metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(N,N′-di­methyl­formamide)cadmium(II)]-μ2-oxalato]

aDepartment of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden, and bChemistry Department, Faculty of Science, Alexandria University, PO Box 426, 21321 Alexandria, Egypt
*Correspondence e-mail: m_elghazali@hotmail.com

(Received 30 November 2007; accepted 7 December 2007; online 12 December 2007)

The title compound, [Cd(C2O4)(C3H7NO)2]n, is isostructural with its MnII analogue. The structure comprises zigzag polymeric chains with the oxalate groups situated on inversion centres and the CdII atoms located on twofold rotation axes. The coordination geometry around CdII is distorted octa­hedral and the intra­chain Cd⋯Cd distance is 5.842 (1) Å. C—H⋯O hydrogen bonds exist between the parallel polymeric chains.

Related literature

For the isostructural MnII analogue, see: Chan et al. (2007[Chan, Y.-N., Zhao, H.-K., Wang, X.-G. & Zhao, X.-J. (2007). Acta Cryst. E63, m70-m72.]). For related literature, see: Borel et al. (2006[Borel, C., Håkansson, M. & Öhrström, L. (2006). CrystEngComm, 8, 666-669.]); Decurtins et al. (1994[Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Gutlicht, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.]); Imaz et al. (2005[Imaz, I., Bravic, G. & Sutter, J.-P. (2005). Dalton Trans. pp. 2681-2687.]); Ma et al. (2007[Ma, F.-X., Meng, F.-X., Liu, K., Pang, H.-J., Shi, D.-M. & Chen, Y.-G. (2007). Transition Met. Chem. 32, 981-984.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Prasad et al. (2002[Prasad, P. A., Neeraj, S., Vaidhyanathan, R. & Natarajan, S. (2002). J. Solid State Chem. 166, 128-141.]); Xia et al. (2004[Xia, S.-Q., Hu, S.-M., Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Zhang, J.-J. & Du, W.-X. (2004). Polyhedron, 23, 1003-1009.]); Zavalij et al. (2003[Zavalij, P. Y., Yang, S. & Whittingham, M. S. (2003). Acta Cryst. B59, 753-759.]); Zaworotko (2007[Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 4-9.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2O4)(C3H7NO)2]

  • Mr = 346.61

  • Orthorhombic, P b c n

  • a = 15.153 (4) Å

  • b = 8.006 (2) Å

  • c = 10.403 (3) Å

  • V = 1262.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 153 (2) K

  • 0.41 × 0.31 × 0.19 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.523, Tmax = 0.718

  • 19498 measured reflections

  • 2301 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.077

  • S = 1.01

  • 2301 reflections

  • 80 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1i 0.98 2.65 3.456 (2) 140
C4—H4C⋯O2ii 0.98 2.70 3.516 (3) 141
C4—H4C⋯O1iii 0.98 2.63 3.468 (3) 144
C4—H4A⋯O3 0.98 2.36 2.775 (2) 104
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering of coordination polymers, based on pre-defined interactions of metal ions with organic spacers, is an area of research that has received substantial interest (Zaworotko, 2007). In this field, employing N– and/or O– donor ligands as bridging organic modules has been intensively implemented (Ockwig et al., 2005). Oxalate anions are known as chelating bis-bidentate ligands and many infinite two-dimensional and three-dimensional coordination polymers with a [MM'(ox)n]n' formula have been reported comprising two different and/or similar metal centres (Borel et al., 2006: Imaz et al., 2005: Xia et al., 2004: Decurtins et al., 1994). However, solvent ligation to the metal centres may result in structures with lower dimensionality (Prasad et al., 2002). Here we present a coordination chain based on bis-oxalato cadmium(II) with coordinated DMF solvent molecules.

A perspective drawing of the title compound with the atomic numbering scheme is shown in Figure 1. The CdII ions are situated on crystallographic twofold rotation axes while the oxalates are located on inversion centres. The CdII ion displays a distorted octahedral coordination geometry with two dimethylformamide molecules ligated to the CdII centre and the zigzag chain is built up from two oxalate units, linked via four O atoms to two CdII ions with a Cd—O distance in the range 2.262 (1)–2.297 (1) Å [(Cd—O)average = 2.275 (19) Å] (Figure 2). The intrachain Cd···Cd distance is 5.842 (1) Å. Contrary to many oxalate-metal chains which are linked to each other in one direction by π-π interactions (Ma et al., 2007) this structure exhibits only C—H···O hydrogen bonds which are both interchain and intrachain. The intermolecular hydrogen bonds build a stack of chains with a Cd···Cd distance of 8.006 (2) Å in the b axis direction and 8.569 (2) Å in the a axis direction. The three-dimensional architecture is maintained via coordination/covalent bonding in the c-direction and weaker C—H···O intermolecular hydrogen bonds in the ab-plane.

Related literature top

For the isostructural MnII analogue, see: Chan et al. (2007). For related literature, see: Borel et al. (2006); Decurtins et al. (1994); Imaz et al. (2005); Ma et al. (2007); Ockwig et al. (2005); Prasad et al. (2002); Xia et al. (2004); Zavalij et al. (2003); Zaworotko (2007).

Experimental top

All chemicals used in the first step of the synthesis were purchased from Aldrich and used without further purification. 1.81 g (2 mmol) oxalic acid was dissolved in 15 ml H2O. 0.42 g (1 mmol) LiOH.H2O and 0.62 g (1 mmol) H3BO3 were dissolved in 15 ml H2O and added to the solution.The mixture was brought to boiling and evaporated to dryness. The resulting Li[B(ox)2] was dried in a desiccator (Zavalij et al., 2003). A solution of 3.9 g Li[B(ox)2] in 50 ml DMF was prepared and heated to 343 K. A precipitate formed, probably a sign of the disintegration of the bis(oxalate)borate ion, and the solution was filtered. One eighth of this filtrate was then mixed with a solution of 0.2 g C d(NO3)2.4H2O and the resulting solution was set aside for 1–2 weeks, after which colourless prismatic crystals suitable for x-ray diffraction were collected and dried.

Refinement top

H atoms were placed in idealized positions and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Crystal engineering of coordination polymers, based on pre-defined interactions of metal ions with organic spacers, is an area of research that has received substantial interest (Zaworotko, 2007). In this field, employing N– and/or O– donor ligands as bridging organic modules has been intensively implemented (Ockwig et al., 2005). Oxalate anions are known as chelating bis-bidentate ligands and many infinite two-dimensional and three-dimensional coordination polymers with a [MM'(ox)n]n' formula have been reported comprising two different and/or similar metal centres (Borel et al., 2006: Imaz et al., 2005: Xia et al., 2004: Decurtins et al., 1994). However, solvent ligation to the metal centres may result in structures with lower dimensionality (Prasad et al., 2002). Here we present a coordination chain based on bis-oxalato cadmium(II) with coordinated DMF solvent molecules.

A perspective drawing of the title compound with the atomic numbering scheme is shown in Figure 1. The CdII ions are situated on crystallographic twofold rotation axes while the oxalates are located on inversion centres. The CdII ion displays a distorted octahedral coordination geometry with two dimethylformamide molecules ligated to the CdII centre and the zigzag chain is built up from two oxalate units, linked via four O atoms to two CdII ions with a Cd—O distance in the range 2.262 (1)–2.297 (1) Å [(Cd—O)average = 2.275 (19) Å] (Figure 2). The intrachain Cd···Cd distance is 5.842 (1) Å. Contrary to many oxalate-metal chains which are linked to each other in one direction by π-π interactions (Ma et al., 2007) this structure exhibits only C—H···O hydrogen bonds which are both interchain and intrachain. The intermolecular hydrogen bonds build a stack of chains with a Cd···Cd distance of 8.006 (2) Å in the b axis direction and 8.569 (2) Å in the a axis direction. The three-dimensional architecture is maintained via coordination/covalent bonding in the c-direction and weaker C—H···O intermolecular hydrogen bonds in the ab-plane.

For the isostructural MnII analogue, see: Chan et al. (2007). For related literature, see: Borel et al. (2006); Decurtins et al. (1994); Imaz et al. (2005); Ma et al. (2007); Ockwig et al. (2005); Prasad et al. (2002); Xia et al. (2004); Zavalij et al. (2003); Zaworotko (2007).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL (Bruker, 2003); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Bruker, 2003).

Figures top
[Figure 1] Fig. 1. Perspective drawing showing the atom-numbering scheme and atomic displacement ellipsoids at the 50% probability level for non-H atoms. Symmetry codes: (i) -x + 1, y, -z + 1/2; (ii) -x + 1, -y, -z.
[Figure 2] Fig. 2. A projection in the bc-plane showing the one-dimensional chain propagating along the c-direction.
catena-Poly[[bis(N,N'-dimethylformamide)cadmium(II)]- µ-oxalato] top
Crystal data top
[Cd(C2O4)(C3H7NO)2]F(000) = 688
Mr = 346.61Dx = 1.824 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2301 reflections
a = 15.153 (4) Åθ = 2.7–32.9°
b = 8.006 (2) ŵ = 1.75 mm1
c = 10.403 (3) ÅT = 153 K
V = 1262.0 (6) Å3Prism, colourless
Z = 40.41 × 0.31 × 0.19 mm
Data collection top
Siemens SMART CCD
diffractometer
2301 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 32.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.523, Tmax = 0.718k = 1212
19498 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4422P]
where P = (Fo2 + 2Fc2)/3
2301 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cd(C2O4)(C3H7NO)2]V = 1262.0 (6) Å3
Mr = 346.61Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.153 (4) ŵ = 1.75 mm1
b = 8.006 (2) ÅT = 153 K
c = 10.403 (3) Å0.41 × 0.31 × 0.19 mm
Data collection top
Siemens SMART CCD
diffractometer
2301 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1705 reflections with I > 2σ(I)
Tmin = 0.523, Tmax = 0.718Rint = 0.055
19498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 1.28 e Å3
2301 reflectionsΔρmin = 0.75 e Å3
80 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.16606 (2)0.25000.01965 (7)
O20.42585 (9)0.14921 (17)0.06167 (13)0.0290 (3)
O10.57439 (8)0.02193 (18)0.12849 (12)0.0285 (3)
O30.40504 (9)0.37996 (18)0.30029 (13)0.0278 (3)
N10.33333 (10)0.6091 (2)0.22806 (14)0.0234 (3)
C30.38865 (12)0.4853 (2)0.21484 (18)0.0247 (3)
H30.41850.47450.13490.030*
C10.45726 (11)0.0493 (2)0.01929 (16)0.0212 (3)
C50.31781 (15)0.7309 (3)0.1264 (2)0.0377 (5)
H5A0.35490.70410.05210.057*
H5B0.33250.84290.15790.057*
H5C0.25560.72770.10100.057*
C40.28609 (13)0.6360 (3)0.34853 (19)0.0291 (4)
H4A0.29700.54180.40660.044*
H4B0.22270.64450.33120.044*
H4C0.30680.73950.38870.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02016 (11)0.02378 (11)0.01502 (10)0.0000.00112 (5)0.000
O20.0281 (6)0.0385 (7)0.0203 (6)0.0124 (5)0.0054 (5)0.0067 (5)
O10.0272 (6)0.0388 (8)0.0194 (5)0.0088 (5)0.0083 (4)0.0069 (5)
O30.0297 (7)0.0312 (7)0.0224 (6)0.0071 (6)0.0048 (5)0.0032 (6)
N10.0242 (7)0.0274 (8)0.0187 (6)0.0024 (6)0.0015 (5)0.0004 (6)
C30.0259 (8)0.0293 (9)0.0189 (7)0.0019 (7)0.0027 (6)0.0014 (7)
C10.0197 (8)0.0251 (7)0.0186 (7)0.0027 (6)0.0025 (5)0.0002 (6)
C50.0463 (12)0.0414 (12)0.0254 (9)0.0106 (10)0.0008 (8)0.0063 (9)
C40.0246 (9)0.0371 (10)0.0257 (9)0.0038 (7)0.0044 (7)0.0024 (8)
Geometric parameters (Å, º) top
Cd1—O2i2.2624 (14)N1—C41.459 (2)
Cd1—O22.2624 (14)C3—H30.9500
Cd1—O1i2.2658 (13)C1—O1ii1.2524 (19)
Cd1—O12.2658 (13)C1—C1ii1.569 (3)
Cd1—O32.2971 (14)C5—H5A0.9800
Cd1—O3i2.2972 (14)C5—H5B0.9800
O2—C11.255 (2)C5—H5C0.9800
O1—C1ii1.2524 (19)C4—H4A0.9800
O3—C31.250 (2)C4—H4B0.9800
N1—C31.305 (2)C4—H4C0.9800
N1—C51.457 (3)
O2i—Cd1—O2173.16 (7)C5—N1—C4116.45 (17)
O2i—Cd1—O1i74.00 (5)O3—C3—N1124.40 (18)
O2—Cd1—O1i101.33 (5)O3—C3—H3117.8
O2i—Cd1—O1101.33 (5)N1—C3—H3117.8
O2—Cd1—O174.00 (5)O1ii—C1—O2125.09 (16)
O1i—Cd1—O196.75 (8)O1ii—C1—C1ii117.39 (18)
O2i—Cd1—O399.11 (5)O2—C1—C1ii117.52 (17)
O2—Cd1—O386.02 (5)N1—C5—H5A109.5
O1i—Cd1—O393.24 (5)N1—C5—H5B109.5
O1—Cd1—O3159.05 (5)H5A—C5—H5B109.5
O2i—Cd1—O3i86.02 (5)N1—C5—H5C109.5
O2—Cd1—O3i99.11 (5)H5A—C5—H5C109.5
O1i—Cd1—O3i159.05 (5)H5B—C5—H5C109.5
O1—Cd1—O3i93.24 (5)N1—C4—H4A109.5
O3—Cd1—O3i83.60 (7)N1—C4—H4B109.5
C1—O2—Cd1115.51 (11)H4A—C4—H4B109.5
C1ii—O1—Cd1115.58 (11)N1—C4—H4C109.5
C3—O3—Cd1117.74 (12)H4A—C4—H4C109.5
C3—N1—C5122.37 (16)H4B—C4—H4C109.5
C3—N1—C4121.15 (17)
O1i—Cd1—O2—C193.56 (14)O2—Cd1—O3—C343.38 (14)
O1—Cd1—O2—C10.29 (13)O1i—Cd1—O3—C3144.53 (14)
O3—Cd1—O2—C1173.92 (14)O1—Cd1—O3—C326.0 (2)
O3i—Cd1—O2—C191.07 (14)O3i—Cd1—O3—C356.26 (12)
O2i—Cd1—O1—C1ii174.51 (13)Cd1—O3—C3—N1177.06 (15)
O2—Cd1—O1—C1ii0.35 (13)C5—N1—C3—O3178.7 (2)
O1i—Cd1—O1—C1ii99.55 (14)C4—N1—C3—O31.1 (3)
O3—Cd1—O1—C1ii18.4 (2)Cd1—O2—C1—O1ii179.68 (15)
O3i—Cd1—O1—C1ii98.90 (14)Cd1—O2—C1—C1ii0.2 (3)
O2i—Cd1—O3—C3141.17 (14)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1iii0.982.653.456 (2)140
C4—H4C···O2iv0.982.703.516 (3)141
C4—H4C···O1v0.982.633.468 (3)144
C4—H4A···O30.982.362.775 (2)104
Symmetry codes: (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2O4)(C3H7NO)2]
Mr346.61
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)153
a, b, c (Å)15.153 (4), 8.006 (2), 10.403 (3)
V3)1262.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.41 × 0.31 × 0.19
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.523, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
19498, 2301, 1705
Rint0.055
(sin θ/λ)max1)0.764
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.077, 1.01
No. of reflections2301
No. of parameters80
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.75

