metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-adamantylammonium) hexa­fluoridogermanate

aInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and bHeavy Oil Company, Liaohe Petroleum Filiale, China National Petroleum Corporation (CNPC), Shiyou Street No. 96, Panjin 124010, People's Republic of China
*Correspondence e-mail: yanxu@lnnu.edu.cn

(Received 26 October 2007; accepted 27 November 2007; online 6 December 2007)

The title compound, (C10H18N)2[GeF6], was obtained hydro­thermally from an aqueous solution of GeO2, H3BO3, NiCl2, adamantylammonium chloride, butanol and hydro­fluoric acid. The structure consists of discrete bis(1-adamantylammonium) cations lying on crystallographic mirror planes and hexa­fluoridogermanate anions disordered about sites of 2/m point symmetry. In the latter, the Ge atom lies on the site of 2/m symmetry, one F atom lies on the mirror plane and two further F atoms are included in general positions with 50% site occupancy. The cations and anions lie in layers with N—H⋯F hydrogen bonds formed between them.

Related literature

For related literature concerning germanium framework materials, see: Li et al. (1998[Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567-8568.]); Plévert et al. (2001[Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706-12707.]); Xu, Fan, Chino et al. (2004[Xu, Y., Fan, W., Chino, N., Uehara, K., Hikichi, S., Mizuno, N., Ogura, M. & Okubo, T. (2004). Chem. Lett. 33, 74-75.]); Xu, Fan, Elangovan et al. (2004[Xu, Y., Fan, W., Elangovan, S. P., Ogura, M. & Okubo, T. (2004). Eur. J. Inorg. Chem. pp. 4547-4549.]); Xu et al. (2006[Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705-7708.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H18N)2[GeF6]

  • Mr = 491.10

  • Monoclinic, C 2/m

  • a = 11.099 (2) Å

  • b = 6.7458 (13) Å

  • c = 14.179 (3) Å

  • β = 97.844 (3)°

  • V = 1051.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.863

  • 2694 measured reflections

  • 1037 independent reflections

  • 955 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.144

  • S = 1.07

  • 1037 reflections

  • 86 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯F2i 0.90 1.80 2.639 (5) 155
N1—H1C⋯F1ii 0.90 2.04 2.920 (4) 166
Symmetry codes: (i) x, -y-1, z; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decades, germanium has been used to synthesize inorganic framework materials (Li et al., 1998; Plévert et al., 2001; Xu, Fan, Chino et al., 2004; Xu, Fan, Elangovan et al., 2004; Xu et al., 2006). In this work, we used a typical method to synthesize germanate frameworks under hydrothermal conditions, but obtained instead a simple salt of adamantamine and germanium fluoride.

Related literature top

For related literature concerning germanium framework materials, see: Li et al. (1998); Plévert et al. (2001); Xu, Fan, Chino et al. (2004); Xu, Fan, Elangovan et al. (2004); Xu et al. (2006).

Experimental top

Colorless plate-like crystals were synthesized hydrothermally from a mixture of GeO2, H3BO3, NiCl2, (C10H18N)Cl, C4H9OH, HF and H2O. In a typical synthesis, GeO2 (0.100 g), H3BO3 (0.006 g), NiCl2 (0.23 g), and (C10H18N)Cl (0.300 g) were dissolved in a mixture of C4H9OH (2.170 g), 47% HF (0.10 ml) and 1 ml water with constant stirring. The mixture was kept in a 25 ml Teflon-lined steel autoclave at 443 K for 7 days. The autoclave was slowly cooled to room temperature, then the product was filtered, washed with distilled water, and dried at room temperature.

Refinement top

The GeF62- anion is disordered about a site of 2/m point symmetry. Atoms F2 and F3 are included with site occupancy factor 0.5. H atoms were placed geometrically and allowed to ride during subsequent refinement with C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C), and with N—H = 0.90 Å, Uiso(H) = 1.5Ueq(N),

Structure description top

Over the past decades, germanium has been used to synthesize inorganic framework materials (Li et al., 1998; Plévert et al., 2001; Xu, Fan, Chino et al., 2004; Xu, Fan, Elangovan et al., 2004; Xu et al., 2006). In this work, we used a typical method to synthesize germanate frameworks under hydrothermal conditions, but obtained instead a simple salt of adamantamine and germanium fluoride.

For related literature concerning germanium framework materials, see: Li et al. (1998); Plévert et al. (2001); Xu, Fan, Chino et al. (2004); Xu, Fan, Elangovan et al. (2004); Xu et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing displacement ellipsoids at the 70% probability level for non-H atoms (the occupancy factors for F1 and F2 are 1/2).
[Figure 2] Fig. 2. Unit-cell contents.
Bis(amantadinium) hexafluoridogermanate top
Crystal data top
(C10H18N)2[GeF6]F(000) = 512
Mr = 491.10Dx = 1.551 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 955 reflections
a = 11.099 (2) Åθ = 3.5–25.1°
b = 6.7458 (13) ŵ = 1.52 mm1
c = 14.179 (3) ÅT = 293 K
β = 97.844 (3)°Plate, colorless
V = 1051.7 (4) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1037 independent reflections
Radiation source: fine-focus sealed tube955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1013
Tmin = 0.751, Tmax = 0.863k = 88
2694 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.4272P]
where P = (Fo2 + 2Fc2)/3
1037 reflections(Δ/σ)max < 0.001
86 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
(C10H18N)2[GeF6]V = 1051.7 (4) Å3
Mr = 491.10Z = 2
Monoclinic, C2/mMo Kα radiation
a = 11.099 (2) ŵ = 1.52 mm1
b = 6.7458 (13) ÅT = 293 K
c = 14.179 (3) Å0.20 × 0.18 × 0.10 mm
β = 97.844 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
955 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.863Rint = 0.054
2694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.07Δρmax = 1.00 e Å3
1037 reflectionsΔρmin = 0.69 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.50000.00000.00000.0276 (3)
F10.5435 (3)0.00000.1155 (2)0.0516 (10)
F20.4626 (5)0.2563 (7)0.0005 (6)0.0527 (19)0.50
F30.3490 (4)0.0578 (7)0.0500 (4)0.0490 (17)0.50
C50.3233 (5)0.50000.2032 (4)0.0276 (12)
C10.4579 (5)0.50000.2134 (4)0.0400 (15)
H1A0.49630.61550.18320.048*
C20.4722 (6)0.50000.3188 (4)0.0383 (14)
H2A0.55680.50000.32650.046*
C30.2621 (4)0.3158 (6)0.2489 (3)0.0382 (10)
H3A0.29890.19910.21880.046*
H3B0.17750.31610.24140.046*
C40.2760 (4)0.3161 (7)0.3550 (3)0.0465 (12)
H4A0.23830.19980.38470.056*
N10.3085 (5)0.50000.1002 (3)0.0495 (15)
H1B0.34390.60890.07220.074*
H1C0.22880.50000.09420.074*
C60.2157 (6)0.50000.4014 (5)0.0523 (19)
H6A0.22300.50000.46810.063*
H6B0.13070.50000.39480.063*
C70.4110 (4)0.3163 (7)0.3658 (4)0.0478 (12)
H7A0.42090.31420.43200.057*
H7B0.44900.19980.33620.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0296 (5)0.0262 (5)0.0286 (5)0.0000.0103 (3)0.000
F10.048 (2)0.079 (3)0.031 (2)0.0000.0180 (16)0.000
F20.072 (6)0.032 (3)0.052 (3)0.013 (2)0.000 (5)0.001 (3)
F30.033 (3)0.057 (5)0.058 (3)0.008 (2)0.008 (2)0.016 (2)
C50.029 (3)0.035 (3)0.019 (3)0.0000.007 (2)0.000
C10.029 (3)0.061 (4)0.031 (3)0.0000.005 (2)0.000
C20.033 (3)0.046 (4)0.039 (3)0.0000.016 (3)0.000
C30.039 (2)0.030 (2)0.048 (3)0.0047 (19)0.017 (2)0.0013 (19)
C40.047 (3)0.049 (3)0.047 (3)0.017 (2)0.019 (2)0.021 (2)
N10.033 (3)0.088 (5)0.030 (3)0.0000.013 (2)0.000
C60.034 (4)0.093 (6)0.030 (3)0.0000.006 (3)0.000
C70.051 (3)0.047 (3)0.050 (3)0.004 (2)0.023 (2)0.011 (2)
Geometric parameters (Å, º) top
Ge1—F11.769 (3)C2—C71.522 (6)
Ge1—F1i1.769 (3)C2—C7iv1.522 (6)
Ge1—F31.772 (4)C2—H2A0.960
Ge1—F3i1.772 (4)C3—C41.532 (6)
Ge1—F3ii1.772 (4)C3—H3A0.960
Ge1—F3iii1.772 (4)C3—H3B0.960
Ge1—F2ii1.778 (4)C4—C61.517 (6)
Ge1—F2iii1.778 (4)C4—C71.527 (7)
Ge1—F2i1.778 (4)C4—H4A0.960
Ge1—F21.778 (4)N1—H1B0.900
C5—N11.491 (6)N1—H1C0.900
C5—C31.518 (5)C6—C4iv1.517 (6)
C5—C3iv1.518 (5)C6—H6A0.960
C5—C11.521 (8)C6—H6B0.960
C1—C21.524 (8)C7—H7A0.960
C1—H1A0.960C7—H7B0.960
F1—Ge1—F1i180.0 (2)C5—C1—H1A109.8
F1—Ge1—F389.6 (2)C2—C1—H1A109.8
F1i—Ge1—F390.4 (2)C7—C2—C7iv109.1 (6)
F1—Ge1—F3i90.4 (2)C7—C2—C1109.2 (3)
F1i—Ge1—F3i89.6 (2)C7iv—C2—C1109.2 (3)
F3—Ge1—F3i180.0 (3)C7—C2—H2A109.6
F1—Ge1—F3ii89.6 (2)C7iv—C2—H2A109.6
F1i—Ge1—F3ii90.4 (2)C1—C2—H2A110.1
F1—Ge1—F3iii90.4 (2)C5—C3—C4108.6 (4)
F1i—Ge1—F3iii89.6 (2)C5—C3—H3A110.1
F3ii—Ge1—F3iii180.0 (4)C4—C3—H3A110.1
F1—Ge1—F2ii95.1 (3)C5—C3—H3B109.8
F1i—Ge1—F2ii84.9 (3)C4—C3—H3B109.9
F3ii—Ge1—F2ii90.3 (2)H3A—C3—H3B108.4
F3iii—Ge1—F2ii89.7 (2)C6—C4—C7109.7 (4)
F1—Ge1—F2iii84.9 (3)C6—C4—C3109.2 (4)
F1i—Ge1—F2iii95.1 (3)C7—C4—C3109.3 (4)
F3ii—Ge1—F2iii89.7 (2)C6—C4—H4A109.7
F3iii—Ge1—F2iii90.3 (2)C7—C4—H4A109.4
F2ii—Ge1—F2iii180.0C3—C4—H4A109.5
F1—Ge1—F2i84.9 (3)C5—N1—H1B109.4
F1i—Ge1—F2i95.1 (3)C5—N1—H1C109.5
F3—Ge1—F2i89.7 (2)H1B—N1—H1C109.5
F3i—Ge1—F2i90.3 (2)C4iv—C6—C4109.7 (5)
F1—Ge1—F295.1 (3)C4iv—C6—H6A109.6
F1i—Ge1—F284.9 (3)C4—C6—H6A109.6
F3—Ge1—F290.3 (2)C4iv—C6—H6B109.8
F3i—Ge1—F289.7 (2)C4—C6—H6B109.8
F2i—Ge1—F2180.0 (3)H6A—C6—H6B108.2
N1—C5—C3108.4 (3)C2—C7—C4110.0 (4)
N1—C5—C3iv108.4 (3)C2—C7—H7A109.6
C3—C5—C3iv109.9 (5)C4—C7—H7A110.0
N1—C5—C1109.6 (4)C2—C7—H7B109.4
C3—C5—C1110.3 (3)C4—C7—H7B109.5
C3iv—C5—C1110.3 (3)H7A—C7—H7B108.2
C5—C1—C2109.2 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F2iv0.901.802.639 (5)155
N1—H1C···F1v0.902.042.920 (4)166
Symmetry codes: (iv) x, y1, z; (v) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C10H18N)2[GeF6]
Mr491.10
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)11.099 (2), 6.7458 (13), 14.179 (3)
β (°) 97.844 (3)
V3)1051.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.751, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
2694, 1037, 955
Rint0.054
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.07
No. of reflections1037
No. of parameters86
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.69

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F2i0.901.802.639 (5)154.8
N1—H1C···F1ii0.902.042.920 (4)166.2
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province (20062139).

References

First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationLi, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationXu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705–7708.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Y., Fan, W., Chino, N., Uehara, K., Hikichi, S., Mizuno, N., Ogura, M. & Okubo, T. (2004). Chem. Lett. 33, 74–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Y., Fan, W., Elangovan, S. P., Ogura, M. & Okubo, T. (2004). Eur. J. Inorg. Chem. pp. 4547–4549.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds