metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Di­azido­bis­(2,2′-bi­imidazole)cobalt(II)

aCollege of Medicine, Henan University, Kaifeng 475003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475003, People's Republic of China
*Correspondence e-mail: lisheng0821@sina.com

(Received 10 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title compound, [Co(N3)2(C6H6N4)2], the CoII atom lies on a centre of inversion and is bonded to two azide ions and two bidentate 2,2′-biimidizole ligands, giving a slightly distorted octa­hedral CoN6 coordination geometry. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds exist between the 2,2′-biimidizole ligands and the azide ions, linking the complexes into sheets.

Related literature

For related literature, see: Rees et al. (1983[Rees, D. C., Lewis, M. & Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367-387.]); Hardman & Lipscomb (1984[Hardman, K. D. & Lipscomb, W. N. (1984). J. Am. Chem. Soc. 106, 463-469.]); Kuo & Makinen (1982[Kuo, L. C. & Makinen, M. W. (1982). J. Biol. Chem. 257, 24-35.]); Dworschak & Plapp (1977[Dworschak, R. T. & Plapp, B. V. (1977). Biochemistry, 16, 111-117.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(N3)2(C6H6N4)2]

  • Mr = 411.29

  • Monoclinic, C 2/c

  • a = 12.8085 (10) Å

  • b = 8.7632 (5) Å

  • c = 14.4793 (5) Å

  • β = 91.913 (1)°

  • V = 1624.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 (2) K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.811

  • 1961 measured reflections

  • 1501 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.00

  • 1501 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N5i 0.86 2.01 2.819 (3) 156
N7—H7A⋯N5i 0.86 2.25 3.012 (3) 148
N7—H7A⋯N3ii 0.86 2.55 3.049 (3) 118
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The imidazole moiety is of biochemical importance due to its presence in more than 200 metalloenzymes, such as carboxypeptidase A (CPA), carbonic anhydrase (CA), liver alcohol dehydrogenase (LADH), and superoxide dismutase (SOD) (Rees et al., 1983; Hardman & Lipscomb, 1984; Kuo & Makinen, 1982; Dworschak & Plapp, 1977).

In the title compound, the CoII atom occupies an inversion centre, and is hexacoordinated by six N atoms from two chelating ligands of H2bim (2,2'-biimidizole; C6H6N4) and two azide ions, showing a slightly distorted octahedral geometry (Fig. 1). The four N atoms from the chelating H2bim consist of the base and the other two N atoms from two azide ions ocupy the axial positions. In the crystal, intermolecular N—H···N hydrogen bonds between 2,2'-biimidizole ligands and azide ions link the complexes into sheets lying in the (002) planes (Fig. 2).

Related literature top

For related literature, see: Rees et al. (1983); Hardman & Lipscomb (1984); Kuo & Makinen (1982); Dworschak & Plapp (1977).

Experimental top

A mixture of CoCl2.2(H2O) (1 mmol), 2,2'-biimidazoline (2 mmol) and NaN3 (2 mmol) in 20 ml me thanol was refluxed for two hours. After cooling, the solution was filtered and the filtrate was evaporated naturally at room temperature. Two day later, red blocks of the title compound were obtained with a yield of 22%. Elemental analysis calculated: C 35.04, H 2.92, N 47.69%; found: C 35.01, H 2.96, N 47.65%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(C/N).

Structure description top

The imidazole moiety is of biochemical importance due to its presence in more than 200 metalloenzymes, such as carboxypeptidase A (CPA), carbonic anhydrase (CA), liver alcohol dehydrogenase (LADH), and superoxide dismutase (SOD) (Rees et al., 1983; Hardman & Lipscomb, 1984; Kuo & Makinen, 1982; Dworschak & Plapp, 1977).

In the title compound, the CoII atom occupies an inversion centre, and is hexacoordinated by six N atoms from two chelating ligands of H2bim (2,2'-biimidizole; C6H6N4) and two azide ions, showing a slightly distorted octahedral geometry (Fig. 1). The four N atoms from the chelating H2bim consist of the base and the other two N atoms from two azide ions ocupy the axial positions. In the crystal, intermolecular N—H···N hydrogen bonds between 2,2'-biimidizole ligands and azide ions link the complexes into sheets lying in the (002) planes (Fig. 2).

