metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Ferrocenyl-2-hy­droxy­benzohydrazide

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China
*Correspondence e-mail: limingxue@henu.edu.cn

(Received 13 November 2007; accepted 5 December 2007; online 12 December 2007)

The title complex, [Fe(C5H5)(C13H11N2O3)], was prepared via self-assembly using ferrocenyl hydrazide and ethyl salicylate. The compound is potentially a tridentate ferrocene-based ligand. The conformation of the mol­ecule allows the formation of an intra­molecular N—H⋯O hydrogen bond involving the hydroxyl group. The CONHNHCO unit and the rings bonded to it are nearly coplanar. The crystal structure is stabilized by inter­molecular O—H⋯O(carbon­yl) and N—H⋯O(carbon­yl) hydrogen bonds.

Related literature

For related literature about applications of ferrocene complexes, see: Beer (1992[Beer, P. D. (1992). Adv. Inorg. Chem. 39, 79-157.]); Beer & Smith (1997[Beer, P. D. & Smith, D. K. (1997). Prog. Inorg. Chem. 46, 1-8.]); Long (1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.]); Miller & Epstein (1994[Miller, J. S. & Epstein, A. J. (1994). Angew. Chem. Int. Ed. Engl. 33, 385-415.]); Nguyen et al. (1999[Nguyen, P., Gómez-Elipe, P. & Manners, I. (1999). Chem. Rev. 99, 1515-1548.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H11N2O3)]

  • Mr = 364.18

  • Monoclinic, C 2/c

  • a = 20.680 (3) Å

  • b = 9.9673 (15) Å

  • c = 16.941 (3) Å

  • β = 121.704 (3)°

  • V = 2970.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.852

  • 7479 measured reflections

  • 2611 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.086

  • S = 0.57

  • 2611 reflections

  • 230 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.860 (10) 1.95 (2) 2.631 (4) 135 (3)
O3—H3B⋯O1i 0.822 (10) 1.908 (15) 2.705 (4) 163 (4)
N1—H1B⋯O2ii 0.871 (10) 2.03 (2) 2.810 (4) 148 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis, isolation and characterization of ferrocene in 1951 marked an important milestone in the evolution of modern organometallic chemistry. Potential applications in material sciences, such as molecular sensors (Beer, 1992; Beer & Smith, 1997), molecular magnetic materials (Miller & Epstein, 1994), and nonlinear optical materials (Nguyen et al., 1999; Long, 1995) attracted much attention. We report here the crystal structure of the title compound, (I), a new ferrocene-based complex (Fig. 1).

The title compound belongs to space group C2/c. The bond lengths O1?C11 and O2?C12 are 1.240 (5) and 1.233 (4) Å, respectively, as excepted for double bonds. The bond length O3—C18, 1.349 (5) Å, corresponds to a single bond. The N1—C11 and N2—C12 bond distances are 1.340 (5) and 1.343 (5) Å, respectively, which make clear they are in the normal range for N—C single bonds. The bond length N1—N2 = 1.381 (4) Å is also consistent with a single N—N bond. An intramolecular N2—H2B···O3 hydrogen bond is observed in the molecular structure.

In the crystal, molecules are connected by intermolecular hydrogen bonds involving carbonyl O atoms O2 and O3 as acceptor and N—H or O—H groups as donors.

Related literature top

For related literature about applications of ferrocene complexes, see: Beer (1992); Beer & Smith (1997); Long (1995); Miller & Epstein (1994); Nguyen et al. (1999).

Experimental top

All reagents were commercially available and of analytical grade. Ferrocenyl hydrazide (1.22 g, 5 mmol) and ethyl salicylate (0.83 g, 5 mmol) were mixed in ethanol and refluxed for 7 h. The resulting red solid was filtered, washed with ethanol and dried under reduced pressure. Anal. Calc. for C18H16FeN2O3: C 59.37, H 4.43, N 7.69%. Found: C 59.48, H 4.31, N 7.52%.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding on their carrier atoms, with C—H bond lengths fixed to 0.93 (benzene ring) or 0.98 Å (Cp rings), and Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to heteroatoms N1, N2 and O3 were located in a difference map and were freely refined as isotropic atoms, with restricted bond lengths: N—H = 0.87 (1) Å and O—H = 0.82 (1) Å.

Structure description top

The synthesis, isolation and characterization of ferrocene in 1951 marked an important milestone in the evolution of modern organometallic chemistry. Potential applications in material sciences, such as molecular sensors (Beer, 1992; Beer & Smith, 1997), molecular magnetic materials (Miller & Epstein, 1994), and nonlinear optical materials (Nguyen et al., 1999; Long, 1995) attracted much attention. We report here the crystal structure of the title compound, (I), a new ferrocene-based complex (Fig. 1).

The title compound belongs to space group C2/c. The bond lengths O1?C11 and O2?C12 are 1.240 (5) and 1.233 (4) Å, respectively, as excepted for double bonds. The bond length O3—C18, 1.349 (5) Å, corresponds to a single bond. The N1—C11 and N2—C12 bond distances are 1.340 (5) and 1.343 (5) Å, respectively, which make clear they are in the normal range for N—C single bonds. The bond length N1—N2 = 1.381 (4) Å is also consistent with a single N—N bond. An intramolecular N2—H2B···O3 hydrogen bond is observed in the molecular structure.

In the crystal, molecules are connected by intermolecular hydrogen bonds involving carbonyl O atoms O2 and O3 as acceptor and N—H or O—H groups as donors.

For related literature about applications of ferrocene complexes, see: Beer (1992); Beer & Smith (1997); Long (1995); Miller & Epstein (1994); Nguyen et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
N'-Ferrocenyl-2-hydroxybenzohydrazide top
Crystal data top
[Fe(C5H5)(C13H11N2O3)]F(000) = 1504
Mr = 364.18Dx = 1.628 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 397 reflections
a = 20.680 (3) Åθ = 2.3–28.0°
b = 9.9673 (15) ŵ = 1.04 mm1
c = 16.941 (3) ÅT = 293 K
β = 121.704 (3)°Block, red
V = 2970.8 (8) Å30.20 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
0.3° wide ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2418
Tmin = 0.820, Tmax = 0.852k = 1111
7479 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.57 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
2611 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe(C5H5)(C13H11N2O3)]V = 2970.8 (8) Å3
Mr = 364.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.680 (3) ŵ = 1.04 mm1
b = 9.9673 (15) ÅT = 293 K
c = 16.941 (3) Å0.20 × 0.18 × 0.16 mm
β = 121.704 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1053 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.852Rint = 0.129
7479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.57Δρmax = 0.48 e Å3
2611 reflectionsΔρmin = 0.34 e Å3
230 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.94540 (4)0.77786 (6)0.86429 (4)0.03507 (19)
O10.83150 (16)0.4726 (3)0.79890 (19)0.0410 (9)
O20.92978 (15)0.2865 (3)0.63670 (17)0.0437 (8)
O30.75985 (16)0.1341 (3)0.6733 (2)0.0417 (8)
H3B0.7289 (10)0.099 (3)0.683 (2)0.060 (9)*
N10.9235 (2)0.3971 (3)0.7765 (2)0.0308 (10)
H1B0.9700 (8)0.387 (4)0.790 (2)0.058 (16)*
N20.87479 (18)0.2969 (4)0.7205 (2)0.0340 (9)
H2B0.8365 (9)0.276 (3)0.7248 (17)0.034 (5)*
C10.8498 (3)0.8152 (5)0.7406 (3)0.0489 (14)
H1A0.81510.74730.69700.059*
C20.8456 (3)0.8730 (4)0.8133 (3)0.0432 (13)
H2A0.80710.85300.82870.052*
C30.9052 (3)0.9656 (4)0.8594 (3)0.0451 (14)
H3A0.91611.02160.91260.054*
C40.9463 (3)0.9629 (4)0.8144 (3)0.0454 (14)
H4A0.99191.01600.83220.055*
C50.9131 (3)0.8688 (5)0.7419 (3)0.0529 (15)
H5A0.93020.84620.69950.064*
C61.0186 (3)0.6269 (4)0.8847 (3)0.0376 (13)
H6A1.03600.60110.84300.045*
C71.0541 (2)0.7191 (4)0.9589 (3)0.0415 (13)
H7A1.10020.77060.97670.050*
C81.0106 (3)0.7288 (4)1.0008 (3)0.0444 (13)
H8A1.02160.78651.05330.053*
C90.9489 (3)0.6410 (4)0.9538 (3)0.0337 (12)
H9A0.90930.62610.96810.040*
C100.9534 (3)0.5776 (4)0.8825 (3)0.0304 (12)
C110.8976 (3)0.4797 (4)0.8161 (3)0.0302 (12)
C120.8800 (2)0.2468 (4)0.6504 (3)0.0272 (11)
C130.8246 (2)0.1417 (4)0.5917 (3)0.0269 (11)
C140.8305 (3)0.0933 (4)0.5195 (3)0.0388 (13)
H14A0.86740.12840.50970.047*
C150.7828 (3)0.0064 (4)0.4615 (3)0.0490 (15)
H15A0.78750.03720.41290.059*
C160.7285 (3)0.0601 (4)0.4754 (3)0.0422 (14)
H16A0.69680.12830.43710.051*
C170.7214 (2)0.0123 (4)0.5463 (3)0.0375 (13)
H17A0.68450.04850.55560.045*
C180.7675 (3)0.0877 (4)0.6038 (3)0.0300 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0332 (4)0.0339 (3)0.0390 (4)0.0019 (4)0.0195 (3)0.0003 (4)
O10.0258 (18)0.0442 (19)0.058 (2)0.0049 (17)0.0251 (17)0.0128 (15)
O20.0409 (17)0.061 (2)0.0440 (17)0.0154 (18)0.0328 (15)0.0120 (16)
O30.0369 (18)0.052 (2)0.0518 (19)0.0128 (17)0.0345 (16)0.0080 (16)
N10.026 (2)0.029 (2)0.043 (2)0.000 (2)0.022 (2)0.0085 (17)
N20.029 (2)0.038 (2)0.043 (2)0.005 (2)0.0246 (18)0.0056 (19)
C10.043 (3)0.058 (3)0.031 (3)0.006 (3)0.010 (3)0.001 (2)
C20.044 (3)0.037 (3)0.056 (3)0.013 (3)0.031 (3)0.010 (2)
C30.049 (3)0.031 (3)0.059 (3)0.007 (3)0.031 (3)0.007 (2)
C40.042 (3)0.036 (3)0.066 (4)0.002 (3)0.034 (3)0.011 (3)
C50.051 (3)0.069 (4)0.048 (3)0.019 (3)0.032 (3)0.021 (3)
C60.033 (3)0.044 (3)0.033 (3)0.010 (3)0.016 (2)0.003 (2)
C70.021 (2)0.033 (3)0.048 (3)0.011 (3)0.002 (2)0.005 (3)
C80.049 (3)0.039 (3)0.040 (3)0.000 (3)0.020 (3)0.006 (2)
C90.039 (3)0.029 (3)0.038 (3)0.002 (2)0.024 (2)0.002 (2)
C100.028 (3)0.027 (2)0.037 (3)0.001 (2)0.018 (2)0.005 (2)
C110.033 (3)0.028 (3)0.027 (3)0.001 (3)0.013 (2)0.003 (2)