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Bruker, 2003), DIAMOND (Brandenburg, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O1i0.982.653.456 (2)140
C4—H4C···O2ii0.982.703.516 (3)141
C4—H4C···O1iii0.982.633.468 (3)144
C4—H4A···O30.982.362.775 (2)104
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1/2.
 

Acknowledgements

We are grateful to Professor Lars Öhrström for his interest in this work and to Chalmers University of Technology for financial support.

References

First citationBorel, C., Håkansson, M. & Öhrström, L. (2006). CrystEngComm, 8, 666–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART (Version 5.63), SAINT (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, Y.-N., Zhao, H.-K., Wang, X.-G. & Zhao, X.-J. (2007). Acta Cryst. E63, m70–m72.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDecurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Gutlicht, P. (1994). J. Am. Chem. Soc. 116, 9521–9528.  CSD CrossRef CAS Web of Science Google Scholar
First citationImaz, I., Bravic, G. & Sutter, J.-P. (2005). Dalton Trans. pp. 2681–2687.  Web of Science CSD CrossRef Google Scholar
First citationMa, F.-X., Meng, F.-X., Liu, K., Pang, H.-J., Shi, D.-M. & Chen, Y.-G. (2007). Transition Met. Chem. 32, 981–984.  Web of Science CSD CrossRef CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrasad, P. A., Neeraj, S., Vaidhyanathan, R. & Natarajan, S. (2002). J. Solid State Chem. 166, 128–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationXia, S.-Q., Hu, S.-M., Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Zhang, J.-J. & Du, W.-X. (2004). Polyhedron, 23, 1003–1009.  Web of Science CSD CrossRef CAS Google Scholar
First citationZavalij, P. Y., Yang, S. & Whittingham, M. S. (2003). Acta Cryst. B59, 753–759.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (2007). Cryst. Growth Des. 7, 4–9.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds