metal-organic compounds
Tetrakis(N,N-diethylcarbamato)titanium(IV)
aATK Launch Systems, Brigham City, UT 84302, USA, bBASF Catalysts LLC, Iselin, NJ 08830, USA, and cDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
*Correspondence e-mail: tgroy@asu.edu
The mononuclear title compound, [Ti(C5H10NO2)4], is a rare example of an eight-coordinate TiIV compound in which all donor atoms are O atoms. The coordination geometry around TiIV is pseudo-dodecahedral and the O—C—O angles of the carbamate ligands are slightly compressed [range 115.3 (2)–116.7 (2)°], apparently on account of the high One ethyl group is disordered over two positions; the site occupancy factors are 0.64 and 0.36.
Related literature
The pseudo-dodecahedral description of the coordination geometry is discussed in: Dell'Amico et al. (2000). For related structures, see: Chisholm & Extine (1977b); Dell'Amico et al. (2003); McCowan et al. (2004). Related synthesis details are given in: Calderazzo et al. (1991); Chisholm & Extine (1977a).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680705742X/bi2252sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680705742X/bi2252Isup2.hkl
While stirring under an atmosphere of N2, 1.00 ml (9.12 mmol) of TiCl4 was added to approximately 70 ml of anhydrous THF in a Schlenk flask. A yellow solid formed that dissolved within several minutes. To the resulting bright yellow solution was added 7.50 ml (72.50 mmol) of anhydrous diethylamine. The mixture turned dark blue, almost black, in color. After ten minutes the flask was evacuated of all N2 and charged with 1 atm of anhydrous CO2 gas which caused the reaction mixture to turn yellow/orange and precipitate solid. After stirring overnight, solid white diethylammonium chloride was removed by filtration under N2. Approximately 30 ml freshly distilled n-hexane was added to the clear light yellow filtrate and the volume was reduced by slow evaporation under a stream of N2. This gave 2.85 g (61%) of pale yellow crystals suitable for X-ray analysis.
H atoms were positioned geometrically and allowed to ride with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for the methyl groups and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for the methylene groups. One ethyl group on the diethylcarbamate ligand containing N1A is disordered. Atoms C1D–C1E represent the majority component (site occupancy factor 0.639 (4)) and C1D'–C1E' represent the minority component (site occupancy factor 0.361 (4)). The components were refined with N—C and C—C bond lengths restrained to 1.46 (1) and 1.48 (1) Å, respectively, and with anisotropic displacement parameters constrained to be identical for the atom pairs C1D/C1D' and C1E/C1E'. Data were collected at 263 K because the crystals undergo what is believed to be a destructive phase transformation somewhere in the range 173–243 K.
Preparation of the title compound has been previously reported via direct reaction of Ti(NEt2)4 with CO2 (Chisholm & Extine, 1977a), and by a one-pot approach similar to that described herein but using a different solvent system (Calderazzo et al., 1991). In neither case was the compound structurally established by X-ray crystallography, although it was suggested to be mononuclear.
The coordination environment around the TiIV atom in the title compound consists of eight O atoms derived from the four bidentate carbamato ligands. The Ti—O bond distances are all similar, ranging between 2.0530 (15) and 2.1087 (16) Å, while the O—C—O angles of the carbamate ligands range from 115.3 (2) to 116.7 (2)°. These angles are considerably smaller than O—C—O angles in complexes having terminal η1 or µ1,3-bridging carbamato ligands, which tend to be greater than 120°, and they are small even when compared to other bidentate carbamato ligands (Dell'Amico et al., 2003; McCowan et al., 2004). The compressed O—C—O angles in the title compound are attributed in part to the high about the TiIV center, which has the effect of forcing the O atoms closer to one another.
Eight-coordinate TiIV compounds are rare, particularly in an environment consisting solely of O donor ligands (Dell'Amico et al., 2000). The title compound has a similar core structure to tetrakis(N,N-di-isopropylcarbamato)titanium(IV) (Dell'Amico et al., 2000), which together with the six-coordinate distorted octahedral compound bis(dimethylamido)bis(N,N-dimethylcarbamato)titanium(IV) (Chisholm & Extine, 1977b) are the only other crystallographically characterized mononuclear carbamato complexes of TiIV.
The pseudo-dodecahedral description of the coordination geometry is discussed in: Dell'Amico et al. (2000). For related structures, see: Chisholm & Extine (1977b); Dell'Amico et al. (2003); McCowan et al. (2004). Related synthesis details are given in: Calderazzo et al. (1991); Chisholm & Extine (1977a).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).[Ti(C5H10NO2)4] | F(000) = 1096 |
Mr = 512.46 | Dx = 1.266 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7268 reflections |
a = 13.9906 (9) Å | θ = 2.4–25.3° |
b = 11.7183 (8) Å | µ = 0.37 mm−1 |
c = 17.7483 (12) Å | T = 263 K |
β = 112.494 (1)° | Block, light-yellow |
V = 2688.4 (3) Å3 | 0.23 × 0.18 × 0.14 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 4751 independent reflections |
Radiation source: fine-focus sealed tube | 3280 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ω scan | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −16→16 |
Tmin = 0.922, Tmax = 0.950 | k = −13→13 |
21432 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.062P)2] where P = (Fo2 + 2Fc2)/3 |
4751 reflections | (Δ/σ)max = 0.001 |
313 parameters | Δρmax = 0.21 e Å−3 |
4 restraints | Δρmin = −0.25 e Å−3 |
[Ti(C5H10NO2)4] | V = 2688.4 (3) Å3 |
Mr = 512.46 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.9906 (9) Å | µ = 0.37 mm−1 |
b = 11.7183 (8) Å | T = 263 K |
c = 17.7483 (12) Å | 0.23 × 0.18 × 0.14 mm |
β = 112.494 (1)° |
Bruker SMART APEX CCD diffractometer | 4751 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3280 reflections with I > 2σ(I) |
Tmin = 0.922, Tmax = 0.950 | Rint = 0.052 |
21432 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 4 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.21 e Å−3 |
4751 reflections | Δρmin = −0.25 e Å−3 |
313 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ti1 | 0.53057 (3) | 0.40515 (3) | 0.75825 (2) | 0.04645 (15) | |
C1A | 0.70112 (19) | 0.4099 (2) | 0.75016 (15) | 0.0550 (6) | |
C1B | 0.8487 (2) | 0.5285 (2) | 0.7645 (2) | 0.0790 (9) | |
H1B1 | 0.7999 | 0.5833 | 0.7294 | 0.095* | |
H1B2 | 0.9061 | 0.5228 | 0.7468 | 0.095* | |
C1C | 0.8880 (2) | 0.5717 (3) | 0.8500 (2) | 0.0964 (11) | |
H1C1 | 0.8315 | 0.5789 | 0.8677 | 0.145* | |
H1C2 | 0.9198 | 0.6450 | 0.8524 | 0.145* | |
H1C3 | 0.9381 | 0.5192 | 0.8849 | 0.145* | |
C1D | 0.8506 (4) | 0.3100 (4) | 0.7419 (3) | 0.0744 (17) | 0.639 (4) |
H1D1 | 0.8011 | 0.2484 | 0.7214 | 0.089* | 0.639 (4) |
H1D2 | 0.8828 | 0.3242 | 0.7031 | 0.089* | 0.639 (4) |
C1E | 0.9301 (5) | 0.2802 (5) | 0.8232 (4) | 0.130 (2) | 0.639 (4) |
H1E1 | 0.9822 | 0.3386 | 0.8402 | 0.195* | 0.639 (4) |
H1E2 | 0.9615 | 0.2086 | 0.8197 | 0.195* | 0.639 (4) |
H1E3 | 0.8980 | 0.2742 | 0.8621 | 0.195* | 0.639 (4) |
C1D' | 0.8672 (7) | 0.3171 (8) | 0.7944 (6) | 0.0744 (17) | 0.361 (4) |
H1DA | 0.9128 | 0.3364 | 0.8496 | 0.089* | 0.361 (4) |
H1DB | 0.8264 | 0.2510 | 0.7961 | 0.089* | 0.361 (4) |
C1E' | 0.9272 (10) | 0.2938 (9) | 0.7440 (7) | 0.130 (2) | 0.361 (4) |
H1EA | 0.9733 | 0.2310 | 0.7669 | 0.195* | 0.361 (4) |
H1EB | 0.9665 | 0.3602 | 0.7425 | 0.195* | 0.361 (4) |
H1EC | 0.8809 | 0.2748 | 0.6896 | 0.195* | 0.361 (4) |
N1A | 0.79773 (16) | 0.41651 (17) | 0.75455 (16) | 0.0756 (7) | |
O1A | 0.65588 (12) | 0.31632 (13) | 0.75096 (10) | 0.0585 (4) | |
O1B | 0.64677 (11) | 0.50028 (13) | 0.74517 (10) | 0.0549 (4) | |
C2A | 0.5985 (2) | 0.4936 (2) | 0.89342 (16) | 0.0617 (7) | |
C2B | 0.6239 (3) | 0.6631 (3) | 0.97834 (19) | 0.0927 (10) | |
H2B1 | 0.6057 | 0.7042 | 0.9273 | 0.111* | |
H2B2 | 0.6853 | 0.6981 | 1.0181 | 0.111* | |
C2C | 0.5377 (3) | 0.6704 (3) | 1.0072 (2) | 0.1165 (13) | |
H2C1 | 0.4762 | 0.6390 | 0.9666 | 0.175* | |
H2C2 | 0.5259 | 0.7489 | 1.0166 | 0.175* | |
H2C3 | 0.5553 | 0.6282 | 1.0570 | 0.175* | |
C2D | 0.7143 (3) | 0.4758 (3) | 1.03593 (18) | 0.1000 (11) | |
H2D1 | 0.6949 | 0.3960 | 1.0270 | 0.120* | |
H2D2 | 0.7048 | 0.5002 | 1.0848 | 0.120* | |
C2E | 0.8246 (3) | 0.4874 (5) | 1.0491 (3) | 0.171 (2) | |
H2E1 | 0.8347 | 0.4634 | 1.0009 | 0.257* | |
H2E2 | 0.8656 | 0.4407 | 1.0943 | 0.257* | |
H2E3 | 0.8453 | 0.5658 | 1.0605 | 0.257* | |
N2A | 0.64547 (18) | 0.5425 (2) | 0.96643 (13) | 0.0782 (7) | |
O2A | 0.61867 (13) | 0.39039 (15) | 0.88078 (10) | 0.0660 (5) | |
O2B | 0.53366 (13) | 0.54604 (14) | 0.83306 (10) | 0.0587 (4) | |
C3A | 0.4128 (2) | 0.2649 (2) | 0.77832 (14) | 0.0554 (6) | |
C3B | 0.2466 (2) | 0.2274 (3) | 0.78633 (19) | 0.0814 (9) | |
H3B1 | 0.2532 | 0.3053 | 0.8062 | 0.098* | |
H3B2 | 0.2271 | 0.1799 | 0.8229 | 0.098* | |
C3C | 0.1656 (3) | 0.2221 (3) | 0.7042 (2) | 0.1197 (13) | |
H3C1 | 0.1867 | 0.2653 | 0.6673 | 0.180* | |
H3C2 | 0.1026 | 0.2533 | 0.7050 | 0.180* | |
H3C3 | 0.1545 | 0.1440 | 0.6865 | 0.180* | |
C3D | 0.3691 (2) | 0.0673 (2) | 0.79305 (19) | 0.0792 (9) | |
H3D1 | 0.4157 | 0.0511 | 0.7656 | 0.095* | |
H3D2 | 0.3056 | 0.0252 | 0.7652 | 0.095* | |
C3F | 0.4174 (3) | 0.0266 (3) | 0.8796 (2) | 0.1360 (16) | |
H3F1 | 0.4800 | 0.0684 | 0.9077 | 0.204* | |
H3F2 | 0.4330 | −0.0532 | 0.8803 | 0.204* | |
H3F3 | 0.3701 | 0.0386 | 0.9063 | 0.204* | |
N3A | 0.34594 (17) | 0.18900 (18) | 0.78668 (13) | 0.0661 (6) | |
O3A | 0.49815 (13) | 0.23417 (13) | 0.77522 (10) | 0.0591 (4) | |
O3B | 0.39348 (12) | 0.37213 (14) | 0.77267 (10) | 0.0561 (4) | |
C4A | 0.42082 (17) | 0.4551 (2) | 0.61816 (14) | 0.0500 (6) | |
C4B | 0.3207 (2) | 0.5963 (2) | 0.51902 (16) | 0.0681 (7) | |
H4B1 | 0.3264 | 0.6367 | 0.5682 | 0.082* | |
H4B2 | 0.2478 | 0.5909 | 0.4846 | 0.082* | |
C4D | 0.3324 (3) | 0.3942 (3) | 0.47780 (17) | 0.0915 (10) | |
H4D1 | 0.3785 | 0.3293 | 0.4966 | 0.110* | |
H4D2 | 0.3398 | 0.4244 | 0.4294 | 0.110* | |
C4C | 0.3734 (3) | 0.6632 (3) | 0.4759 (2) | 0.1295 (15) | |
H4C1 | 0.4431 | 0.6791 | 0.5124 | 0.194* | |
H4C2 | 0.3371 | 0.7337 | 0.4572 | 0.194* | |
H4C3 | 0.3744 | 0.6204 | 0.4301 | 0.194* | |
C4E | 0.2238 (3) | 0.3556 (4) | 0.4564 (3) | 0.1613 (19) | |
H4E1 | 0.2174 | 0.3206 | 0.5032 | 0.242* | |
H4E2 | 0.2058 | 0.3013 | 0.4127 | 0.242* | |
H4E3 | 0.1781 | 0.4200 | 0.4397 | 0.242* | |
N4A | 0.36206 (16) | 0.48149 (18) | 0.54101 (12) | 0.0624 (6) | |
O4A | 0.46113 (12) | 0.35681 (14) | 0.63830 (9) | 0.0567 (4) | |
O4B | 0.43958 (11) | 0.52675 (12) | 0.67580 (9) | 0.0499 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti1 | 0.0451 (3) | 0.0418 (3) | 0.0482 (3) | 0.00093 (18) | 0.01313 (19) | −0.00154 (18) |
C1A | 0.0531 (15) | 0.0437 (14) | 0.0666 (17) | 0.0018 (12) | 0.0210 (12) | 0.0013 (12) |
C1B | 0.0607 (18) | 0.0499 (17) | 0.129 (3) | −0.0032 (13) | 0.0386 (18) | 0.0121 (17) |
C1C | 0.079 (2) | 0.062 (2) | 0.132 (3) | −0.0101 (16) | 0.022 (2) | 0.0070 (19) |
C1D | 0.049 (2) | 0.055 (2) | 0.110 (5) | 0.0029 (18) | 0.022 (3) | −0.003 (3) |
C1E | 0.131 (4) | 0.075 (3) | 0.150 (5) | 0.044 (3) | 0.015 (5) | −0.008 (4) |
C1D' | 0.049 (2) | 0.055 (2) | 0.110 (5) | 0.0029 (18) | 0.022 (3) | −0.003 (3) |
C1E' | 0.131 (4) | 0.075 (3) | 0.150 (5) | 0.044 (3) | 0.015 (5) | −0.008 (4) |
N1A | 0.0499 (13) | 0.0448 (13) | 0.136 (2) | 0.0011 (10) | 0.0398 (14) | 0.0025 (12) |
O1A | 0.0495 (10) | 0.0411 (10) | 0.0844 (13) | 0.0000 (7) | 0.0250 (9) | −0.0010 (8) |
O1B | 0.0487 (9) | 0.0408 (9) | 0.0736 (11) | 0.0040 (7) | 0.0217 (8) | 0.0026 (8) |
C2A | 0.0604 (16) | 0.0686 (18) | 0.0503 (16) | −0.0084 (14) | 0.0147 (13) | −0.0044 (14) |
C2B | 0.104 (3) | 0.110 (3) | 0.060 (2) | −0.039 (2) | 0.0262 (18) | −0.0267 (18) |
C2C | 0.123 (3) | 0.140 (4) | 0.094 (3) | −0.022 (3) | 0.049 (2) | −0.028 (2) |
C2D | 0.096 (3) | 0.128 (3) | 0.0536 (19) | −0.020 (2) | 0.0041 (17) | 0.0037 (18) |
C2E | 0.080 (3) | 0.257 (6) | 0.140 (4) | −0.016 (3) | 0.001 (3) | 0.071 (4) |
N2A | 0.0854 (17) | 0.0863 (18) | 0.0474 (14) | −0.0137 (14) | 0.0083 (12) | −0.0113 (12) |
O2A | 0.0680 (12) | 0.0646 (12) | 0.0520 (10) | 0.0045 (9) | 0.0080 (8) | 0.0042 (9) |
O2B | 0.0616 (11) | 0.0568 (10) | 0.0489 (10) | 0.0036 (8) | 0.0112 (8) | −0.0082 (8) |
C3A | 0.0567 (16) | 0.0596 (17) | 0.0489 (15) | −0.0058 (13) | 0.0192 (12) | 0.0004 (12) |
C3B | 0.079 (2) | 0.087 (2) | 0.091 (2) | −0.0163 (17) | 0.0456 (18) | −0.0010 (17) |
C3C | 0.073 (2) | 0.146 (4) | 0.128 (3) | −0.014 (2) | 0.025 (2) | −0.020 (3) |
C3D | 0.088 (2) | 0.0605 (19) | 0.097 (2) | −0.0171 (15) | 0.0442 (19) | −0.0013 (16) |
C3F | 0.199 (5) | 0.084 (3) | 0.110 (3) | 0.016 (3) | 0.043 (3) | 0.022 (2) |
N3A | 0.0642 (14) | 0.0626 (14) | 0.0794 (16) | −0.0077 (11) | 0.0361 (12) | 0.0024 (11) |
O3A | 0.0544 (11) | 0.0472 (10) | 0.0761 (12) | 0.0012 (8) | 0.0255 (9) | 0.0055 (8) |
O3B | 0.0538 (10) | 0.0522 (10) | 0.0634 (11) | 0.0003 (8) | 0.0235 (8) | −0.0006 (8) |
C4A | 0.0468 (14) | 0.0538 (15) | 0.0485 (15) | −0.0024 (11) | 0.0173 (11) | −0.0055 (12) |
C4B | 0.0665 (17) | 0.0782 (19) | 0.0540 (16) | 0.0120 (14) | 0.0167 (13) | 0.0083 (14) |
C4D | 0.109 (3) | 0.091 (2) | 0.0515 (18) | 0.0121 (19) | 0.0055 (16) | −0.0182 (16) |
C4C | 0.171 (4) | 0.113 (3) | 0.138 (4) | 0.013 (3) | 0.097 (3) | 0.040 (3) |
C4E | 0.160 (4) | 0.156 (4) | 0.139 (4) | −0.081 (4) | 0.024 (3) | −0.062 (3) |
N4A | 0.0682 (14) | 0.0642 (14) | 0.0449 (12) | 0.0067 (11) | 0.0104 (10) | −0.0070 (10) |
O4A | 0.0646 (11) | 0.0486 (10) | 0.0516 (10) | 0.0069 (8) | 0.0162 (8) | −0.0081 (8) |
O4B | 0.0540 (10) | 0.0455 (9) | 0.0456 (9) | 0.0024 (7) | 0.0139 (7) | −0.0044 (7) |
Ti1—O4A | 2.0530 (15) | C2D—N2A | 1.467 (3) |
Ti1—O2A | 2.0561 (16) | C2D—C2E | 1.477 (4) |
Ti1—O1B | 2.0562 (15) | C2D—H2D1 | 0.970 |
Ti1—O3B | 2.0663 (16) | C2D—H2D2 | 0.970 |
Ti1—O1A | 2.0851 (16) | C2E—H2E1 | 0.960 |
Ti1—O4B | 2.0897 (15) | C2E—H2E2 | 0.960 |
Ti1—O3A | 2.1013 (16) | C2E—H2E3 | 0.960 |
Ti1—O2B | 2.1087 (16) | C3A—O3A | 1.269 (3) |
C1A—O1A | 1.269 (3) | C3A—O3B | 1.281 (3) |
C1A—O1B | 1.287 (3) | C3A—N3A | 1.339 (3) |
C1A—N1A | 1.326 (3) | C3B—N3A | 1.458 (3) |
C1B—N1A | 1.471 (3) | C3B—C3C | 1.466 (4) |
C1B—C1C | 1.491 (4) | C3B—H3B1 | 0.970 |
C1B—H1B1 | 0.970 | C3B—H3B2 | 0.970 |
C1B—H1B2 | 0.970 | C3C—H3C1 | 0.960 |
C1C—H1C1 | 0.960 | C3C—H3C2 | 0.960 |
C1C—H1C2 | 0.960 | C3C—H3C3 | 0.960 |
C1C—H1C3 | 0.960 | C3D—N3A | 1.457 (3) |
C1D—C1E | 1.487 (7) | C3D—C3F | 1.501 (4) |
C1D—N1A | 1.511 (5) | C3D—H3D1 | 0.970 |
C1D—H1D1 | 0.970 | C3D—H3D2 | 0.970 |
C1D—H1D2 | 0.970 | C3F—H3F1 | 0.960 |
C1E—H1E1 | 0.960 | C3F—H3F2 | 0.960 |
C1E—H1E2 | 0.960 | C3F—H3F3 | 0.960 |
C1E—H1E3 | 0.960 | C4A—O4B | 1.271 (3) |
C1D'—C1E' | 1.468 (9) | C4A—O4A | 1.272 (3) |
C1D'—N1A | 1.508 (8) | C4A—N4A | 1.336 (3) |
C1D'—H1DA | 0.970 | C4B—N4A | 1.458 (3) |
C1D'—H1DB | 0.970 | C4B—C4C | 1.475 (4) |
C1E'—H1EA | 0.960 | C4B—H4B1 | 0.970 |
C1E'—H1EB | 0.960 | C4B—H4B2 | 0.970 |
C1E'—H1EC | 0.960 | C4D—N4A | 1.457 (3) |
C2A—O2B | 1.267 (3) | C4D—C4E | 1.488 (5) |
C2A—O2A | 1.281 (3) | C4D—H4D1 | 0.970 |
C2A—N2A | 1.337 (3) | C4D—H4D2 | 0.970 |
C2B—N2A | 1.477 (4) | C4C—H4C1 | 0.960 |
C2B—C2C | 1.481 (4) | C4C—H4C2 | 0.960 |
C2B—H2B1 | 0.970 | C4C—H4C3 | 0.960 |
C2B—H2B2 | 0.970 | C4E—H4E1 | 0.960 |
C2C—H2C1 | 0.960 | C4E—H4E2 | 0.960 |
C2C—H2C2 | 0.960 | C4E—H4E3 | 0.960 |
C2C—H2C3 | 0.960 | ||
O4A—Ti1—O2A | 158.13 (7) | H2C2—C2C—H2C3 | 109.5 |
O4A—Ti1—O1B | 96.51 (7) | N2A—C2D—C2E | 113.2 (3) |
O2A—Ti1—O1B | 89.14 (7) | N2A—C2D—H2D1 | 108.9 |
O4A—Ti1—O3B | 89.05 (7) | C2E—C2D—H2D1 | 108.9 |
O2A—Ti1—O3B | 93.58 (7) | N2A—C2D—H2D2 | 108.9 |
O1B—Ti1—O3B | 157.96 (7) | C2E—C2D—H2D2 | 108.9 |
O4A—Ti1—O1A | 82.73 (6) | H2D1—C2D—H2D2 | 107.8 |
O2A—Ti1—O1A | 81.12 (7) | C2D—C2E—H2E1 | 109.5 |
O1B—Ti1—O1A | 62.86 (6) | C2D—C2E—H2E2 | 109.5 |
O3B—Ti1—O1A | 139.16 (7) | H2E1—C2E—H2E2 | 109.5 |
O4A—Ti1—O4B | 62.75 (6) | C2D—C2E—H2E3 | 109.5 |
O2A—Ti1—O4B | 139.12 (7) | H2E1—C2E—H2E3 | 109.5 |
O1B—Ti1—O4B | 81.22 (6) | H2E2—C2E—H2E3 | 109.5 |
O3B—Ti1—O4B | 82.46 (6) | C2A—N2A—C2D | 120.5 (3) |
O1A—Ti1—O4B | 126.75 (6) | C2A—N2A—C2B | 119.8 (2) |
O4A—Ti1—O3A | 80.97 (7) | C2D—N2A—C2B | 119.6 (2) |
O2A—Ti1—O3A | 80.98 (7) | C2A—O2A—Ti1 | 91.30 (14) |
O1B—Ti1—O3A | 139.15 (7) | C2A—O2B—Ti1 | 89.34 (15) |
O3B—Ti1—O3A | 62.76 (6) | O3A—C3A—O3B | 116.7 (2) |
O1A—Ti1—O3A | 76.44 (6) | O3A—C3A—N3A | 121.7 (2) |
O4B—Ti1—O3A | 130.05 (6) | O3B—C3A—N3A | 121.6 (2) |
O4A—Ti1—O2B | 139.16 (7) | N3A—C3B—C3C | 111.3 (3) |
O2A—Ti1—O2B | 62.63 (7) | N3A—C3B—H3B1 | 109.4 |
O1B—Ti1—O2B | 79.62 (6) | C3C—C3B—H3B1 | 109.4 |
O3B—Ti1—O2B | 82.25 (7) | N3A—C3B—H3B2 | 109.4 |
O1A—Ti1—O2B | 127.93 (6) | C3C—C3B—H3B2 | 109.4 |
O4B—Ti1—O2B | 76.54 (6) | H3B1—C3B—H3B2 | 108.0 |
O3A—Ti1—O2B | 127.58 (7) | C3B—C3C—H3C1 | 109.5 |
O1A—C1A—O1B | 115.3 (2) | C3B—C3C—H3C2 | 109.5 |
O1A—C1A—N1A | 123.5 (2) | H3C1—C3C—H3C2 | 109.5 |
O1B—C1A—N1A | 121.2 (2) | C3B—C3C—H3C3 | 109.5 |
N1A—C1B—C1C | 113.5 (2) | H3C1—C3C—H3C3 | 109.5 |
N1A—C1B—H1B1 | 108.9 | H3C2—C3C—H3C3 | 109.5 |
C1C—C1B—H1B1 | 108.9 | N3A—C3D—C3F | 113.0 (3) |
N1A—C1B—H1B2 | 108.9 | N3A—C3D—H3D1 | 109.0 |
C1C—C1B—H1B2 | 108.9 | C3F—C3D—H3D1 | 109.0 |
H1B1—C1B—H1B2 | 107.7 | N3A—C3D—H3D2 | 109.0 |
C1B—C1C—H1C1 | 109.5 | C3F—C3D—H3D2 | 109.0 |
C1B—C1C—H1C2 | 109.5 | H3D1—C3D—H3D2 | 107.8 |
H1C1—C1C—H1C2 | 109.5 | C3D—C3F—H3F1 | 109.5 |
C1B—C1C—H1C3 | 109.5 | C3D—C3F—H3F2 | 109.5 |
H1C1—C1C—H1C3 | 109.5 | H3F1—C3F—H3F2 | 109.5 |
H1C2—C1C—H1C3 | 109.5 | C3D—C3F—H3F3 | 109.5 |
C1E—C1D—N1A | 106.1 (4) | H3F1—C3F—H3F3 | 109.5 |
C1E—C1D—H1D1 | 110.5 | H3F2—C3F—H3F3 | 109.5 |
N1A—C1D—H1D1 | 110.5 | C3A—N3A—C3D | 120.9 (2) |
C1E—C1D—H1D2 | 110.5 | C3A—N3A—C3B | 119.9 (2) |
N1A—C1D—H1D2 | 110.5 | C3D—N3A—C3B | 119.1 (2) |
H1D1—C1D—H1D2 | 108.7 | C3A—O3A—Ti1 | 89.66 (14) |
C1E'—C1D'—N1A | 105.9 (7) | C3A—O3B—Ti1 | 90.89 (14) |
C1E'—C1D'—H1DA | 110.6 | O4B—C4A—O4A | 116.1 (2) |
N1A—C1D'—H1DA | 110.6 | O4B—C4A—N4A | 121.9 (2) |
C1E'—C1D'—H1DB | 110.5 | O4A—C4A—N4A | 122.0 (2) |
N1A—C1D'—H1DB | 110.6 | N4A—C4B—C4C | 113.8 (2) |
H1DA—C1D'—H1DB | 108.7 | N4A—C4B—H4B1 | 108.8 |
C1D'—C1E'—H1EA | 109.5 | C4C—C4B—H4B1 | 108.8 |
C1D'—C1E'—H1EB | 109.5 | N4A—C4B—H4B2 | 108.8 |
H1EA—C1E'—H1EB | 109.5 | C4C—C4B—H4B2 | 108.8 |
C1D'—C1E'—H1EC | 109.5 | H4B1—C4B—H4B2 | 107.7 |
H1EA—C1E'—H1EC | 109.5 | N4A—C4D—C4E | 111.9 (3) |
H1EB—C1E'—H1EC | 109.5 | N4A—C4D—H4D1 | 109.2 |
C1A—N1A—C1B | 119.7 (2) | C4E—C4D—H4D1 | 109.2 |
C1A—N1A—C1D' | 116.2 (4) | N4A—C4D—H4D2 | 109.2 |
C1B—N1A—C1D' | 115.9 (5) | C4E—C4D—H4D2 | 109.2 |
C1A—N1A—C1D | 119.3 (3) | H4D1—C4D—H4D2 | 107.9 |
C1B—N1A—C1D | 120.8 (3) | C4B—C4C—H4C1 | 109.5 |
C1A—O1A—Ti1 | 90.24 (14) | C4B—C4C—H4C2 | 109.5 |
C1A—O1B—Ti1 | 91.02 (14) | H4C1—C4C—H4C2 | 109.5 |
O2B—C2A—O2A | 116.4 (2) | C4B—C4C—H4C3 | 109.5 |
O2B—C2A—N2A | 122.6 (3) | H4C1—C4C—H4C3 | 109.5 |
O2A—C2A—N2A | 121.0 (3) | H4C2—C4C—H4C3 | 109.5 |
N2A—C2B—C2C | 110.1 (3) | C4D—C4E—H4E1 | 109.5 |
N2A—C2B—H2B1 | 109.6 | C4D—C4E—H4E2 | 109.5 |
C2C—C2B—H2B1 | 109.6 | H4E1—C4E—H4E2 | 109.5 |
N2A—C2B—H2B2 | 109.6 | C4D—C4E—H4E3 | 109.5 |
C2C—C2B—H2B2 | 109.6 | H4E1—C4E—H4E3 | 109.5 |
H2B1—C2B—H2B2 | 108.2 | H4E2—C4E—H4E3 | 109.5 |
C2B—C2C—H2C1 | 109.5 | C4A—N4A—C4D | 120.6 (2) |
C2B—C2C—H2C2 | 109.5 | C4A—N4A—C4B | 120.9 (2) |
H2C1—C2C—H2C2 | 109.5 | C4D—N4A—C4B | 118.4 (2) |
C2B—C2C—H2C3 | 109.5 | C4A—O4A—Ti1 | 91.41 (13) |
H2C1—C2C—H2C3 | 109.5 | C4A—O4B—Ti1 | 89.78 (13) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C5H10NO2)4] |
Mr | 512.46 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 263 |
a, b, c (Å) | 13.9906 (9), 11.7183 (8), 17.7483 (12) |
β (°) | 112.494 (1) |
V (Å3) | 2688.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.23 × 0.18 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.922, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21432, 4751, 3280 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.114, 0.94 |
No. of reflections | 4751 |
No. of parameters | 313 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.25 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).
Acknowledgements
The authors thank the National Science Foundation for its contribution toward the purchase of the single-crystal instrumentation used in this study through award No. CHE-9808440.
References
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.28A) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calderazzo, F., Ianelli, S., Pampaloni, G., Pelizzi, G. & Sperrle, M. (1991). J. Chem. Soc. Dalton Trans. pp. 693–698. CSD CrossRef Web of Science Google Scholar
Chisholm, M. H. & Extine, M. W. (1977a). J. Am. Chem. Soc. 99, 782–792. CrossRef CAS Web of Science Google Scholar
Chisholm, M. H. & Extine, M. W. (1977b). J. Am. Chem. Soc. 99, 792–802. CSD CrossRef CAS Web of Science Google Scholar
Dell'Amico, D. B., Calderazzo, F., Ianelli, S., Labella, L., Marchetti, F. & Pelizzi, G. (2000). J. Chem. Soc. Dalton Trans. pp. 4339–4342. Web of Science CrossRef Google Scholar
Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857–3897. Web of Science CrossRef PubMed Google Scholar
McCowan, C. S., Buss, C. E., Young, V. G. Jr, McDonnell, R. L. & Caudle, M. T. (2004). Acta Cryst. E60, m285–m287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Preparation of the title compound has been previously reported via direct reaction of Ti(NEt2)4 with CO2 (Chisholm & Extine, 1977a), and by a one-pot approach similar to that described herein but using a different solvent system (Calderazzo et al., 1991). In neither case was the compound structurally established by X-ray crystallography, although it was suggested to be mononuclear.
The coordination environment around the TiIV atom in the title compound consists of eight O atoms derived from the four bidentate carbamato ligands. The Ti—O bond distances are all similar, ranging between 2.0530 (15) and 2.1087 (16) Å, while the O—C—O angles of the carbamate ligands range from 115.3 (2) to 116.7 (2)°. These angles are considerably smaller than O—C—O angles in complexes having terminal η1 or µ1,3-bridging carbamato ligands, which tend to be greater than 120°, and they are small even when compared to other bidentate carbamato ligands (Dell'Amico et al., 2003; McCowan et al., 2004). The compressed O—C—O angles in the title compound are attributed in part to the high coordination number about the TiIV center, which has the effect of forcing the O atoms closer to one another.
Eight-coordinate TiIV compounds are rare, particularly in an environment consisting solely of O donor ligands (Dell'Amico et al., 2000). The title compound has a similar core structure to tetrakis(N,N-di-isopropylcarbamato)titanium(IV) (Dell'Amico et al., 2000), which together with the six-coordinate distorted octahedral compound bis(dimethylamido)bis(N,N-dimethylcarbamato)titanium(IV) (Chisholm & Extine, 1977b) are the only other crystallographically characterized mononuclear carbamato complexes of TiIV.