C120.024 (2)0.030 (3)0.031 (2)0.005 (2)0.016 (2)0.008 (2)
C130.025 (3)0.023 (2)0.032 (3)0.000 (2)0.014 (2)0.002 (2)
C140.038 (3)0.042 (3)0.046 (3)0.000 (3)0.028 (3)0.000 (2)
C150.052 (4)0.056 (3)0.045 (3)0.006 (3)0.030 (3)0.014 (3)
C160.038 (3)0.043 (3)0.044 (3)0.017 (3)0.021 (3)0.019 (2)
C170.033 (3)0.040 (3)0.041 (3)0.012 (2)0.020 (3)0.007 (2)
C180.034 (3)0.030 (3)0.031 (3)0.005 (2)0.020 (2)0.002 (2)
Geometric parameters (Å, º) top
Fe1—C22.008 (4)C3—H3A0.9800
Fe1—C92.013 (4)C4—C51.405 (6)
Fe1—C102.014 (4)C4—H4A0.9800
Fe1—C12.021 (4)C5—H5A0.9800
Fe1—C52.028 (5)C6—C71.412 (5)
Fe1—C62.031 (4)C6—C101.416 (6)
Fe1—C32.031 (4)C6—H6A0.9800
Fe1—C82.031 (4)C7—C81.412 (6)
Fe1—C42.033 (4)C7—H7A0.9800
Fe1—C72.045 (4)C8—C91.400 (5)
O1—C111.240 (5)C8—H8A0.9800
O2—C121.233 (4)C9—C101.410 (5)
O3—C181.349 (5)C9—H9A0.9800
O3—H3B0.822 (10)C10—C111.478 (5)
N1—C111.340 (5)C12—C131.484 (5)
N1—N21.381 (4)C13—C141.379 (6)
N1—H1B0.871 (10)C13—C181.407 (6)
N2—C121.343 (5)C14—C151.381 (5)
N2—H2B0.860 (10)C14—H14A0.9300
C1—C51.402 (6)C15—C161.373 (6)
C1—C21.404 (6)C15—H15A0.9300
C1—H1A0.9800C16—C171.370 (6)
C2—C31.403 (6)C16—H16A0.9300
C2—H2A0.9800C17—C181.369 (5)
C3—C41.410 (6)C17—H17A0.9300
C2—Fe1—C9105.43 (18)C4—C3—H3A126.6
C2—Fe1—C10121.17 (19)Fe1—C3—H3A126.6
C9—Fe1—C1041.01 (16)C5—C4—C3109.2 (4)
C2—Fe1—C140.79 (16)C5—C4—Fe169.5 (3)
C9—Fe1—C1122.31 (19)C3—C4—Fe169.6 (3)
C10—Fe1—C1107.34 (18)C5—C4—H4A125.4
C2—Fe1—C568.7 (2)C3—C4—H4A125.4
C9—Fe1—C5159.32 (19)Fe1—C4—H4A125.4
C10—Fe1—C5123.77 (19)C1—C5—C4107.0 (5)
C1—Fe1—C540.53 (17)C1—C5—Fe169.5 (3)
C2—Fe1—C6158.24 (18)C4—C5—Fe170.0 (3)
C9—Fe1—C668.96 (18)C1—C5—H5A126.5
C10—Fe1—C640.98 (16)C4—C5—H5A126.5
C1—Fe1—C6123.23 (18)Fe1—C5—H5A126.5
C5—Fe1—C6108.72 (19)C7—C6—C10107.0 (4)
C2—Fe1—C340.66 (16)C7—C6—Fe170.3 (2)
C9—Fe1—C3120.45 (18)C10—C6—Fe168.9 (2)
C10—Fe1—C3156.7 (2)C7—C6—H6A126.5
C1—Fe1—C368.42 (18)C10—C6—H6A126.5
C5—Fe1—C368.83 (19)Fe1—C6—H6A126.5
C6—Fe1—C3160.36 (19)C8—C7—C6108.7 (4)
C2—Fe1—C8121.38 (19)C8—C7—Fe169.2 (2)
C9—Fe1—C840.51 (16)C6—C7—Fe169.2 (2)
C10—Fe1—C868.62 (17)C8—C7—H7A125.6
C1—Fe1—C8158.0 (2)C6—C7—H7A125.6
C5—Fe1—C8159.5 (2)Fe1—C7—H7A125.6
C6—Fe1—C868.81 (18)C9—C8—C7107.6 (4)
C3—Fe1—C8106.29 (19)C9—C8—Fe169.0 (2)
C2—Fe1—C467.96 (18)C7—C8—Fe170.2 (2)
C9—Fe1—C4157.47 (19)C9—C8—H8A126.2
C10—Fe1—C4160.9 (2)C7—C8—H8A126.2
C1—Fe1—C467.63 (19)Fe1—C8—H8A126.2
C5—Fe1—C440.48 (17)C8—C9—C10108.4 (4)
C6—Fe1—C4125.03 (19)C8—C9—Fe170.5 (2)
C3—Fe1—C440.59 (17)C10—C9—Fe169.5 (2)
C8—Fe1—C4123.09 (19)C8—C9—H9A125.8
C2—Fe1—C7158.59 (19)C10—C9—H9A125.8
C9—Fe1—C768.03 (18)Fe1—C9—H9A125.8
C10—Fe1—C768.14 (18)C9—C10—C6108.2 (4)
C1—Fe1—C7159.89 (19)C9—C10—C11124.8 (4)
C5—Fe1—C7124.4 (2)C6—C10—C11127.0 (4)
C6—Fe1—C740.55 (15)C9—C10—Fe169.5 (2)
C3—Fe1—C7123.62 (18)C6—C10—Fe170.2 (2)
C8—Fe1—C740.54 (16)C11—C10—Fe1124.7 (3)
C4—Fe1—C7109.83 (19)O1—C11—N1121.9 (4)
C18—O3—H3B120 (3)O1—C11—C10122.7 (4)
C11—N1—N2116.7 (4)N1—C11—C10115.3 (4)
C11—N1—H1B128 (2)O2—C12—N2120.7 (4)
N2—N1—H1B114 (2)O2—C12—C13121.8 (4)
C12—N2—N1120.5 (3)N2—C12—C13117.6 (4)
C12—N2—H2B119 (2)C14—C13—C18117.9 (4)
N1—N2—H2B120 (2)C14—C13—C12116.4 (4)
C5—C1—C2108.5 (4)C18—C13—C12125.7 (4)
C5—C1—Fe170.0 (3)C13—C14—C15121.4 (5)
C2—C1—Fe169.1 (3)C13—C14—H14A119.3
C5—C1—H1A125.7C15—C14—H14A119.3
C2—C1—H1A125.7C16—C15—C14120.1 (5)
Fe1—C1—H1A125.7C16—C15—H15A120.0
C3—C2—C1108.5 (4)C14—C15—H15A120.0
C3—C2—Fe170.6 (3)C17—C16—C15119.3 (4)
C1—C2—Fe170.1 (3)C17—C16—H16A120.3
C3—C2—H2A125.8C15—C16—H16A120.3
C1—C2—H2A125.8C18—C17—C16121.4 (4)
Fe1—C2—H2A125.8C18—C17—H17A119.3
C2—C3—C4106.8 (4)C16—C17—H17A119.3
C2—C3—Fe168.8 (2)O3—C18—C17120.8 (4)
C4—C3—Fe169.8 (3)O3—C18—C13119.2 (4)
C2—C3—H3A126.6C17—C18—C13120.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.86 (1)1.95 (2)2.631 (4)135 (3)
O3—H3B···O1i0.82 (1)1.91 (2)2.705 (4)163 (4)
N1—H1B···O2ii0.87 (1)2.03 (2)2.810 (4)148 (4)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H11N2O3)]
Mr364.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.680 (3), 9.9673 (15), 16.941 (3)
β (°) 121.704 (3)
V3)2970.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.820, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
7479, 2611, 1053
Rint0.129
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.086, 0.57
No. of reflections2611
No. of parameters230
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.860 (10)1.95 (2)2.631 (4)135 (3)
O3—H3B···O1i0.822 (10)1.908 (15)2.705 (4)163 (4)
N1—H1B···O2ii0.871 (10)2.03 (2)2.810 (4)148 (4)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+2, y, z+3/2.
 

Acknowledgements

This work was financially supported by the Foundation of the Educational Department of Henan Province (No. 2007150012).

References

First citationBeer, P. D. (1992). Adv. Inorg. Chem. 39, 79–157.  CrossRef CAS Web of Science Google Scholar
First citationBeer, P. D. & Smith, D. K. (1997). Prog. Inorg. Chem. 46, 1–8.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38.  CrossRef CAS Web of Science Google Scholar
First citationMiller, J. S. & Epstein, A. J. (1994). Angew. Chem. Int. Ed. Engl. 33, 385–415.  CrossRef Web of Science Google Scholar
First citationNguyen, P., Gómez-Elipe, P. & Manners, I. (1999). Chem. Rev. 99, 1515–1548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds