metal-organic compounds
Bis(1-adamantylammonium) hexafluoridogermanate
aInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and bHeavy Oil Company, Liaohe Petroleum Filiale, China National Petroleum Corporation (CNPC), Shiyou Street No. 96, Panjin 124010, People's Republic of China
*Correspondence e-mail: yanxu@lnnu.edu.cn
The title compound, (C10H18N)2[GeF6], was obtained hydrothermally from an aqueous solution of GeO2, H3BO3, NiCl2, adamantylammonium chloride, butanol and hydrofluoric acid. The structure consists of discrete bis(1-adamantylammonium) cations lying on crystallographic mirror planes and hexafluoridogermanate anions disordered about sites of 2/m In the latter, the Ge atom lies on the site of 2/m symmetry, one F atom lies on the mirror plane and two further F atoms are included in general positions with 50% site occupancy. The cations and anions lie in layers with N—H⋯F hydrogen bonds formed between them.
Related literature
For related literature concerning germanium framework materials, see: Li et al. (1998); Plévert et al. (2001); Xu, Fan, Chino et al. (2004); Xu, Fan, Elangovan et al. (2004); Xu et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807063702/bi2261sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063702/bi2261Isup2.hkl
Colorless plate-like crystals were synthesized hydrothermally from a mixture of GeO2, H3BO3, NiCl2, (C10H18N)Cl, C4H9OH, HF and H2O. In a typical synthesis, GeO2 (0.100 g), H3BO3 (0.006 g), NiCl2 (0.23 g), and (C10H18N)Cl (0.300 g) were dissolved in a mixture of C4H9OH (2.170 g), 47% HF (0.10 ml) and 1 ml water with constant stirring. The mixture was kept in a 25 ml Teflon-lined steel autoclave at 443 K for 7 days. The autoclave was slowly cooled to room temperature, then the product was filtered, washed with distilled water, and dried at room temperature.
The GeF62- anion is disordered about a site of 2/m
Atoms F2 and F3 are included with site occupancy factor 0.5. H atoms were placed geometrically and allowed to ride during subsequent with C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C), and with N—H = 0.90 Å, Uiso(H) = 1.5Ueq(N),Over the past decades, germanium has been used to synthesize inorganic framework materials (Li et al., 1998; Plévert et al., 2001; Xu, Fan, Chino et al., 2004; Xu, Fan, Elangovan et al., 2004; Xu et al., 2006). In this work, we used a typical method to synthesize germanate frameworks under hydrothermal conditions, but obtained instead a simple salt of adamantamine and germanium fluoride.
For related literature concerning germanium framework materials, see: Li et al. (1998); Plévert et al. (2001); Xu, Fan, Chino et al. (2004); Xu, Fan, Elangovan et al. (2004); Xu et al. (2006).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).(C10H18N)2[GeF6] | F(000) = 512 |
Mr = 491.10 | Dx = 1.551 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 955 reflections |
a = 11.099 (2) Å | θ = 3.5–25.1° |
b = 6.7458 (13) Å | µ = 1.52 mm−1 |
c = 14.179 (3) Å | T = 293 K |
β = 97.844 (3)° | Plate, colorless |
V = 1051.7 (4) Å3 | 0.20 × 0.18 × 0.10 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1037 independent reflections |
Radiation source: fine-focus sealed tube | 955 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω scans | θmax = 25.2°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −10→13 |
Tmin = 0.751, Tmax = 0.863 | k = −8→8 |
2694 measured reflections | l = −17→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0862P)2 + 0.4272P] where P = (Fo2 + 2Fc2)/3 |
1037 reflections | (Δ/σ)max < 0.001 |
86 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
(C10H18N)2[GeF6] | V = 1051.7 (4) Å3 |
Mr = 491.10 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 11.099 (2) Å | µ = 1.52 mm−1 |
b = 6.7458 (13) Å | T = 293 K |
c = 14.179 (3) Å | 0.20 × 0.18 × 0.10 mm |
β = 97.844 (3)° |
Bruker APEXII CCD diffractometer | 1037 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 955 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 0.863 | Rint = 0.054 |
2694 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.00 e Å−3 |
1037 reflections | Δρmin = −0.69 e Å−3 |
86 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ge1 | −0.5000 | 0.0000 | 0.0000 | 0.0276 (3) | |
F1 | −0.5435 (3) | 0.0000 | 0.1155 (2) | 0.0516 (10) | |
F2 | −0.4626 (5) | −0.2563 (7) | 0.0005 (6) | 0.0527 (19) | 0.50 |
F3 | −0.3490 (4) | 0.0578 (7) | 0.0500 (4) | 0.0490 (17) | 0.50 |
C5 | −0.3233 (5) | −0.5000 | 0.2032 (4) | 0.0276 (12) | |
C1 | −0.4579 (5) | −0.5000 | 0.2134 (4) | 0.0400 (15) | |
H1A | −0.4963 | −0.6155 | 0.1832 | 0.048* | |
C2 | −0.4722 (6) | −0.5000 | 0.3188 (4) | 0.0383 (14) | |
H2A | −0.5568 | −0.5000 | 0.3265 | 0.046* | |
C3 | −0.2621 (4) | −0.3158 (6) | 0.2489 (3) | 0.0382 (10) | |
H3A | −0.2989 | −0.1991 | 0.2188 | 0.046* | |
H3B | −0.1775 | −0.3161 | 0.2414 | 0.046* | |
C4 | −0.2760 (4) | −0.3161 (7) | 0.3550 (3) | 0.0465 (12) | |
H4A | −0.2383 | −0.1998 | 0.3847 | 0.056* | |
N1 | −0.3085 (5) | −0.5000 | 0.1002 (3) | 0.0495 (15) | |
H1B | −0.3439 | −0.6089 | 0.0722 | 0.074* | |
H1C | −0.2288 | −0.5000 | 0.0942 | 0.074* | |
C6 | −0.2157 (6) | −0.5000 | 0.4014 (5) | 0.0523 (19) | |
H6A | −0.2230 | −0.5000 | 0.4681 | 0.063* | |
H6B | −0.1307 | −0.5000 | 0.3948 | 0.063* | |
C7 | −0.4110 (4) | −0.3163 (7) | 0.3658 (4) | 0.0478 (12) | |
H7A | −0.4209 | −0.3142 | 0.4320 | 0.057* | |
H7B | −0.4490 | −0.1998 | 0.3362 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ge1 | 0.0296 (5) | 0.0262 (5) | 0.0286 (5) | 0.000 | 0.0103 (3) | 0.000 |
F1 | 0.048 (2) | 0.079 (3) | 0.031 (2) | 0.000 | 0.0180 (16) | 0.000 |
F2 | 0.072 (6) | 0.032 (3) | 0.052 (3) | 0.013 (2) | 0.000 (5) | −0.001 (3) |
F3 | 0.033 (3) | 0.057 (5) | 0.058 (3) | −0.008 (2) | 0.008 (2) | −0.016 (2) |
C5 | 0.029 (3) | 0.035 (3) | 0.019 (3) | 0.000 | 0.007 (2) | 0.000 |
C1 | 0.029 (3) | 0.061 (4) | 0.031 (3) | 0.000 | 0.005 (2) | 0.000 |
C2 | 0.033 (3) | 0.046 (4) | 0.039 (3) | 0.000 | 0.016 (3) | 0.000 |
C3 | 0.039 (2) | 0.030 (2) | 0.048 (3) | −0.0047 (19) | 0.017 (2) | 0.0013 (19) |
C4 | 0.047 (3) | 0.049 (3) | 0.047 (3) | −0.017 (2) | 0.019 (2) | −0.021 (2) |
N1 | 0.033 (3) | 0.088 (5) | 0.030 (3) | 0.000 | 0.013 (2) | 0.000 |
C6 | 0.034 (4) | 0.093 (6) | 0.030 (3) | 0.000 | 0.006 (3) | 0.000 |
C7 | 0.051 (3) | 0.047 (3) | 0.050 (3) | 0.004 (2) | 0.023 (2) | −0.011 (2) |
Ge1—F1 | 1.769 (3) | C2—C7 | 1.522 (6) |
Ge1—F1i | 1.769 (3) | C2—C7iv | 1.522 (6) |
Ge1—F3 | 1.772 (4) | C2—H2A | 0.960 |
Ge1—F3i | 1.772 (4) | C3—C4 | 1.532 (6) |
Ge1—F3ii | 1.772 (4) | C3—H3A | 0.960 |
Ge1—F3iii | 1.772 (4) | C3—H3B | 0.960 |
Ge1—F2ii | 1.778 (4) | C4—C6 | 1.517 (6) |
Ge1—F2iii | 1.778 (4) | C4—C7 | 1.527 (7) |
Ge1—F2i | 1.778 (4) | C4—H4A | 0.960 |
Ge1—F2 | 1.778 (4) | N1—H1B | 0.900 |
C5—N1 | 1.491 (6) | N1—H1C | 0.900 |
C5—C3 | 1.518 (5) | C6—C4iv | 1.517 (6) |
C5—C3iv | 1.518 (5) | C6—H6A | 0.960 |
C5—C1 | 1.521 (8) | C6—H6B | 0.960 |
C1—C2 | 1.524 (8) | C7—H7A | 0.960 |
C1—H1A | 0.960 | C7—H7B | 0.960 |
F1—Ge1—F1i | 180.0 (2) | C5—C1—H1A | 109.8 |
F1—Ge1—F3 | 89.6 (2) | C2—C1—H1A | 109.8 |
F1i—Ge1—F3 | 90.4 (2) | C7—C2—C7iv | 109.1 (6) |
F1—Ge1—F3i | 90.4 (2) | C7—C2—C1 | 109.2 (3) |
F1i—Ge1—F3i | 89.6 (2) | C7iv—C2—C1 | 109.2 (3) |
F3—Ge1—F3i | 180.0 (3) | C7—C2—H2A | 109.6 |
F1—Ge1—F3ii | 89.6 (2) | C7iv—C2—H2A | 109.6 |
F1i—Ge1—F3ii | 90.4 (2) | C1—C2—H2A | 110.1 |
F1—Ge1—F3iii | 90.4 (2) | C5—C3—C4 | 108.6 (4) |
F1i—Ge1—F3iii | 89.6 (2) | C5—C3—H3A | 110.1 |
F3ii—Ge1—F3iii | 180.0 (4) | C4—C3—H3A | 110.1 |
F1—Ge1—F2ii | 95.1 (3) | C5—C3—H3B | 109.8 |
F1i—Ge1—F2ii | 84.9 (3) | C4—C3—H3B | 109.9 |
F3ii—Ge1—F2ii | 90.3 (2) | H3A—C3—H3B | 108.4 |
F3iii—Ge1—F2ii | 89.7 (2) | C6—C4—C7 | 109.7 (4) |
F1—Ge1—F2iii | 84.9 (3) | C6—C4—C3 | 109.2 (4) |
F1i—Ge1—F2iii | 95.1 (3) | C7—C4—C3 | 109.3 (4) |
F3ii—Ge1—F2iii | 89.7 (2) | C6—C4—H4A | 109.7 |
F3iii—Ge1—F2iii | 90.3 (2) | C7—C4—H4A | 109.4 |
F2ii—Ge1—F2iii | 180.0 | C3—C4—H4A | 109.5 |
F1—Ge1—F2i | 84.9 (3) | C5—N1—H1B | 109.4 |
F1i—Ge1—F2i | 95.1 (3) | C5—N1—H1C | 109.5 |
F3—Ge1—F2i | 89.7 (2) | H1B—N1—H1C | 109.5 |
F3i—Ge1—F2i | 90.3 (2) | C4iv—C6—C4 | 109.7 (5) |
F1—Ge1—F2 | 95.1 (3) | C4iv—C6—H6A | 109.6 |
F1i—Ge1—F2 | 84.9 (3) | C4—C6—H6A | 109.6 |
F3—Ge1—F2 | 90.3 (2) | C4iv—C6—H6B | 109.8 |
F3i—Ge1—F2 | 89.7 (2) | C4—C6—H6B | 109.8 |
F2i—Ge1—F2 | 180.0 (3) | H6A—C6—H6B | 108.2 |
N1—C5—C3 | 108.4 (3) | C2—C7—C4 | 110.0 (4) |
N1—C5—C3iv | 108.4 (3) | C2—C7—H7A | 109.6 |
C3—C5—C3iv | 109.9 (5) | C4—C7—H7A | 110.0 |
N1—C5—C1 | 109.6 (4) | C2—C7—H7B | 109.4 |
C3—C5—C1 | 110.3 (3) | C4—C7—H7B | 109.5 |
C3iv—C5—C1 | 110.3 (3) | H7A—C7—H7B | 108.2 |
C5—C1—C2 | 109.2 (5) |
Symmetry codes: (i) −x−1, −y, −z; (ii) x, −y, z; (iii) −x−1, y, −z; (iv) x, −y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···F2iv | 0.90 | 1.80 | 2.639 (5) | 155 |
N1—H1C···F1v | 0.90 | 2.04 | 2.920 (4) | 166 |
Symmetry codes: (iv) x, −y−1, z; (v) x+1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C10H18N)2[GeF6] |
Mr | 491.10 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 11.099 (2), 6.7458 (13), 14.179 (3) |
β (°) | 97.844 (3) |
V (Å3) | 1051.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.20 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.751, 0.863 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2694, 1037, 955 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.144, 1.07 |
No. of reflections | 1037 |
No. of parameters | 86 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −0.69 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···F2i | 0.90 | 1.80 | 2.639 (5) | 154.8 |
N1—H1C···F1ii | 0.90 | 2.04 | 2.920 (4) | 166.2 |
Symmetry codes: (i) x, −y−1, z; (ii) x+1/2, y−1/2, z. |
Acknowledgements
This work was supported by the Natural Science Foundation of Liaoning Province (20062139).
References
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA. Google Scholar
Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568. Web of Science CSD CrossRef CAS Google Scholar
Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705–7708. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xu, Y., Fan, W., Chino, N., Uehara, K., Hikichi, S., Mizuno, N., Ogura, M. & Okubo, T. (2004). Chem. Lett. 33, 74–75. Web of Science CSD CrossRef CAS Google Scholar
Xu, Y., Fan, W., Elangovan, S. P., Ogura, M. & Okubo, T. (2004). Eur. J. Inorg. Chem. pp. 4547–4549. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past decades, germanium has been used to synthesize inorganic framework materials (Li et al., 1998; Plévert et al., 2001; Xu, Fan, Chino et al., 2004; Xu, Fan, Elangovan et al., 2004; Xu et al., 2006). In this work, we used a typical method to synthesize germanate frameworks under hydrothermal conditions, but obtained instead a simple salt of adamantamine and germanium fluoride.