For related literature, see: Rees et al. (1983); Hardman & Lipscomb (1984); Kuo & Makinen (1982); Dworschak & Plapp (1977).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure with 30% probability displacement ellipsoids for non-H atoms. Atoms with suffix I are generated by the symmetry operator -x + 1/2, -y - 1/2, -z + 1.
[Figure 2] Fig. 2. Packing diagram showing intermolecular N—H···N hydrogen bonds.
Diazidobis(2,2'-biimidazole)cobalt(II) top
Crystal data top
[Co(N3)2(C6H6N4)2]F(000) = 836
Mr = 411.29Dx = 1.682 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1501 reflections
a = 12.8085 (10) Åθ = 2.8–25.5°
b = 8.7632 (5) ŵ = 1.09 mm1
c = 14.4793 (5) ÅT = 293 K
β = 91.913 (1)°Block, red
V = 1624.30 (17) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1501 independent reflections
Radiation source: fine-focus sealed tube1246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 115
Tmin = 0.750, Tmax = 0.811k = 110
1961 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.032P)2 + 0.7528P]
where P = (Fo2 + 2Fc2)/3
1501 reflections(Δ/σ)max = 0.016
124 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Co(N3)2(C6H6N4)2]V = 1624.30 (17) Å3
Mr = 411.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8085 (10) ŵ = 1.09 mm1
b = 8.7632 (5) ÅT = 293 K
c = 14.4793 (5) Å0.28 × 0.22 × 0.20 mm
β = 91.913 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1246 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.811Rint = 0.022
1961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
1501 reflectionsΔρmin = 0.21 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.25000.50000.04053 (15)
C10.08433 (18)0.0620 (3)0.36274 (15)0.0523 (6)
H10.07240.12980.31410.063*
C20.03681 (18)0.0756 (3)0.37190 (15)0.0528 (6)
H20.01260.11940.33150.063*
C30.14622 (17)0.0371 (2)0.48932 (14)0.0433 (5)
C40.21008 (17)0.0440 (2)0.57427 (14)0.0437 (5)
C50.32254 (19)0.0319 (3)0.67815 (16)0.0535 (6)
H50.37100.09240.71030.064*
C60.29414 (19)0.1097 (3)0.70284 (16)0.0556 (6)
H60.31820.16440.75430.067*
N10.15295 (14)0.0854 (2)0.43678 (12)0.0463 (4)
N20.26893 (14)0.0737 (2)0.59794 (12)0.0475 (4)
N30.38297 (15)0.1637 (2)0.42685 (13)0.0521 (5)
N40.39621 (15)0.0323 (2)0.42133 (13)0.0507 (5)
N50.41050 (18)0.0987 (2)0.41471 (16)0.0668 (6)
N60.22221 (15)0.1566 (2)0.63634 (12)0.0506 (5)
H6A0.19050.24320.63480.061*
N70.07654 (14)0.1364 (2)0.45280 (12)0.0484 (4)
H7A0.05980.22300.47610.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0437 (2)0.0363 (2)0.0409 (2)0.01142 (17)0.00752 (16)0.00494 (16)
C10.0524 (13)0.0580 (14)0.0459 (12)0.0139 (11)0.0072 (10)0.0039 (10)
C20.0522 (13)0.0585 (15)0.0473 (12)0.0164 (11)0.0055 (10)0.0043 (11)
C30.0431 (11)0.0417 (12)0.0452 (11)0.0082 (9)0.0015 (9)0.0009 (9)
C40.0455 (11)0.0400 (11)0.0456 (11)0.0047 (10)0.0022 (9)0.0028 (9)
C50.0556 (13)0.0536 (14)0.0503 (12)0.0048 (11)0.0100 (10)0.0019 (11)
C60.0618 (14)0.0551 (15)0.0491 (12)0.0004 (12)0.0088 (11)0.0091 (11)
N10.0474 (10)0.0460 (11)0.0450 (9)0.0112 (9)0.0048 (8)0.0042 (8)
N20.0507 (10)0.0442 (10)0.0472 (10)0.0078 (9)0.0065 (8)0.0044 (8)
N30.0554 (11)0.0401 (11)0.0605 (11)0.0096 (9)0.0019 (9)0.0036 (9)
N40.0488 (11)0.0505 (13)0.0522 (11)0.0128 (9)0.0073 (9)0.0070 (9)
N50.0717 (14)0.0417 (12)0.0860 (15)0.0073 (11)0.0101 (12)0.0065 (11)
N60.0588 (11)0.0415 (11)0.0514 (10)0.0074 (9)0.0008 (9)0.0070 (8)
N70.0531 (11)0.0425 (10)0.0497 (10)0.0148 (9)0.0018 (8)0.0005 (8)
Geometric parameters (Å, º) top
Co1—N12.0945 (17)C3—C41.455 (3)
Co1—N1i2.0945 (17)C4—N21.316 (3)
Co1—N2i2.1055 (18)C4—N61.341 (3)
Co1—N22.1055 (18)C5—C61.344 (3)
Co1—N32.172 (2)C5—N21.379 (3)
Co1—N3i2.172 (2)C5—H50.930
C1—C21.359 (3)C6—N61.373 (3)
C1—N11.379 (3)C6—H60.930
C1—H10.930N3—N41.167 (3)
C2—N71.370 (3)N4—N51.167 (3)
C2—H20.930N6—H6A0.860
C3—N11.320 (3)N7—H7A0.860
C3—N71.343 (3)
N1—Co1—N1i180.00 (8)N2—C4—N6110.49 (19)
N1—Co1—N2i99.06 (7)N2—C4—C3119.23 (19)
N1i—Co1—N2i80.94 (7)N6—C4—C3130.3 (2)
N1—Co1—N280.94 (7)C6—C5—N2109.7 (2)
N1i—Co1—N299.06 (7)C6—C5—H5125.1
N2i—Co1—N2180.0N2—C5—H5125.1
N1—Co1—N390.61 (7)C5—C6—N6105.7 (2)
N1i—Co1—N389.39 (7)C5—C6—H6127.1
N2i—Co1—N390.10 (7)N6—C6—H6127.1
N2—Co1—N389.90 (7)C3—N1—C1105.96 (18)
N1—Co1—N3i89.39 (7)C3—N1—Co1110.93 (13)
N1i—Co1—N3i90.61 (7)C1—N1—Co1142.74 (16)
N2i—Co1—N3i89.90 (7)C4—N2—C5106.00 (19)
N2—Co1—N3i90.10 (7)C4—N2—Co1110.33 (14)
N3—Co1—N3i180.00 (6)C5—N2—Co1143.64 (16)
C2—C1—N1109.4 (2)N4—N3—Co1119.70 (17)
C2—C1—H1125.3N5—N4—N3179.0 (3)
N1—C1—H1125.3C4—N6—C6108.01 (19)
C1—C2—N7105.91 (19)C4—N6—H6A126.0
C1—C2—H2127.0C6—N6—H6A126.0
N7—C2—H2127.0C3—N7—C2107.90 (18)
N1—C3—N7110.83 (19)C3—N7—H7A126.0
N1—C3—C4118.37 (18)C2—N7—H7A126.1
N7—C3—C4130.8 (2)
Symmetry code: (i) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N5ii0.862.012.819 (3)156
N7—H7A···N5ii0.862.253.012 (3)148
N7—H7A···N3iii0.862.553.049 (3)118
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(N3)2(C6H6N4)2]
Mr411.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.8085 (10), 8.7632 (5), 14.4793 (5)
β (°) 91.913 (1)
V3)1624.30 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.750, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
1961, 1501, 1246
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.00
No. of reflections1501
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N5i0.862.012.819 (3)156.1
N7—H7A···N5i0.862.253.012 (3)148.3
N7—H7A···N3ii0.862.553.049 (3)117.6
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful for financial support from Henan University (grant No. 05YBGG013)

References

First citationBruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDworschak, R. T. & Plapp, B. V. (1977). Biochemistry, 16, 111–117.  PubMed Web of Science Google Scholar
First citationHardman, K. D. & Lipscomb, W. N. (1984). J. Am. Chem. Soc. 106, 463–469.  CrossRef CAS Web of Science Google Scholar
First citationKuo, L. C. & Makinen, M. W. (1982). J. Biol. Chem. 257, 24–35.  CAS PubMed Web of Science Google Scholar
First citationRees, D. C., Lewis, M. & Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367–387.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds