stainless steel vessel, heated to 433 K for 5 days, and then cooled to room temperature. The resulting colorrless crystals were filtered, washed, and dried in air. Analysis calculated for C26H20CdN2O5: C 56.31, H 3.64, N 5.05%; found: C 56.34, H 3.62, N 5.03%.

Refinement top

Water H atoms were located in a difference map and refined with O—H and H···H distances restrained to 0.85 (1) and 1.39 (1) Å, respectively, and Uiso(H) = 1.5Ueq(O1W). All other H atoms were placed in calculated positions with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(carrier C), and were refined in the riding-model approximation.

Structure description top

We are interested in the solid-state coordination chemistry of trans-stilbene-4,4'-dicarboxylic acid, combined with specific transition metal ions, to fabricate versatile coordination polymers. In our previous work, a one-dimensional NiII-organic framework had been reported (Wang et al., 2006). In order to further explore the behavior of trans-stilbene-4,4'-dicarboxylic acid as ligand, a new one-dimensional CdII complex has been obtained and characterized.

The molecular structure of the title compound is illustrated in Fig. 1. The CdII ion is in a strongly distorted octahedral geometry and is coordinated by two N atoms of a 2,2'-bipyridine ligand, three carboxyl O atoms of two symmetry-related trans-stilbene-4,4'-dicarboxylato dianions, which adopted two different coordination modes, and one water molecule. One of the two carboxylic ligands is found in the bis-monodentate mode, and the other in the chelating bis-bidentate mode, linking the adjacent CdII ions into a zigzag chain structure. In addition, the chains are interconnected through intermolecular hydrogen bonds involving water molecules, and ππ interactions involving 2,2'-bipyridine ligands, [centroid-to-centroid separation: 3.8749 (10) Å], forming a three-dimensional supramolecular network (Table 2 and Fig. 2).

A closely related NiII complex with 1,10-phenanthroline and the trans-stilbene-4,4'-dicarboxylate dianion as ligands has been characterized by X-ray diffraction (Wang et al., 2006).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. C-bonded H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of the title complex, with the intermolecular hydrogen bonds denoted by dashed lines.
Poly[[aqua(2,2'-bipyridine)cadmium(II)]- µ-trans-stilbene-4,4'-dicarboxylato] top
Crystal data top
[Cd(C16H10O4)(C10H8N2)(H2O)]Z = 2
Mr = 552.84F(000) = 556
Triclinic, P1Dx = 1.659 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.543 (2) ÅCell parameters from 9882 reflections
b = 10.838 (2) Åθ = 3.1–27.5°
c = 11.442 (2) ŵ = 1.03 mm1
α = 98.90 (3)°T = 295 K
β = 115.07 (3)°Block, colourless
γ = 102.95 (3)°0.35 × 0.26 × 0.15 mm
V = 1107.0 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5024 independent reflections
Radiation source: fine-focus sealed tube4482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.715, Tmax = 0.861l = 1314
10929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.8869P]
where P = (Fo2 + 2Fc2)/3
5024 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.56 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cd(C16H10O4)(C10H8N2)(H2O)]γ = 102.95 (3)°
Mr = 552.84V = 1107.0 (6) Å3
Triclinic, P1Z = 2
a = 10.543 (2) ÅMo Kα radiation
b = 10.838 (2) ŵ = 1.03 mm1
c = 11.442 (2) ÅT = 295 K
α = 98.90 (3)°0.35 × 0.26 × 0.15 mm
β = 115.07 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5024 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4482 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.861Rint = 0.019
10929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.56 e Å3
5024 reflectionsΔρmin = 0.34 e Å3
313 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.250536 (19)0.691211 (19)0.648737 (17)0.02976 (7)
O10.1953 (2)0.9264 (2)0.6820 (2)0.0420 (5)
O1W0.1557 (2)0.4774 (2)0.6441 (2)0.0375 (4)
H1W20.088 (3)0.475 (3)0.666 (3)0.056*
H1W10.121 (3)0.419 (3)0.570 (2)0.056*
O20.0352 (2)0.7264 (2)0.5764 (2)0.0448 (5)
O30.3107 (2)0.6262 (2)0.49176 (19)0.0474 (5)
O40.0819 (3)0.5544 (3)0.3238 (2)0.0666 (7)
N10.5016 (2)0.7824 (2)0.7968 (2)0.0334 (5)
N20.2902 (2)0.7500 (2)0.8731 (2)0.0339 (5)
C10.6036 (3)0.7890 (3)0.7554 (3)0.0420 (6)
H10.57190.75960.66370.050*
C20.7535 (3)0.8376 (3)0.8427 (3)0.0502 (8)
H20.82180.84110.81100.060*
C30.7991 (3)0.8808 (4)0.9778 (3)0.0539 (8)
H30.89950.91381.03930.065*
C40.6959 (3)0.8750 (3)1.0219 (3)0.0455 (7)
H40.72610.90511.11320.055*
C50.5465 (3)0.8241 (2)0.9295 (2)0.0315 (5)
C60.4290 (3)0.8130 (2)0.9701 (2)0.0307 (5)
C70.4608 (4)0.8664 (3)1.1016 (3)0.0436 (7)
H70.55790.91001.16850.052*
C80.3456 (4)0.8533 (3)1.1311 (3)0.0510 (8)
H80.36460.88831.21860.061*
C90.2027 (4)0.7887 (3)1.0315 (3)0.0483 (7)
H90.12380.77911.04980.058*
C100.1799 (3)0.7382 (3)0.9030 (3)0.0413 (6)
H100.08350.69420.83470.050*
C110.0672 (3)0.8507 (3)0.6204 (2)0.0333 (5)
C120.0621 (3)0.8999 (3)0.5960 (2)0.0313 (5)
C130.2056 (3)0.8142 (3)0.5195 (3)0.0434 (7)
H130.22200.72540.48460.052*
C140.3248 (3)0.8590 (3)0.4943 (3)0.0426 (7)
H150.42040.80000.44180.051*
C150.3044 (3)0.9907 (3)0.5460 (3)0.0307 (5)
C160.1598 (3)1.0773 (3)0.6219 (3)0.0350 (6)
H160.14331.16610.65740.042*
C170.0405 (3)1.0325 (3)0.6451 (3)0.0340 (5)
H120.05521.09190.69410.041*
C180.4307 (3)1.0377 (3)0.5217 (3)0.0327 (5)
H180.41261.12840.53800.039*
C190.2159 (3)0.5721 (3)0.3699 (3)0.0340 (6)
C200.2723 (3)0.5366 (2)0.2737 (2)0.0275 (5)
C210.4203 (3)0.5479 (3)0.3167 (2)0.0307 (5)
H210.48490.56870.40820.037*
C220.4726 (3)0.5286 (3)0.2259 (3)0.0320 (5)
H220.57220.53780.25710.038*
C230.3784 (3)0.4955 (2)0.0874 (2)0.0293 (5)
C240.2285 (3)0.4760 (3)0.0450 (3)0.0362 (6)
H240.16220.44860.04660.043*
C250.1767 (3)0.4965 (3)0.1363 (3)0.0346 (6)
H250.07630.48330.10530.041*
C260.4304 (3)0.4834 (3)0.0125 (3)0.0336 (5)
H260.35840.44890.10230.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02380 (10)0.04032 (11)0.02192 (9)0.01038 (7)0.01061 (7)0.00110 (7)
O10.0278 (9)0.0503 (12)0.0424 (11)0.0118 (9)0.0134 (8)0.0094 (9)
O1W0.0276 (9)0.0412 (11)0.0387 (10)0.0081 (8)0.0165 (8)0.0004 (8)
O20.0328 (10)0.0434 (11)0.0434 (11)0.0182 (9)0.0076 (9)0.0041 (9)
O30.0433 (11)0.0654 (14)0.0298 (10)0.0133 (10)0.0216 (9)0.0024 (9)
O40.0371 (12)0.107 (2)0.0525 (13)0.0131 (13)0.0317 (11)0.0010 (14)
N10.0301 (11)0.0377 (12)0.0269 (10)0.0086 (9)0.0120 (9)0.0031 (9)
N20.0318 (11)0.0385 (12)0.0261 (10)0.0087 (10)0.0119 (9)0.0050 (9)
C10.0362 (14)0.0506 (17)0.0383 (14)0.0113 (13)0.0200 (12)0.0075 (13)
C20.0329 (15)0.058 (2)0.0551 (19)0.0101 (14)0.0222 (14)0.0078 (16)
C30.0287 (14)0.065 (2)0.0487 (18)0.0090 (14)0.0082 (13)0.0034 (16)
C40.0367 (15)0.0524 (18)0.0305 (14)0.0118 (13)0.0065 (12)0.0004 (13)
C50.0327 (13)0.0297 (12)0.0255 (11)0.0112 (11)0.0089 (10)0.0035 (10)
C60.0368 (13)0.0288 (12)0.0230 (11)0.0107 (11)0.0124 (10)0.0041 (9)
C70.0462 (16)0.0462 (16)0.0245 (12)0.0081 (13)0.0116 (12)0.0010 (12)
C80.067 (2)0.0551 (19)0.0290 (14)0.0143 (17)0.0279 (15)0.0004 (13)
C90.0561 (19)0.0530 (18)0.0438 (16)0.0145 (15)0.0341 (15)0.0085 (14)
C100.0366 (14)0.0465 (16)0.0376 (14)0.0089 (13)0.0192 (12)0.0058 (12)
C110.0296 (13)0.0454 (15)0.0242 (11)0.0159 (12)0.0116 (10)0.0063 (11)
C120.0280 (12)0.0370 (13)0.0294 (12)0.0131 (11)0.0139 (10)0.0067 (10)
C130.0317 (14)0.0350 (14)0.0544 (17)0.0127 (12)0.0170 (13)0.0034 (13)
C140.0265 (13)0.0371 (15)0.0527 (17)0.0080 (12)0.0145 (12)0.0014 (13)
C150.0285 (12)0.0368 (13)0.0299 (12)0.0140 (11)0.0146 (10)0.0110 (10)
C160.0356 (14)0.0315 (13)0.0356 (13)0.0131 (11)0.0149 (11)0.0059 (11)
C170.0285 (12)0.0362 (14)0.0316 (13)0.0092 (11)0.0117 (11)0.0046 (11)
C180.0326 (13)0.0360 (14)0.0307 (12)0.0152 (11)0.0143 (11)0.0090 (10)
C190.0370 (14)0.0363 (14)0.0330 (13)0.0058 (11)0.0256 (12)0.0026 (11)
C200.0303 (12)0.0285 (12)0.0269 (11)0.0071 (10)0.0191 (10)0.0032 (9)
C210.0286 (12)0.0361 (13)0.0238 (11)0.0079 (10)0.0124 (10)0.0025 (10)
C220.0269 (12)0.0406 (14)0.0309 (12)0.0125 (11)0.0168 (10)0.0048 (11)
C230.0319 (12)0.0328 (13)0.0281 (12)0.0110 (10)0.0191 (10)0.0060 (10)
C240.0312 (13)0.0525 (17)0.0236 (12)0.0130 (12)0.0137 (10)0.0060 (11)
C250.0269 (12)0.0508 (16)0.0284 (12)0.0128 (12)0.0168 (11)0.0064 (11)
C260.0345 (13)0.0434 (15)0.0270 (12)0.0139 (12)0.0187 (11)0.0065 (11)
Geometric parameters (Å, º) top
Cd1—O22.209 (2)C9—H90.9300
Cd1—O12.745 (2)C10—H100.9300
Cd1—O32.2129 (19)C11—C121.506 (3)
Cd1—O1W2.291 (2)C12—C131.383 (4)
Cd1—N12.316 (3)C12—C171.388 (4)
Cd1—N22.375 (2)C13—C141.382 (4)
O1—C111.230 (3)C13—H130.9300
O1W—H1W20.85 (4)C14—C151.388 (4)
O1W—H1W10.850 (10)C14—H150.9300
O2—C111.274 (3)C15—C161.394 (4)
O3—C191.261 (3)C15—C181.465 (3)
O4—C191.236 (3)C16—C171.385 (4)
N1—C11.339 (4)C16—H160.9300
N1—C51.348 (3)C17—H120.9300
N2—C101.330 (4)C18—C18i1.332 (5)
N2—C61.335 (3)C18—H180.9300
C1—C21.377 (4)C19—C201.496 (3)
C1—H10.9300C20—C251.388 (3)
C2—C31.373 (5)C20—C211.392 (3)
C2—H20.9300C21—C221.377 (3)
C3—C41.373 (5)C21—H210.9300
C3—H30.9300C22—C231.399 (4)
C4—C51.386 (4)C22—H220.9300
C4—H40.9300C23—C241.395 (4)
C5—C61.484 (4)C23—C261.463 (3)
C6—C71.389 (4)C24—C251.380 (3)
C7—C81.376 (5)C24—H240.9300
C7—H70.9300C25—H250.9300
C8—C91.373 (5)C26—C26ii1.319 (5)
C8—H80.9300C26—H260.9300
C9—C101.382 (4)
O1—Cd1—O1W139.33 (8)C10—C9—H9121.0
O1—Cd1—O251.29 (8)N2—C10—C9122.6 (3)
O1—Cd1—O3120.67 (8)N2—C10—H10118.7
O1—Cd1—N194.47 (8)C9—C10—H10118.7
O1—Cd1—N274.71 (8)O1—C11—O2122.7 (2)
O2—Cd1—O3115.76 (8)O1—C11—C12121.5 (2)
O2—Cd1—O1W94.06 (8)O2—C11—C12115.8 (2)
O3—Cd1—O1W91.48 (8)C13—C12—C17118.5 (2)
O2—Cd1—N1144.70 (8)C13—C12—C11120.5 (2)
O3—Cd1—N187.35 (8)C17—C12—C11121.0 (2)
O1W—Cd1—N1112.58 (8)C14—C13—C12120.8 (3)
O2—Cd1—N289.94 (8)C14—C13—H13119.6
O3—Cd1—N2154.30 (8)C12—C13—H13119.6
O1W—Cd1—N286.30 (8)C13—C14—C15121.1 (3)
N1—Cd1—N270.07 (8)C13—C14—H15119.4
Cd1—O1—C1180.8 (2)C15—C14—H15119.4
Cd1—O1W—H1W2107 (2)C14—C15—C16118.0 (2)
Cd1—O1W—H1W1116 (2)C14—C15—C18121.2 (2)
H1W2—O1W—H1W1109.2 (16)C16—C15—C18120.8 (2)
C11—O2—Cd1105.08 (17)C17—C16—C15120.7 (2)
C19—O3—Cd1122.77 (18)C17—C16—H16119.6
C1—N1—C5119.0 (2)C15—C16—H16119.6
C1—N1—Cd1122.10 (18)C16—C17—C12120.8 (3)
C5—N1—Cd1118.82 (18)C16—C17—H12119.6
C10—N2—C6119.4 (2)C12—C17—H12119.6
C10—N2—Cd1122.77 (19)C18i—C18—C15125.8 (3)
C6—N2—Cd1117.27 (17)C18i—C18—H18117.1
N1—C1—C2122.9 (3)C15—C18—H18117.1
N1—C1—H1118.6O4—C19—O3124.5 (2)
C2—C1—H1118.6O4—C19—C20118.2 (2)
C3—C2—C1118.1 (3)O3—C19—C20117.2 (2)
C3—C2—H2121.0C25—C20—C21118.0 (2)
C1—C2—H2121.0C25—C20—C19119.7 (2)
C4—C3—C2119.8 (3)C21—C20—C19122.3 (2)
C4—C3—H3120.1C22—C21—C20121.1 (2)
C2—C3—H3120.1C22—C21—H21119.5
C3—C4—C5119.6 (3)C20—C21—H21119.5
C3—C4—H4120.2C21—C22—C23121.1 (2)
C5—C4—H4120.2C21—C22—H22119.4
N1—C5—C4120.7 (3)C23—C22—H22119.4
N1—C5—C6116.8 (2)C24—C23—C22117.4 (2)
C4—C5—C6122.5 (2)C24—C23—C26119.5 (2)
N2—C6—C7121.3 (3)C22—C23—C26123.1 (2)
N2—C6—C5116.6 (2)C25—C24—C23121.3 (2)
C7—C6—C5122.1 (3)C25—C24—H24119.4
C8—C7—C6118.7 (3)C23—C24—H24119.4
C8—C7—H7120.7C24—C25—C20120.9 (2)
C6—C7—H7120.7C24—C25—H25119.5
C9—C8—C7120.0 (3)C20—C25—H25119.5
C9—C8—H8120.0C26ii—C26—C23126.3 (3)
C7—C8—H8120.0C26ii—C26—H26116.8
C8—C9—C10118.0 (3)C23—C26—H26116.8
C8—C9—H9121.0
O3—Cd1—O2—C11111.71 (18)N2—C6—C7—C80.1 (4)
O1W—Cd1—O2—C11154.68 (18)C5—C6—C7—C8179.3 (3)
N1—Cd1—O2—C1114.6 (3)C6—C7—C8—C90.0 (5)
N2—Cd1—O2—C1168.40 (18)C7—C8—C9—C100.1 (5)
O2—Cd1—O3—C1922.1 (3)C6—N2—C10—C90.1 (4)
O1W—Cd1—O3—C1973.1 (2)Cd1—N2—C10—C9171.0 (2)
N1—Cd1—O3—C19174.3 (2)C8—C9—C10—N20.0 (5)
N2—Cd1—O3—C19157.7 (2)Cd1—O2—C11—O13.9 (3)
O2—Cd1—N1—C1125.3 (2)Cd1—O2—C11—C12174.36 (17)
O3—Cd1—N1—C18.2 (2)O1—C11—C12—C13176.0 (3)
O1W—Cd1—N1—C198.7 (2)O2—C11—C12—C135.6 (4)
N2—Cd1—N1—C1175.6 (2)O1—C11—C12—C171.5 (4)
O2—Cd1—N1—C558.1 (3)O2—C11—C12—C17176.8 (2)
O3—Cd1—N1—C5168.5 (2)C17—C12—C13—C141.0 (5)
O1W—Cd1—N1—C578.0 (2)C11—C12—C13—C14178.7 (3)
N2—Cd1—N1—C51.02 (18)C12—C13—C14—C150.7 (5)
O2—Cd1—N2—C1025.7 (2)C13—C14—C15—C161.3 (4)
O3—Cd1—N2—C10154.1 (2)C13—C14—C15—C18178.7 (3)
O1W—Cd1—N2—C1068.4 (2)C14—C15—C16—C170.2 (4)
N1—Cd1—N2—C10176.0 (2)C18—C15—C16—C17179.8 (2)
O2—Cd1—N2—C6145.44 (19)C15—C16—C17—C121.5 (4)
O3—Cd1—N2—C634.8 (3)C13—C12—C17—C162.1 (4)
O1W—Cd1—N2—C6120.49 (19)C11—C12—C17—C16179.8 (2)
N1—Cd1—N2—C64.85 (18)C14—C15—C18—C18i16.2 (5)
C5—N1—C1—C20.4 (4)C16—C15—C18—C18i163.8 (3)
Cd1—N1—C1—C2177.1 (2)Cd1—O3—C19—O43.1 (4)
N1—C1—C2—C30.0 (5)Cd1—O3—C19—C20178.25 (17)
C1—C2—C3—C40.2 (5)O4—C19—C20—C255.7 (4)
C2—C3—C4—C50.8 (5)O3—C19—C20—C25169.8 (3)
C1—N1—C5—C41.0 (4)O4—C19—C20—C21177.2 (3)
Cd1—N1—C5—C4177.7 (2)O3—C19—C20—C217.3 (4)
C1—N1—C5—C6179.3 (2)C25—C20—C21—C224.4 (4)
Cd1—N1—C5—C62.5 (3)C19—C20—C21—C22172.8 (2)
C3—C4—C5—N11.2 (5)C20—C21—C22—C230.8 (4)
C3—C4—C5—C6179.1 (3)C21—C22—C23—C243.3 (4)
C10—N2—C6—C70.1 (4)C21—C22—C23—C26175.4 (3)
Cd1—N2—C6—C7171.6 (2)C22—C23—C24—C253.9 (4)
C10—N2—C6—C5179.3 (2)C26—C23—C24—C25174.9 (3)
Cd1—N2—C6—C57.8 (3)C23—C24—C25—C200.4 (4)
N1—C5—C6—N26.9 (3)C21—C20—C25—C243.8 (4)
C4—C5—C6—N2173.3 (3)C19—C20—C25—C24173.5 (3)
N1—C5—C6—C7172.5 (3)C24—C23—C26—C26ii169.8 (4)
C4—C5—C6—C77.3 (4)C22—C23—C26—C26ii8.9 (5)
Symmetry codes: (i) x1, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2iii0.85 (1)1.92 (2)2.697 (3)152 (3)
O1W—H1W2···O4iii0.85 (4)1.81 (4)2.639 (3)167 (3)
Symmetry code: (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C16H10O4)(C10H8N2)(H2O)]
Mr552.84
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.543 (2), 10.838 (2), 11.442 (2)
α, β, γ (°)98.90 (3), 115.07 (3), 102.95 (3)
V3)1107.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.35 × 0.26 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.715, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
10929, 5024, 4482
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.08
No. of reflections5024
No. of parameters313
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998).

Selected geometric parameters (Å, º) top
Cd1—O22.209 (2)Cd1—O1W2.291 (2)
Cd1—O12.745 (2)Cd1—N12.316 (3)
Cd1—O32.2129 (19)Cd1—N22.375 (2)
O1—Cd1—O1W139.33 (8)O2—Cd1—N1144.70 (8)
O1—Cd1—O251.29 (8)O3—Cd1—N187.35 (8)
O1—Cd1—O3120.67 (8)O1W—Cd1—N1112.58 (8)
O1—Cd1—N194.47 (8)O2—Cd1—N289.94 (8)
O1—Cd1—N274.71 (8)O3—Cd1—N2154.30 (8)
O2—Cd1—O3115.76 (8)O1W—Cd1—N286.30 (8)
O2—Cd1—O1W94.06 (8)N1—Cd1—N270.07 (8)
O3—Cd1—O1W91.48 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.850 (10)1.918 (18)2.697 (3)152 (3)
O1W—H1W2···O4i0.85 (4)1.81 (4)2.639 (3)167 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We thank the Heilongjiang Province Natural Science Foundation (No. B200501) and the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University, for supporting this work.

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2006). Acta Cryst. E62, m3395–m3397.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds