metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: μ-Oxido-bis­­{chlorido[tris­­(2-pyridylmeth­yl)amine]chromium(III)} bis­(hexa­fluoridophosphate)

aCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: lisheng0821@sina.com

(Received 22 October 2007; accepted 20 November 2007; online 6 December 2007)

The title compound, [Cr2Cl2O(C18H18N4)2](PF6)2, is isostructural with the VIII analogue. Each CrIII atom is chelated by the tetra­dentate tris­(2-pyridylmeth­yl)amine ligand via four N atoms, and further coordinated by one Cl atom and one bridging O atom, giving a slightly distorted octa­hedral coordination geometry. The dinuclear complex is centrosymmetric, with the bridging O atom lying on a centre of inversion.

Related literature

For the isostructural VIII analogue, see: Tajika et al. (2005[Tajika, Y., Tsuge, K. & Sasaki, Y. (2005). Dalton Trans. pp. 1438-1447.]). For more general related literature, see: Butler & Carrano (1991[Butler, A. & Carrano, C. J. (1991). Chem. Rev. 109, 61-105.]); Crans et al. (1989[Crans, D., Bunch, R. L. & Theisen, L. A. (1989). J. Am. Chem. Soc. 111, 7597-7601.]); Dey (1974[Dey, K. J. (1974). Sci. Ind. Res. 33, 76-97.]); Chen & Zubieta (1990[Chen, Q. & Zubieta, I. (1990). Inorg. Chem. 29, 1456-1458.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr2Cl2O(C18H18N4)2](PF6)2

  • Mr = 1061.57

  • Triclinic, [P \overline 1]

  • a = 8.6107 (17) Å

  • b = 11.302 (2) Å

  • c = 12.798 (3) Å

  • α = 115.50 (3)°

  • β = 107.45 (3)°

  • γ = 91.50 (3)°

  • V = 1054.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.867

  • 8686 measured reflections

  • 3877 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.00

  • 3877 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A classical but nevertheless rapidly developing field of application for related metal-Schiff compounds is their use as catalysts in polymerization, oxidation reactions, and model examples for the interaction of metal ions within the active sites of enzymes (Butler & Carrano, 1991; Crans et al., 1989; Dey, 1974; Chen & Zubieta, 1990). In the dinuclear title compound (Fig. 1), each CrIII atom is chelated by the tetradentate ligand tris(2-pyridylmethyl)amine via four N atoms, and further coordinated by one Cl atom and one bridging O atom to give a slightly distorted octahedral coordination geometry.

Related literature top

For the isostructural VIII analogue, see: Tajika et al. (2005). For more general related literature, see: Butler & Carrano (1991); Crans et al. (1989); Dey (1974); Chen & Zubieta (1990).

Experimental top

A mixture of chromium(III) trichloride (1 mmol) and tris(2-pyridylmethyl)amine (1 mmol) in 20 ml me thanol was refluxed for two hours. After cooling, the solution was filtered and the filtrate was evaporated naturally at room temperature. Blue blocks of the title compound were obtained after a few days with a yield of 31%. Elemental analysis calculated: C 40.39, H 3.35, N 10.44%; found: C 40.35, H 3.39, N 10.42%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 or 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

A classical but nevertheless rapidly developing field of application for related metal-Schiff compounds is their use as catalysts in polymerization, oxidation reactions, and model examples for the interaction of metal ions within the active sites of enzymes (Butler & Carrano, 1991; Crans et al., 1989; Dey, 1974; Chen & Zubieta, 1990). In the dinuclear title compound (Fig. 1), each CrIII atom is chelated by the tetradentate ligand tris(2-pyridylmethyl)amine via four N atoms, and further coordinated by one Cl atom and one bridging O atom to give a slightly distorted octahedral coordination geometry.

For the isostructural VIII analogue, see: Tajika et al. (2005). For more general related literature, see: Butler & Carrano (1991); Crans et al. (1989); Dey (1974); Chen & Zubieta (1990).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure drawn with 30% probability displacement ellipsoids for the non-H atoms.
µ-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]chromium(III)} dihexafluoridophosphate top
Crystal data top
[Cr2Cl2O(C18H18N4)2](PF6)2Z = 1
Mr = 1061.57F(000) = 536
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6107 (17) ÅCell parameters from 3877 reflections
b = 11.302 (2) Åθ = 3.0–25.5°
c = 12.798 (3) ŵ = 0.81 mm1
α = 115.50 (3)°T = 293 K
β = 107.45 (3)°Block, blue
γ = 91.50 (3)°0.28 × 0.22 × 0.18 mm
V = 1054.8 (4) Å3
Data collection top
Bruker APEX II CCD
diffractometer
3877 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 810
Tmin = 0.804, Tmax = 0.867k = 1313
8686 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3428P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3877 reflectionsΔρmax = 0.51 e Å3
287 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
[Cr2Cl2O(C18H18N4)2](PF6)2γ = 91.50 (3)°
Mr = 1061.57V = 1054.8 (4) Å3
Triclinic, P1Z = 1
a = 8.6107 (17) ÅMo Kα radiation
b = 11.302 (2) ŵ = 0.81 mm1
c = 12.798 (3) ÅT = 293 K
α = 115.50 (3)°0.28 × 0.22 × 0.18 mm
β = 107.45 (3)°
Data collection top
Bruker APEX II CCD
diffractometer
3877 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3594 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.867Rint = 0.021
8686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
3877 reflectionsΔρmin = 0.33 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr11.03745 (3)0.34679 (3)0.39271 (2)0.0408 (4)
C10.9871 (3)0.1897 (2)0.53070 (18)0.0447 (4)
H11.10180.19840.55730.054*
C20.8992 (3)0.1306 (2)0.5741 (2)0.0534 (5)
H20.95330.09980.62960.064*
C30.7284 (3)0.1173 (3)0.5340 (2)0.0605 (6)
H30.66620.07790.56260.073*
C40.6514 (3)0.1630 (2)0.4513 (2)0.0552 (5)
H40.53670.15370.42260.066*
C50.7464 (2)0.22306 (19)0.41135 (18)0.0425 (4)
C60.6721 (2)0.2874 (2)0.3310 (2)0.0490 (5)
H6A0.56430.23530.27300.059*
H6B0.65630.37570.38220.059*
C70.7467 (3)0.1753 (2)0.1450 (2)0.0573 (6)
H7A0.74430.20040.08110.069*
H7B0.63810.12530.12160.069*
C80.8712 (2)0.08565 (19)0.14924 (17)0.0414 (4)
C90.8351 (3)0.0448 (2)0.0588 (2)0.0528 (5)
H90.73150.07930.00280.063*
C100.9546 (3)0.1237 (2)0.0606 (2)0.0617 (6)
H100.93270.21190.00030.074*
C111.1069 (3)0.0697 (2)0.1532 (2)0.0607 (6)
H111.18940.12080.15640.073*
C121.1346 (3)0.0605 (2)0.2404 (2)0.0526 (5)
H121.23740.09640.30280.063*
C130.7605 (3)0.4147 (2)0.23723 (19)0.0475 (5)
H13A0.74300.48810.30590.057*
H13B0.66510.39170.16390.057*
C140.9146 (3)0.4574 (2)0.21891 (17)0.0471 (5)
C150.9138 (4)0.5296 (2)0.1547 (2)0.0606 (6)
H150.81540.54820.11490.073*
C161.0629 (4)0.5734 (3)0.1512 (2)0.0728 (8)
H161.06500.62370.11000.087*
C171.2075 (4)0.5435 (3)0.2077 (3)0.0715 (7)
H171.30760.57210.20470.086*
C181.2007 (3)0.4704 (3)0.2686 (2)0.0610 (6)
H181.29780.44900.30690.073*
Cl11.31398 (6)0.35078 (6)0.48445 (5)0.05507 (17)
F10.5115 (2)0.90789 (16)0.13882 (17)0.0825 (5)
F20.4878 (2)0.8490 (2)0.27945 (15)0.0893 (5)
F30.5830 (3)0.6607 (2)0.1912 (2)0.1078 (7)
F40.7325 (2)0.8610 (2)0.24906 (17)0.0999 (6)
F50.6040 (2)0.72005 (19)0.04870 (17)0.0929 (6)
F60.36012 (19)0.71102 (16)0.08031 (14)0.0726 (4)
N11.0192 (2)0.13917 (16)0.23969 (15)0.0436 (4)
N21.0566 (2)0.42848 (18)0.27454 (16)0.0482 (4)
N30.91312 (19)0.23567 (15)0.45104 (15)0.0406 (3)
N40.7776 (2)0.29834 (16)0.26214 (15)0.0424 (4)
O11.00000.50000.50000.0420 (4)
P10.54870 (7)0.78424 (6)0.16549 (5)0.05276 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0378 (11)0.0424 (10)0.0424 (10)0.0088 (8)0.0112 (8)0.0212 (8)
C10.0415 (10)0.0468 (10)0.0459 (10)0.0095 (8)0.0121 (8)0.0233 (8)
C20.0597 (14)0.0546 (12)0.0513 (12)0.0109 (10)0.0179 (10)0.0300 (10)
C30.0606 (14)0.0666 (14)0.0669 (14)0.0057 (11)0.0281 (11)0.0381 (12)
C40.0395 (11)0.0606 (13)0.0695 (14)0.0063 (9)0.0206 (10)0.0324 (11)
C50.0351 (9)0.0412 (9)0.0456 (10)0.0057 (7)0.0117 (8)0.0166 (8)
C60.0302 (9)0.0572 (12)0.0614 (12)0.0093 (8)0.0107 (8)0.0322 (10)
C70.0517 (13)0.0499 (12)0.0462 (11)0.0099 (9)0.0011 (9)0.0127 (9)
C80.0424 (10)0.0438 (10)0.0403 (9)0.0052 (8)0.0153 (8)0.0207 (8)
C90.0562 (13)0.0484 (11)0.0497 (11)0.0027 (9)0.0185 (10)0.0189 (9)
C100.0769 (17)0.0441 (11)0.0634 (14)0.0138 (11)0.0334 (13)0.0178 (10)
C110.0653 (15)0.0551 (13)0.0714 (15)0.0256 (11)0.0342 (12)0.0297 (11)
C120.0460 (12)0.0572 (12)0.0570 (12)0.0167 (9)0.0199 (10)0.0265 (10)
C130.0504 (11)0.0490 (11)0.0410 (10)0.0162 (9)0.0097 (8)0.0224 (9)
C140.0599 (13)0.0426 (10)0.0358 (9)0.0112 (9)0.0152 (9)0.0162 (8)
C150.0864 (18)0.0503 (12)0.0451 (12)0.0140 (11)0.0197 (11)0.0237 (10)
C160.114 (2)0.0544 (13)0.0572 (14)0.0012 (14)0.0362 (15)0.0288 (12)
C170.084 (2)0.0710 (16)0.0683 (16)0.0005 (14)0.0357 (14)0.0343 (13)
C180.0612 (14)0.0666 (14)0.0615 (14)0.0042 (11)0.0280 (11)0.0307 (12)
Cl10.0334 (3)0.0609 (3)0.0596 (3)0.0131 (2)0.0101 (2)0.0215 (2)
F10.0810 (11)0.0724 (10)0.0988 (12)0.0060 (8)0.0208 (9)0.0507 (9)
F20.0836 (12)0.1141 (14)0.0632 (9)0.0059 (10)0.0336 (8)0.0300 (9)
F30.1008 (15)0.1236 (16)0.163 (2)0.0524 (12)0.0641 (14)0.1074 (16)
F40.0483 (9)0.1549 (19)0.0854 (12)0.0063 (10)0.0024 (8)0.0605 (12)
F50.0973 (13)0.0965 (12)0.0873 (12)0.0083 (10)0.0563 (10)0.0288 (10)
F60.0571 (9)0.0710 (9)0.0731 (9)0.0042 (7)0.0144 (7)0.0248 (7)
N10.0425 (9)0.0456 (9)0.0444 (9)0.0116 (7)0.0164 (7)0.0210 (7)
N20.0526 (10)0.0497 (9)0.0451 (9)0.0087 (8)0.0187 (8)0.0231 (8)
N30.0348 (8)0.0421 (8)0.0447 (8)0.0082 (6)0.0125 (7)0.0205 (7)
N40.0376 (8)0.0442 (8)0.0411 (8)0.0101 (7)0.0077 (6)0.0195 (7)
O10.0384 (10)0.0430 (10)0.0424 (10)0.0081 (8)0.0119 (8)0.0190 (8)
P10.0429 (3)0.0665 (4)0.0529 (3)0.0075 (3)0.0151 (2)0.0321 (3)
Geometric parameters (Å, º) top
Cr1—O11.7986 (7)C9—H90.930
Cr1—N32.1206 (18)C10—C111.378 (4)
Cr1—N22.1238 (18)C10—H100.930
Cr1—N42.2370 (19)C11—C121.370 (3)
Cr1—N12.2814 (19)C11—H110.930
Cr1—Cl12.3070 (9)C12—N11.351 (3)
O1—Cr1i1.7986 (7)C12—H120.930
C1—N31.341 (3)C13—N41.482 (3)
C1—C21.369 (3)C13—C141.516 (3)
C1—H10.930C13—H13A0.970
C2—C31.386 (4)C13—H13B0.970
C2—H20.930C14—N21.345 (3)
C3—C41.376 (4)C14—C151.383 (3)
C3—H30.930C15—C161.384 (4)
C4—C51.382 (3)C15—H150.930
C4—H40.930C16—C171.371 (4)
C5—N31.352 (3)C16—H160.930
C5—C61.506 (3)C17—C181.369 (4)
C6—N41.479 (3)C17—H170.930
C6—H6A0.970C18—N21.351 (3)
C6—H6B0.970C18—H180.930
C7—N41.483 (3)F1—P11.5939 (17)
C7—C81.499 (3)F2—P11.5803 (18)
C7—H7A0.970F3—P11.582 (2)
C7—H7B0.970F4—P11.5859 (18)
C8—N11.342 (3)F5—P11.5804 (18)
C8—C91.379 (3)F6—P11.6129 (17)
C9—C101.380 (4)
O1—Cr1—N391.01 (5)N1—C12—H12118.5
O1—Cr1—N292.46 (5)C11—C12—H12118.5
N3—Cr1—N2154.67 (7)N4—C13—C14110.48 (16)
O1—Cr1—N491.36 (6)N4—C13—H13A109.6
N3—Cr1—N478.03 (7)C14—C13—H13A109.6
N2—Cr1—N476.81 (7)N4—C13—H13B109.6
O1—Cr1—N1166.58 (5)C14—C13—H13B109.6
N3—Cr1—N181.87 (7)H13A—C13—H13B108.1
N2—Cr1—N189.30 (7)N2—C14—C15120.7 (2)
N4—Cr1—N176.09 (7)N2—C14—C13116.67 (18)
O1—Cr1—Cl1103.29 (5)C15—C14—C13122.5 (2)
N3—Cr1—Cl1104.03 (5)C14—C15—C16118.4 (3)
N2—Cr1—Cl199.56 (6)C14—C15—H15120.8
N4—Cr1—Cl1165.11 (5)C16—C15—H15120.8
N1—Cr1—Cl189.52 (6)C17—C16—C15120.8 (2)
N3—C1—C2122.1 (2)C17—C16—H16119.6
N3—C1—H1118.9C15—C16—H16119.6
C2—C1—H1119.0C16—C17—C18118.2 (3)
C3—C2—C1118.8 (2)C16—C17—H17120.9
C3—C2—H2120.6C18—C17—H17120.9
C1—C2—H2120.6N2—C18—C17121.8 (3)
C2—C3—C4119.4 (2)N2—C18—H18119.1
C2—C3—H3120.3C17—C18—H18119.1
C4—C3—H3120.3C12—N1—C8117.79 (18)
C3—C4—C5119.3 (2)C12—N1—Cr1126.02 (15)
C3—C4—H4120.4C8—N1—Cr1115.61 (13)
C5—C4—H4120.4C14—N2—C18120.1 (2)
N3—C5—C4120.95 (19)C14—N2—Cr1114.45 (14)
N3—C5—C6116.79 (18)C18—N2—Cr1124.62 (17)
C4—C5—C6122.07 (19)C1—N3—C5119.42 (18)
N4—C6—C5112.19 (16)C1—N3—Cr1125.22 (14)
N4—C6—H6A109.2C5—N3—Cr1115.07 (13)
C5—C6—H6A109.2C6—N4—C7112.30 (18)
N4—C6—H6B109.2C6—N4—C13112.63 (16)
C5—C6—H6B109.2C7—N4—C13109.74 (17)
H6A—C6—H6B107.9C6—N4—Cr1105.11 (12)
N4—C7—C8114.97 (17)C7—N4—Cr1112.78 (13)
N4—C7—H7A108.5C13—N4—Cr1103.96 (12)
C8—C7—H7A108.5Cr1—O1—Cr1i180.0
N4—C7—H7B108.5F5—P1—F390.59 (12)
C8—C7—H7B108.5F5—P1—F2178.06 (11)
H7A—C7—H7B107.5F3—P1—F290.59 (13)
N1—C8—C9122.2 (2)F5—P1—F490.15 (11)
N1—C8—C7117.57 (17)F3—P1—F491.62 (13)
C9—C8—C7120.13 (19)F2—P1—F491.35 (11)
C10—C9—C8119.3 (2)F5—P1—F189.58 (11)
C10—C9—H9120.4F3—P1—F1179.22 (11)
C8—C9—H9120.4F2—P1—F189.22 (11)
C11—C10—C9118.9 (2)F4—P1—F189.14 (11)
C11—C10—H10120.5F5—P1—F690.19 (10)
C9—C10—H10120.5F3—P1—F690.39 (12)
C10—C11—C12118.9 (2)F2—P1—F688.26 (10)
C10—C11—H11120.6F4—P1—F6177.95 (11)
C12—C11—H11120.6F1—P1—F688.85 (10)
N1—C12—C11122.9 (2)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cr2Cl2O(C18H18N4)2](PF6)2
Mr1061.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6107 (17), 11.302 (2), 12.798 (3)
α, β, γ (°)115.50 (3), 107.45 (3), 91.50 (3)
V3)1054.8 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker APEX II CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.804, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
8686, 3877, 3594
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.00
No. of reflections3877
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

 

Acknowledgements

The authors are grateful for financial support from Henan University (grant No.05YBGG013).

References

First citationBruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, A. & Carrano, C. J. (1991). Chem. Rev. 109, 61–105.  CAS Google Scholar
First citationChen, Q. & Zubieta, I. (1990). Inorg. Chem. 29, 1456–1458.  CSD CrossRef CAS Google Scholar
First citationCrans, D., Bunch, R. L. & Theisen, L. A. (1989). J. Am. Chem. Soc. 111, 7597–7601.  CrossRef CAS Web of Science Google Scholar
First citationDey, K. J. (1974). Sci. Ind. Res. 33, 76–97.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTajika, Y., Tsuge, K. & Sasaki, Y. (2005). Dalton Trans. pp. 1438–1447.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds