organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,11,15,28-Tetra­methyl-1,21,23,25-tetra­kis(2-phenyl­ethyl)resorcin[4]arene ethyl acetate clathrate

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4041, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 18 October 2007; accepted 8 November 2007; online 6 December 2007)

The title compound, C68H64O8·C4H8O2, is a new resorcin­[4]arene cavitand synthetic precursor, obtained by alkyl­ation of a previously reported resorcin[4]arene. The additional alkyl bridges significantly rigidify the structure and enforce a `bowl' shape on the mol­ecular cavity. In the crystal structure, the mol­ecule lies on a crystallographic mirror plane, and a single ethyl acetate mol­ecule (also lying on the mirror plane) is present within the compound cavity, illustrating the host capabilities of the mol­ecule.

Related literature

For related literature, see: Cram et al. (1988[Cram, D. J., Karbach, S., Kim, H.-E., Knobler, C. B., Maverick, E. F., Ericson, J. L. & Helgeson, R. C. (1988). J. Am. Chem. Soc. 110, 2229-2237.]); Eisler et al. (2002[Eisler, D., Hong, W., Jennings, M. C. & Pudephatt, R. J. (2002). Organometallics, 21, 3955-3960.]); Friedrich et al. (2007[Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.]); Piepers & Kellog (1978[Piepers, O. & Kellog, R. M. (1978). J. Chem. Soc. Chem. Commun. pp. 383-384.]); Roman et al. (1999[Roman, E., Peinador, C., Mendoza, S. & Kaifer, A. E. (1999). J. Org. Chem. 64, 2577-2578.]); Sebo et al. (2000[Sebo, L., Diederich, F. & Gramlich, V. (2000). Helv. Chim. Acta, 83, 93-96.]).

[Scheme 1]

Experimental

Crystal data
  • C68H64O8·C4H8O2

  • Mr = 1097.30

  • Orthorhombic, P n m a

  • a = 24.3288 (4) Å

  • b = 20.6279 (4) Å

  • c = 11.7828 (2) Å

  • V = 5913.22 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.39 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: none

  • 49448 measured reflections

  • 5981 independent reflections

  • 3934 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.209

  • S = 1.04

  • 5981 reflections

  • 455 parameters

  • 131 restraints

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1) and SAINT-NT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 (Version 2.0-1) and SAINT-NT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The title compound is obtained by alkylation of the hydroxyl groups of a resorcin[4]arene octol material whose structure has been previously reported (Friedrich et al., 2007). The alkylating agent, CH2BrCl, results in the formation of four OCH2O ether bridges between the four aromatic units of the resorcin[4]arene starting material (Fig. 1). The bridges rigidify the molecular structure, fixing the compound in a "bowl" shape (Fig. 2) with an enforced cavity that can accommodate guest molecules.

The 2-phenylethyl "feet" of the compound are orientated such that the aromatic rings are arranged in an edge-to-face manner. Such C—H···π interactions have also been observed in the resorcin[4]arene octol precursor (Friedrich et al., 2007). Interestingly, only two of the feet orientate in such a manner (Fig. 3). The presence of the ethyl acetate molecule within the molecular cavity forces the remaining two aromatic units apart, disrupting complete C—H···π interaction comparable to that as seen for the precursor. Similar disruption has also been reported previously for related structures.

Related literature top

For related literature, see: Cram et al. (1988); Eisler et al. (2002); Friedrich et al. (2007); Piepers & Kellog (1978); Roman et al. (1999); Sebo et al. (2000).

Experimental top

The synthesis of the resorcin[4]arene octol precursor can proceed via two different synthetic approaches. The older protocol as set out by Cram et al. (1988) involves heating a solution of the resorcin[4]arene starting material and the CH2BrCl in the presence of K2CO3 at atmospheric pressure. Reaction proceeds over a number of days, often accompanied by addition of further equivalents of the alkylating reagent. However, since CH2BrCl is volatile and boils at 341 K, the reaction temperature is limited to a range between 333 and 343 K. This results in yields of 40–60%. More recently, Roman et al. (1999) reported a procedure which made use of a sealed tube as a reaction vessel, heated to 361 K. The reagents are heated in the presence of Cs2CO3, which is used instead of K2CO3 due to the templating ability of the caesium cation, which aids in the formation of macrocyclic assemblies such as cavitands (Piepers & Kellog, 1978). Under these conditions, yields are in excess of 80%; indeed, the use of the protocol of Kaifer et al. in the synthesis of the resorcin[4]arene octol precursor gave a yield of 92%.

To prepare the title compound (Scheme 2): dry resorcin[4]arene octol (1.00 g, 1.66 mmol) and Cs2CO3 (3.00 g, 9.21 mmol) were added with stirring to dry DMSO (10 ml) in a pressure tube (ACE pressure tube, Aldrich). To the resulting pink solution, CH2BrCl (3.00 ml, 46.0 mmol) was added followed by further DMSO (10 ml). The tube was sealed and heated at 360 K for 16 h. After cooling to room temperature, the tube contents were poured into 2% HCl (200 ml) and the voluminous solid formed was filtered and washed with water. The cream coloured solid was chromatographed on silica gel using a mobile phase of 70:30 hexane-ethyl acetate (Rf = 0.59). The fractions collected were concentrated on a rotary evaporator to yield a cream coloured solid. The solid was stirred in methanol overnight, and filtered to yield the product as a white powder (0.97 g, 92%, m.p. 418–420 K). Crystals suitable for X-ray diffraction analysis were grown by slow liquid diffusion of methanol into a solution of the title compound in 1:1 ethyl acetate:hexane.

Refinement top

H atoms were visible in difference Fourier maps but were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3) Å. They were then refined with a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3). One of the phenylethyl 'feet' was found to be disordered and was refined over two positions using isotropic displacement parameters and with SADI, SIMU, DELU, DFIX and SADI restraints applied. The refined site occupancy factors for the two positions are 0.461 (5) and 0.539 (5), respectively.

Structure description top

The title compound is obtained by alkylation of the hydroxyl groups of a resorcin[4]arene octol material whose structure has been previously reported (Friedrich et al., 2007). The alkylating agent, CH2BrCl, results in the formation of four OCH2O ether bridges between the four aromatic units of the resorcin[4]arene starting material (Fig. 1). The bridges rigidify the molecular structure, fixing the compound in a "bowl" shape (Fig. 2) with an enforced cavity that can accommodate guest molecules.

The 2-phenylethyl "feet" of the compound are orientated such that the aromatic rings are arranged in an edge-to-face manner. Such C—H···π interactions have also been observed in the resorcin[4]arene octol precursor (Friedrich et al., 2007). Interestingly, only two of the feet orientate in such a manner (Fig. 3). The presence of the ethyl acetate molecule within the molecular cavity forces the remaining two aromatic units apart, disrupting complete C—H···π interaction comparable to that as seen for the precursor. Similar disruption has also been reported previously for related structures.

For related literature, see: Cram et al. (1988); Eisler et al. (2002); Friedrich et al. (2007); Piepers & Kellog (1978); Roman et al. (1999); Sebo et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of one quarter of the cyclic tetramer. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Dashed bonds indicate links to the neighbouring units.
[Figure 2] Fig. 2. The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted. The "bowl" shape of the molecule is evident, with the ethyl acetate molecule present as a guest in the molecular cavity.
[Figure 3] Fig. 3. The relative orientation of the feet in neighbouring resorcin[4]arene units. Displacement ellipsoids are drawn at the 10% probability level. The inclusion of the ethyl acetate solvent molecule between aromatic groups is shown. H atoms are omitted.
[Figure 4] Fig. 4. The formation of the title compound.
7,11,15,28-Tetramethyl-1,21,23,25-tetrakis(2-phenylethyl)-2,20:3,19- dimetheno-1H,21H,23H,25H-bis[1,3]dioxocino[5,4 - i:5',4'-i']benzo[1,2 - d:5,4 - d'] bis[1,3]benzodioxocin stereoisomer top
Crystal data top
C68H64O8·C4H8O2Dx = 1.233 Mg m3
Dm = 1.233 Mg m3
Dm measured by ?
Mr = 1097.30Melting point: 419 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8201 reflections
a = 24.3288 (4) Åθ = 2.2–27.7°
b = 20.6279 (4) ŵ = 0.08 mm1
c = 11.7828 (2) ÅT = 173 K
V = 5913.22 (18) Å3Block, colourless
Z = 40.39 × 0.27 × 0.19 mm
F(000) = 2336
Data collection top
Bruker APEXII CCD
diffractometer
3934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
phi and ω scansh = 2930
49448 measured reflectionsk = 2525
5981 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.132P)2 + 1.0228P]
where P = (Fo2 + 2Fc2)/3
5981 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 1.16 e Å3
131 restraintsΔρmin = 0.55 e Å3
Crystal data top
C68H64O8·C4H8O2V = 5913.22 (18) Å3
Mr = 1097.30Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 24.3288 (4) ŵ = 0.08 mm1
b = 20.6279 (4) ÅT = 173 K
c = 11.7828 (2) Å0.39 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
3934 reflections with I > 2σ(I)
49448 measured reflectionsRint = 0.062
5981 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063131 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.04Δρmax = 1.16 e Å3
5981 reflectionsΔρmin = 0.55 e Å3
455 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.21767 (10)0.05927 (12)0.0930 (2)0.0315 (6)
C20.20814 (10)0.07645 (12)0.0196 (2)0.0303 (5)
C30.16055 (10)0.10805 (11)0.05431 (19)0.0281 (5)
C40.12187 (10)0.12419 (11)0.02821 (19)0.0282 (5)
H40.08990.14750.00640.034*
C50.12871 (10)0.10715 (12)0.1421 (2)0.0296 (5)
C60.17667 (10)0.07484 (12)0.1710 (2)0.0325 (6)
C70.26893 (11)0.02447 (15)0.1284 (2)0.0429 (7)
H7A0.26800.01680.21040.064*0.50
H7B0.27120.01710.08850.064*0.50
H7C0.30110.05100.10940.064*0.50
H7D0.29220.01700.06170.064*0.50
H7E0.28900.05090.18370.064*0.50
H7F0.25910.01720.16280.064*0.50
C80.20493 (11)0.09993 (15)0.3597 (2)0.0408 (7)
H8A0.22840.07750.41610.049*
H8B0.22830.13110.31790.049*
C90.08732 (10)0.12684 (12)0.2322 (2)0.0317 (6)
H90.08920.09360.29380.038*
C100.16631 (14)0.25000.4127 (3)0.0384 (9)
C110.14567 (10)0.19219 (14)0.36868 (19)0.0341 (6)
C120.10640 (9)0.19097 (13)0.28304 (19)0.0312 (6)
C130.08815 (13)0.25000.2412 (3)0.0286 (7)
H130.06200.25000.18120.034*
C140.20920 (17)0.25000.5051 (3)0.0487 (11)
H14A0.24310.26990.47650.073*0.50
H14B0.19570.27480.57030.073*0.50
H14C0.21680.20530.52850.073*0.50
C150.26710 (13)0.25000.2326 (3)0.0304 (8)
C160.23792 (9)0.19246 (12)0.22008 (18)0.0279 (5)
C170.18192 (9)0.19104 (11)0.19712 (18)0.0260 (5)
C180.15503 (13)0.25000.1853 (3)0.0266 (7)
H180.11680.25000.16840.032*
C190.32741 (15)0.25000.2608 (3)0.0411 (9)
H19A0.34020.20520.26980.062*0.50
H19B0.33340.27380.33180.062*0.50
H19C0.34790.27100.19940.062*0.50
C200.28457 (10)0.10094 (13)0.1404 (2)0.0343 (6)
H20A0.29230.13280.07970.041*
H20B0.31940.07830.15840.041*
C210.15301 (9)0.12615 (12)0.17830 (19)0.0278 (5)
H210.17340.09310.22390.033*
C220.02798 (10)0.12884 (12)0.1903 (2)0.0352 (6)
H22A0.02540.15990.12640.042*
H22B0.00430.14520.25230.042*
C230.00637 (11)0.06397 (14)0.1517 (3)0.0493 (8)
H23A0.00180.03540.21850.059*
H23B0.03360.04360.10050.059*
C240.04747 (11)0.06929 (13)0.0909 (3)0.0411 (7)
C250.04889 (13)0.08805 (16)0.0217 (3)0.0550 (8)
H250.01530.09620.06030.066*
C260.09799 (15)0.09521 (18)0.0792 (3)0.0638 (9)
H260.09790.10840.15650.077*
C270.14716 (14)0.08316 (18)0.0247 (3)0.0644 (9)
H270.18110.08800.06380.077*
C280.14632 (13)0.06401 (17)0.0874 (4)0.0638 (10)
H280.17990.05520.12560.077*
C290.09712 (12)0.05752 (14)0.1446 (3)0.0496 (7)
H290.09730.04480.22210.060*
C300.09333 (10)0.12443 (13)0.21862 (19)0.0315 (6)
H30A0.07280.16030.18240.038*
H30B0.07630.08310.19420.038*
C310.0885 (2)0.1305 (6)0.3468 (3)0.046 (3)0.461 (5)
H31A0.11500.10040.38260.055*0.461 (5)
H31B0.09890.17510.36920.055*0.461 (5)
C320.0316 (5)0.1161 (4)0.393 (2)0.048 (2)0.461 (5)
C330.0079 (3)0.1621 (4)0.3928 (8)0.077 (2)0.461 (5)
H330.00070.20410.36480.092*0.461 (5)
C340.0606 (3)0.1497 (5)0.4325 (10)0.093 (3)0.461 (5)
H340.08810.18230.42770.112*0.461 (5)
C350.0726 (4)0.0909 (6)0.4783 (12)0.093 (3)0.461 (5)
H350.10690.08370.51440.112*0.461 (5)
C360.0355 (3)0.0434 (4)0.4718 (9)0.096 (3)0.461 (5)
H360.04520.00090.49590.115*0.461 (5)
C370.0170 (3)0.0552 (4)0.4304 (8)0.077 (2)0.461 (5)
H370.04310.02100.42800.092*0.461 (5)
C31A0.0893 (2)0.1308 (5)0.3470 (3)0.049 (3)0.539 (5)
H31C0.11010.09490.38230.058*0.539 (5)
H31D0.10710.17190.37010.058*0.539 (5)
C32A0.0310 (4)0.1300 (4)0.3930 (18)0.049 (2)0.539 (5)
C33A0.0156 (2)0.1708 (4)0.4765 (5)0.0705 (18)0.539 (5)
H33A0.04160.20080.50570.085*0.539 (5)
C34A0.0371 (3)0.1703 (4)0.5210 (6)0.088 (2)0.539 (5)
H34A0.04710.20070.57810.105*0.539 (5)
C35A0.0746 (3)0.1265 (6)0.4831 (9)0.081 (2)0.539 (5)
H35A0.10990.12360.51720.097*0.539 (5)
C36A0.0609 (2)0.0877 (5)0.3972 (7)0.088 (2)0.539 (5)
H36A0.08740.05820.36800.105*0.539 (5)
C37A0.0088 (2)0.0896 (4)0.3497 (6)0.076 (2)0.539 (5)
H37A0.00040.06260.28660.091*0.539 (5)
C380.2894 (2)0.25000.1267 (4)0.0743 (16)
C390.22971 (16)0.25000.1041 (3)0.0427 (9)
H39A0.22330.25000.02200.064*
H39B0.21310.21120.13780.064*
C400.3641 (3)0.25000.2541 (6)0.159 (5)
H400.38160.21110.22080.190*
C410.3703 (4)0.25000.3809 (6)0.131 (3)
H41A0.40960.25000.39910.197*
H41B0.35310.21120.41320.197*
O10.18418 (7)0.05391 (9)0.28283 (14)0.0395 (5)
O20.16347 (7)0.13445 (10)0.41755 (14)0.0413 (5)
O30.26603 (7)0.13439 (8)0.23871 (14)0.0326 (4)
O40.24595 (7)0.05531 (8)0.10003 (14)0.0337 (4)
O50.30466 (17)0.25000.2313 (3)0.1016 (15)
O60.3238 (2)0.25000.0520 (5)0.223 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (13)0.0327 (13)0.0318 (13)0.0041 (10)0.0041 (10)0.0017 (10)
C20.0305 (12)0.0308 (12)0.0296 (12)0.0014 (10)0.0035 (10)0.0013 (10)
C30.0303 (12)0.0295 (12)0.0245 (12)0.0034 (10)0.0016 (10)0.0013 (10)
C40.0278 (12)0.0301 (12)0.0267 (12)0.0002 (10)0.0031 (10)0.0021 (10)
C50.0297 (13)0.0323 (13)0.0269 (12)0.0018 (10)0.0012 (10)0.0050 (10)
C60.0368 (14)0.0347 (13)0.0260 (12)0.0013 (11)0.0017 (10)0.0081 (10)
C70.0418 (15)0.0517 (17)0.0351 (14)0.0139 (13)0.0023 (12)0.0069 (13)
C80.0334 (14)0.0619 (19)0.0272 (13)0.0097 (12)0.0024 (11)0.0095 (13)
C90.0267 (12)0.0423 (14)0.0260 (12)0.0013 (10)0.0026 (10)0.0098 (10)
C100.0302 (19)0.071 (3)0.0140 (15)0.0000.0018 (14)0.000
C110.0295 (13)0.0571 (17)0.0155 (11)0.0039 (11)0.0042 (9)0.0055 (11)
C120.0247 (12)0.0508 (16)0.0180 (11)0.0003 (10)0.0069 (9)0.0043 (10)
C130.0234 (16)0.043 (2)0.0195 (15)0.0000.0005 (13)0.000
C140.043 (2)0.079 (3)0.0242 (18)0.0000.0088 (17)0.000
C150.0264 (17)0.046 (2)0.0186 (16)0.0000.0009 (13)0.000
C160.0303 (12)0.0368 (13)0.0165 (11)0.0041 (10)0.0006 (9)0.0011 (9)
C170.0282 (12)0.0357 (13)0.0141 (10)0.0017 (10)0.0019 (9)0.0006 (9)
C180.0245 (16)0.0385 (19)0.0167 (15)0.0000.0016 (12)0.000
C190.0290 (19)0.053 (2)0.041 (2)0.0000.0064 (16)0.000
C200.0271 (12)0.0414 (15)0.0346 (13)0.0056 (11)0.0004 (10)0.0007 (11)
C210.0288 (12)0.0323 (13)0.0223 (11)0.0006 (10)0.0015 (9)0.0031 (10)
C220.0292 (13)0.0400 (14)0.0363 (14)0.0018 (11)0.0026 (11)0.0073 (11)
C230.0362 (15)0.0434 (17)0.068 (2)0.0046 (12)0.0020 (14)0.0102 (15)
C240.0340 (14)0.0331 (14)0.0563 (18)0.0047 (11)0.0008 (13)0.0004 (13)
C250.0474 (18)0.060 (2)0.058 (2)0.0049 (15)0.0041 (15)0.0011 (16)
C260.067 (2)0.069 (2)0.056 (2)0.0032 (18)0.0135 (18)0.0028 (17)
C270.0484 (19)0.064 (2)0.081 (3)0.0070 (16)0.0186 (18)0.0097 (19)
C280.0338 (16)0.068 (2)0.090 (3)0.0104 (15)0.0009 (17)0.000 (2)
C290.0420 (16)0.0476 (17)0.0592 (19)0.0079 (13)0.0026 (14)0.0054 (14)
C300.0292 (13)0.0404 (14)0.0249 (12)0.0038 (11)0.0008 (10)0.0008 (10)
C310.033 (4)0.085 (8)0.020 (7)0.019 (4)0.001 (4)0.015 (6)
C320.034 (3)0.081 (4)0.031 (4)0.010 (3)0.005 (3)0.003 (5)
C330.056 (4)0.097 (4)0.079 (5)0.010 (3)0.024 (4)0.021 (4)
C340.048 (4)0.133 (6)0.098 (6)0.019 (4)0.020 (4)0.027 (5)
C350.053 (4)0.148 (6)0.079 (6)0.011 (4)0.019 (4)0.029 (6)
C360.067 (4)0.117 (5)0.102 (6)0.023 (3)0.023 (4)0.044 (5)
C370.060 (4)0.091 (4)0.079 (5)0.007 (3)0.022 (4)0.028 (4)
C31A0.038 (4)0.075 (7)0.033 (7)0.000 (4)0.008 (4)0.010 (5)
C32A0.033 (3)0.082 (4)0.030 (4)0.002 (3)0.003 (3)0.006 (4)
C33A0.041 (3)0.129 (5)0.042 (3)0.010 (3)0.001 (2)0.019 (3)
C34A0.048 (3)0.163 (6)0.053 (4)0.017 (3)0.008 (3)0.021 (4)
C35A0.036 (3)0.150 (6)0.058 (4)0.010 (3)0.011 (3)0.013 (4)
C36A0.038 (3)0.130 (6)0.095 (5)0.014 (3)0.010 (3)0.008 (4)
C37A0.048 (3)0.097 (5)0.083 (4)0.017 (3)0.019 (3)0.018 (3)
C380.059 (3)0.119 (5)0.046 (3)0.0000.006 (2)0.000
C390.047 (2)0.046 (2)0.035 (2)0.0000.0041 (17)0.000
C400.076 (5)0.308 (15)0.092 (6)0.0000.006 (4)0.000
C410.134 (7)0.119 (7)0.140 (8)0.0000.055 (6)0.000
O10.0422 (11)0.0478 (11)0.0286 (9)0.0067 (8)0.0018 (8)0.0136 (8)
O20.0390 (10)0.0638 (13)0.0210 (8)0.0101 (9)0.0026 (7)0.0125 (8)
O30.0328 (9)0.0400 (10)0.0249 (8)0.0070 (7)0.0022 (7)0.0038 (7)
O40.0351 (9)0.0342 (9)0.0317 (9)0.0057 (7)0.0045 (7)0.0020 (7)
O50.065 (2)0.173 (5)0.067 (3)0.0000.004 (2)0.000
O60.074 (3)0.515 (16)0.081 (4)0.0000.010 (3)0.000
Geometric parameters (Å, º) top
C1—C21.392 (3)C23—C241.497 (4)
C1—C61.394 (3)C23—H23A0.990
C1—C71.498 (3)C23—H23B0.990
C2—C31.390 (3)C24—C251.382 (4)
C2—O41.391 (3)C24—C291.385 (4)
C3—C41.394 (3)C25—C261.382 (4)
C3—C211.519 (3)C25—H250.950
C4—C51.397 (3)C26—C271.380 (5)
C4—H40.950C26—H260.950
C5—C61.387 (3)C27—C281.379 (5)
C5—C91.519 (3)C27—H270.950
C6—O11.398 (3)C28—C291.380 (4)
C7—H7A0.980C28—H280.950
C7—H7B0.980C29—H290.950
C7—H7C0.980C30—C311.521 (4)
C7—H7D0.980C30—C31A1.522 (4)
C7—H7E0.980C30—H30A0.990
C7—H7F0.980C30—H30B0.990
C8—O11.406 (3)C31—C321.517 (5)
C8—O21.410 (3)C31—H31A0.990
C8—H8A0.990C31—H31B0.990
C8—H8B0.990C32—C331.349 (13)
C9—C121.525 (4)C32—C371.378 (13)
C9—C221.526 (3)C33—C341.388 (7)
C9—H91.000C33—H330.950
C10—C111.394 (3)C34—C351.360 (12)
C10—C11i1.394 (3)C34—H340.950
C10—C141.508 (5)C35—C361.334 (12)
C11—C121.390 (3)C35—H350.950
C11—O21.392 (3)C36—C371.389 (7)
C12—C131.387 (3)C36—H360.950
C13—C12i1.387 (3)C37—H370.950
C13—H130.950C31A—C32A1.517 (5)
C14—H14A0.980C31A—H31C0.990
C14—H14B0.980C31A—H31D0.990
C14—H14C0.980C32A—C33A1.350 (13)
C15—C161.391 (3)C32A—C37A1.375 (13)
C15—C16i1.391 (3)C33A—C34A1.384 (7)
C15—C191.505 (5)C33A—H33A0.950
C16—C171.389 (3)C34A—C35A1.360 (12)
C16—O31.397 (3)C34A—H34A0.950
C17—C181.388 (3)C35A—C36A1.332 (12)
C17—C211.528 (3)C35A—H35A0.950
C18—C17i1.388 (3)C36A—C37A1.388 (7)
C18—H180.950C36A—H36A0.950
C19—H19A0.980C37A—H37A0.950
C19—H19B0.980C38—O61.213 (7)
C19—H19C0.980C38—O51.286 (6)
C20—O41.412 (3)C38—C391.477 (6)
C20—O31.422 (3)C39—H39A0.980
C20—H20A0.990C39—H39B0.980
C20—H20B0.990C40—O51.470 (8)
C21—C301.528 (3)C40—C411.503 (5)
C21—H211.000C40—H400.990
C22—C231.508 (4)C41—H41A0.980
C22—H22A0.990C41—H41B0.980
C22—H22B0.990
C2—C1—C6116.8 (2)C23—C22—H22B108.8
C2—C1—C7121.7 (2)C9—C22—H22B108.8
C6—C1—C7121.5 (2)H22A—C22—H22B107.7
C3—C2—O4119.8 (2)C24—C23—C22112.6 (2)
C3—C2—C1122.6 (2)C24—C23—H23A109.1
O4—C2—C1117.3 (2)C22—C23—H23A109.1
C2—C3—C4118.0 (2)C24—C23—H23B109.1
C2—C3—C21119.9 (2)C22—C23—H23B109.1
C4—C3—C21122.1 (2)H23A—C23—H23B107.8
C3—C4—C5122.0 (2)C25—C24—C29117.8 (3)
C3—C4—H4119.0C25—C24—C23120.1 (3)
C5—C4—H4119.0C29—C24—C23122.1 (3)
C6—C5—C4117.2 (2)C26—C25—C24121.5 (3)
C6—C5—C9121.0 (2)C26—C25—H25119.2
C4—C5—C9121.7 (2)C24—C25—H25119.2
C5—C6—C1123.4 (2)C27—C26—C25120.1 (3)
C5—C6—O1119.4 (2)C27—C26—H26119.9
C1—C6—O1117.2 (2)C25—C26—H26119.9
C1—C7—H7A109.5C28—C27—C26119.0 (3)
C1—C7—H7B109.5C28—C27—H27120.5
H7A—C7—H7B109.5C26—C27—H27120.5
C1—C7—H7C109.5C27—C28—C29120.6 (3)
H7A—C7—H7C109.5C27—C28—H28119.7
H7B—C7—H7C109.5C29—C28—H28119.7
C1—C7—H7D109.5C28—C29—C24121.1 (3)
H7A—C7—H7D141.1C28—C29—H29119.5
H7B—C7—H7D56.3C24—C29—H29119.5
H7C—C7—H7D56.3C31—C30—C21112.4 (3)
C1—C7—H7E109.5C31A—C30—C21111.6 (3)
H7A—C7—H7E56.3C31—C30—H30A109.1
H7B—C7—H7E141.1C31A—C30—H30A109.3
H7C—C7—H7E56.3C21—C30—H30A109.1
H7D—C7—H7E109.5C31—C30—H30B109.1
C1—C7—H7F109.5C31A—C30—H30B109.7
H7A—C7—H7F56.3C21—C30—H30B109.1
H7B—C7—H7F56.3H30A—C30—H30B107.9
H7C—C7—H7F141.1C32—C31—C30114.2 (10)
H7D—C7—H7F109.5C32—C31—H31A108.7
H7E—C7—H7F109.5C30—C31—H31A108.7
O1—C8—O2113.3 (2)C32—C31—H31B108.7
O1—C8—H8A108.9C30—C31—H31B108.7
O2—C8—H8A108.9H31A—C31—H31B107.6
O1—C8—H8B108.9C33—C32—C37117.3 (5)
O2—C8—H8B108.9C33—C32—C31120.8 (10)
H8A—C8—H8B107.7C37—C32—C31121.8 (9)
C5—C9—C12107.77 (19)C32—C33—C34121.8 (7)
C5—C9—C22114.1 (2)C32—C33—H33119.1
C12—C9—C22113.1 (2)C34—C33—H33119.1
C5—C9—H9107.2C35—C34—C33119.7 (7)
C12—C9—H9107.2C35—C34—H34120.2
C22—C9—H9107.2C33—C34—H34120.2
C11—C10—C11i117.6 (3)C36—C35—C34119.2 (6)
C11—C10—C14121.18 (15)C36—C35—H35120.4
C11i—C10—C14121.18 (15)C34—C35—H35120.4
C12—C11—O2119.9 (2)C35—C36—C37120.8 (7)
C12—C11—C10122.2 (2)C35—C36—H36119.6
O2—C11—C10117.8 (2)C37—C36—H36119.6
C13—C12—C11117.6 (2)C32—C37—C36120.6 (7)
C13—C12—C9121.6 (2)C32—C37—H37119.7
C11—C12—C9120.7 (2)C36—C37—H37119.7
C12i—C13—C12122.8 (3)C32A—C31A—C30114.5 (9)
C12i—C13—H13118.6C32A—C31A—H31C108.6
C12—C13—H13118.6C30—C31A—H31C108.6
C10—C14—H14A109.5C32A—C31A—H31D108.6
C10—C14—H14B109.5C30—C31A—H31D108.6
H14A—C14—H14B109.5H31C—C31A—H31D107.6
C10—C14—H14C109.5C33A—C32A—C37A116.9 (5)
H14A—C14—H14C109.5C33A—C32A—C31A120.9 (9)
H14B—C14—H14C109.5C37A—C32A—C31A122.2 (9)
C16—C15—C16i117.2 (3)C32A—C33A—C34A122.0 (7)
C16—C15—C19121.41 (15)C32A—C33A—H33A119.0
C16i—C15—C19121.41 (15)C34A—C33A—H33A119.0
C17—C16—C15122.6 (2)C35A—C34A—C33A120.1 (7)
C17—C16—O3119.5 (2)C35A—C34A—H34A119.9
C15—C16—O3117.7 (2)C33A—C34A—H34A119.9
C18—C17—C16117.6 (2)C36A—C35A—C34A118.8 (5)
C18—C17—C21122.4 (2)C36A—C35A—H35A120.6
C16—C17—C21119.9 (2)C34A—C35A—H35A120.6
C17i—C18—C17122.4 (3)C35A—C36A—C37A121.2 (7)
C17i—C18—H18118.8C35A—C36A—H36A119.4
C17—C18—H18118.8C37A—C36A—H36A119.4
C15—C19—H19A109.5C32A—C37A—C36A120.7 (7)
C15—C19—H19B109.5C32A—C37A—H37A119.6
H19A—C19—H19B109.5C36A—C37A—H37A119.6
C15—C19—H19C109.5O6—C38—O5119.8 (5)
H19A—C19—H19C109.5O6—C38—C39123.1 (5)
H19B—C19—H19C109.5O5—C38—C39117.1 (4)
O4—C20—O3112.75 (19)C38—C39—H39A109.5
O4—C20—H20A109.0C38—C39—H39B109.4
O3—C20—H20A109.0H39A—C39—H39B109.5
O4—C20—H20B109.0O5—C40—C41106.3 (6)
O3—C20—H20B109.0O5—C40—H40110.6
H20A—C20—H20B107.8C41—C40—H40110.5
C3—C21—C30114.09 (19)C40—C41—H41A108.4
C3—C21—C17107.41 (18)C40—C41—H41B110.0
C30—C21—C17114.4 (2)H41A—C41—H41B109.5
C3—C21—H21106.8C6—O1—C8116.5 (2)
C30—C21—H21106.8C11—O2—C8117.04 (19)
C17—C21—H21106.8C16—O3—C20116.33 (17)
C23—C22—C9113.8 (2)C2—O4—C20117.43 (18)
C23—C22—H22A108.8C38—O5—C40117.2 (5)
C9—C22—H22A108.8
C6—C1—C2—C30.5 (4)C5—C9—C22—C2362.8 (3)
C7—C1—C2—C3179.2 (2)C12—C9—C22—C23173.6 (2)
C6—C1—C2—O4173.5 (2)C9—C22—C23—C24169.1 (2)
C7—C1—C2—O45.2 (4)C22—C23—C24—C2579.7 (4)
O4—C2—C3—C4175.4 (2)C22—C23—C24—C2998.6 (3)
C1—C2—C3—C41.6 (4)C29—C24—C25—C260.3 (5)
O4—C2—C3—C216.9 (3)C23—C24—C25—C26178.1 (3)
C1—C2—C3—C21179.3 (2)C24—C25—C26—C270.4 (5)
C2—C3—C4—C52.7 (3)C25—C26—C27—C280.0 (5)
C21—C3—C4—C5179.6 (2)C26—C27—C28—C290.6 (5)
C3—C4—C5—C61.8 (4)C27—C28—C29—C240.7 (5)
C3—C4—C5—C9177.9 (2)C25—C24—C29—C280.3 (4)
C4—C5—C6—C10.4 (4)C23—C24—C29—C28178.7 (3)
C9—C5—C6—C1175.8 (2)C3—C21—C30—C31169.4 (5)
C4—C5—C6—O1176.8 (2)C17—C21—C30—C3166.4 (6)
C9—C5—C6—O17.0 (4)C3—C21—C30—C31A169.6 (5)
C2—C1—C6—C51.5 (4)C17—C21—C30—C31A66.1 (5)
C7—C1—C6—C5179.8 (2)C31A—C30—C31—C32176 (100)
C2—C1—C6—O1175.8 (2)C21—C30—C31—C32168.8 (7)
C7—C1—C6—O12.9 (4)C30—C31—C32—C3382.8 (17)
C6—C5—C9—C1283.5 (3)C30—C31—C32—C3793 (2)
C4—C5—C9—C1292.5 (3)C37—C32—C33—C342 (3)
C6—C5—C9—C22150.1 (2)C31—C32—C33—C34178.7 (13)
C4—C5—C9—C2233.9 (3)C32—C33—C34—C353 (2)
C11i—C10—C11—C120.8 (5)C33—C34—C35—C368 (2)
C14—C10—C11—C12179.6 (3)C34—C35—C36—C377 (2)
C11i—C10—C11—O2175.83 (17)C33—C32—C37—C363 (3)
C14—C10—C11—O23.8 (4)C31—C32—C37—C36179.8 (13)
O2—C11—C12—C13176.9 (2)C35—C36—C37—C321 (2)
C10—C11—C12—C130.4 (4)C31—C30—C31A—C32A15 (67)
O2—C11—C12—C97.2 (3)C21—C30—C31A—C32A179.6 (6)
C10—C11—C12—C9176.3 (2)C30—C31A—C32A—C33A138.5 (14)
C5—C9—C12—C1392.7 (3)C30—C31A—C32A—C37A39.3 (17)
C22—C9—C12—C1334.3 (3)C37A—C32A—C33A—C34A3 (2)
C5—C9—C12—C1183.1 (3)C31A—C32A—C33A—C34A179.1 (10)
C22—C9—C12—C11149.9 (2)C32A—C33A—C34A—C35A2.0 (16)
C11—C12—C13—C12i1.6 (5)C33A—C34A—C35A—C36A4.9 (15)
C9—C12—C13—C12i177.53 (19)C34A—C35A—C36A—C37A2.7 (17)
C16i—C15—C16—C170.6 (4)C33A—C32A—C37A—C36A5 (2)
C19—C15—C16—C17178.2 (3)C31A—C32A—C37A—C36A176.9 (11)
C16i—C15—C16—O3176.47 (16)C35A—C36A—C37A—C32A2.5 (17)
C19—C15—C16—O32.2 (4)C5—C6—O1—C884.0 (3)
C15—C16—C17—C180.7 (4)C1—C6—O1—C898.7 (3)
O3—C16—C17—C18176.6 (2)O2—C8—O1—C692.1 (3)
C15—C16—C17—C21176.8 (2)C12—C11—O2—C882.9 (3)
O3—C16—C17—C217.3 (3)C10—C11—O2—C8100.4 (3)
C16—C17—C18—C17i0.9 (4)O1—C8—O2—C1191.4 (3)
C21—C17—C18—C17i176.90 (17)C17—C16—O3—C2084.4 (3)
C2—C3—C21—C30147.6 (2)C15—C16—O3—C2099.6 (3)
C4—C3—C21—C3034.7 (3)O4—C20—O3—C1691.5 (2)
C2—C3—C21—C1784.5 (3)C3—C2—O4—C2083.6 (3)
C4—C3—C21—C1793.1 (3)C1—C2—O4—C20102.3 (3)
C18—C17—C21—C391.1 (3)O3—C20—O4—C291.1 (2)
C16—C17—C21—C384.8 (2)O6—C38—O5—C400.0
C18—C17—C21—C3036.6 (3)C39—C38—O5—C40180.0
C16—C17—C21—C30147.5 (2)C41—C40—O5—C38180.0
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC68H64O8·C4H8O2
Mr1097.30
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)24.3288 (4), 20.6279 (4), 11.7828 (2)
V3)5913.22 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.27 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
49448, 5981, 3934
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.209, 1.04
No. of reflections5981
No. of parameters455
No. of restraints131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Bruker, 1997).

 

Acknowledgements

The financial support of the DST–NRF Centre of Excellence in Catalysis, c*change, is duly acknowledged. Our thanks go to Dr Manuel Fernandes at the University of the Wit­watersrand for performing the data acquisition and structure solution.

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 (Version 2.0-1) and SAINT-NT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, D. J., Karbach, S., Kim, H.-E., Knobler, C. B., Maverick, E. F., Ericson, J. L. & Helgeson, R. C. (1988). J. Am. Chem. Soc. 110, 2229–2237.  CSD CrossRef CAS Web of Science Google Scholar
First citationEisler, D., Hong, W., Jennings, M. C. & Pudephatt, R. J. (2002). Organometallics, 21, 3955–3960.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPiepers, O. & Kellog, R. M. (1978). J. Chem. Soc. Chem. Commun. pp. 383–384.  CrossRef Web of Science Google Scholar
First citationRoman, E., Peinador, C., Mendoza, S. & Kaifer, A. E. (1999). J. Org. Chem. 64, 2577–2578.  Web of Science CrossRef CAS Google Scholar
First citationSebo, L., Diederich, F. & Gramlich, V. (2000). Helv. Chim. Acta, 83, 93–96.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds