metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-bromo­phen­yl)-6-ferro­cenyl­pyridine-3-carbo­nitrile

aLianyungang Teacher's College, Lianyungang 222006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 16 October 2007; accepted 31 October 2007; online 6 December 2007)

The title compound, [Fe(C5H5)(C17H11BrN3)], was synthesized by the reaction of 4-bromo­benzaldehyde, acetyl­ferrocene and ammonium acetate in an aqueous medium. The crystal packing is stabilized by inter­molecular N—H⋯N hydrogen bonds. The dihedral angles between the phenyl ring and the pyridine and cyclopentadienyl rings are 51.67 (13) and 12.12 (21)°, respectively.

Related literature

For related literature, see: Alyoubi (2000[Alyoubi, A. O. (2000). Spectrochim. Acta Part A, 56, 2397-2404.]); Desai & Shah (2003[Desai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382-385.]); Dombrowski et al. (1986[Dombrowski, K. E., Baldwin, W. & Sheats, J. E. (1986). J. Organomet. Chem. 302, 281-306.]); Murata et al. (2004[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., Fukushima, K., Nunami, N., Yamauchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, K. B., Bacon, K. B. & Lowinger, T. B. (2004). Bioorg. Med. Chem. Lett. 14, 4019-4022.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C17H11BrN3)]

  • Mr = 458.14

  • Monoclinic, P 21 /n

  • a = 12.250 (2) Å

  • b = 7.4511 (12) Å

  • c = 20.698 (3) Å

  • β = 97.729 (3)°

  • V = 1872.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 298 (2) K

  • 0.16 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.820

  • 9276 measured reflections

  • 3290 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.02

  • 3290 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.86 2.29 3.050 (5) 148
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metallocenes are known to exhibit a wide range of biological activity. Among them, ferrocene has attracted special attention since it is neutral, chemically stable, non-toxic and able to cross cell membranes (Dombrowski et al., 1986). In fact, it is now well established that the incorporation of ferrocene units in organic molecules introduces significant and new properties in these materials. In addition, it has been demonstrated that molecules containing cyanopyridine moiety may be able to work as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004 and Desai et al., 2003), and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound (I).

In the crystal structure, the dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C17—C22 benzene ring is 51.65 (13)°.The dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C11—C16 ring is 12.21 (14)°. The molecules are connected via N—H···N hydrogen bonds, forming a three-dimensional network (Fig. 2).

Related literature top

For related literature, see: Alyoubi (2000); Desai & Shah (2003); Dombrowski et al. (1986); Murata et al. (2004).

Experimental top

Compound (I) was prepared by the reaction of 4-bromobenzaldehyde (2 mmol), malononitrile (2 mmol), acetylferrocene (2 mmol) and ammonium acetate (4 mmol) in water (2 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 94%; m.p. >573 K). IR (cm-1): 3457, 3354, 2211; 1H NMR (DMSO-d6): 4.10 (5H, s, ferrocenyl), 4.50 (2H, s, ferrocenyl), 5.04 (2H, s, ferrocenyl), 6.83 (2H, brs, NH2), 6.94 (1H, s, ArH), 7.60 (2H, d, J = 8.0 Hz, ArH), 7.77 (2H, d, J = 8.0 Hz, ArH).7.87 (2H, brs, NH2), 7.88–8.01 (4H, m, ArH), 11.85 (1H, s, NH).

Refinement top

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å.

Structure description top

Metallocenes are known to exhibit a wide range of biological activity. Among them, ferrocene has attracted special attention since it is neutral, chemically stable, non-toxic and able to cross cell membranes (Dombrowski et al., 1986). In fact, it is now well established that the incorporation of ferrocene units in organic molecules introduces significant and new properties in these materials. In addition, it has been demonstrated that molecules containing cyanopyridine moiety may be able to work as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004 and Desai et al., 2003), and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound (I).

In the crystal structure, the dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C17—C22 benzene ring is 51.65 (13)°.The dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C11—C16 ring is 12.21 (14)°. The molecules are connected via N—H···N hydrogen bonds, forming a three-dimensional network (Fig. 2).

For related literature, see: Alyoubi (2000); Desai & Shah (2003); Dombrowski et al. (1986); Murata et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
2-Amino-4-(4-bromophenyl)-6-ferrocenylpyridine-3-carbonitrile top
Crystal data top
[Fe(C5H5)(C17H11BrN3)]F(000) = 920
Mr = 458.14Dx = 1.625 Mg m3
Monoclinic, P21/nMelting point > 573 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.250 (2) ÅCell parameters from 9276 reflections
b = 7.4511 (12) Åθ = 1.8–25.0°
c = 20.698 (3) ŵ = 2.95 mm1
β = 97.729 (3)°T = 298 K
V = 1872.2 (5) Å3Block, red
Z = 40.16 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1412
Tmin = 0.650, Tmax = 0.820k = 88
9276 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.873P]
where P = (Fo2 + 2Fc2)/3
3290 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe(C5H5)(C17H11BrN3)]V = 1872.2 (5) Å3
Mr = 458.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.250 (2) ŵ = 2.95 mm1
b = 7.4511 (12) ÅT = 298 K
c = 20.698 (3) Å0.16 × 0.11 × 0.07 mm
β = 97.729 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3290 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2327 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.820Rint = 0.042
9276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.41 e Å3
3290 reflectionsΔρmin = 0.50 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.88176 (4)0.56744 (7)0.10748 (3)0.03294 (17)
Br11.31762 (4)0.46355 (6)0.38737 (3)0.06095 (19)
N10.8559 (2)0.4500 (4)0.27746 (15)0.0335 (7)
N20.8621 (3)0.5510 (4)0.38201 (16)0.0441 (9)
H2A0.81360.63010.36780.053*
H2B0.88710.54660.42280.053*
N31.0484 (3)0.3011 (5)0.48388 (19)0.0596 (11)
C10.8991 (3)0.4337 (5)0.34017 (18)0.0319 (9)
C20.9785 (3)0.3014 (5)0.36174 (18)0.0302 (8)
C31.0146 (3)0.1847 (5)0.31590 (18)0.0302 (9)
C40.9720 (3)0.2070 (5)0.25112 (18)0.0313 (9)
H40.99560.13390.21930.038*
C50.8928 (3)0.3408 (5)0.23362 (17)0.0274 (8)
C60.8419 (3)0.3651 (5)0.16587 (17)0.0295 (8)
C70.7494 (3)0.4767 (5)0.14559 (18)0.0328 (9)
H70.71030.54240.17310.039*
C80.7267 (3)0.4714 (5)0.0769 (2)0.0404 (10)
H80.66960.53100.05140.048*
C90.8063 (3)0.3594 (5)0.05372 (19)0.0384 (9)
H90.81070.33340.01020.046*
C100.8781 (3)0.2935 (5)0.10802 (18)0.0343 (9)
H100.93790.21750.10640.041*
C111.0377 (4)0.6526 (6)0.1005 (2)0.0542 (12)
H111.09790.57980.09600.065*
C121.0040 (4)0.7097 (6)0.1601 (3)0.0596 (13)
H121.03810.68190.20180.072*
C130.9095 (4)0.8163 (6)0.1444 (3)0.0597 (13)
H130.86970.87110.17410.072*
C140.8852 (4)0.8261 (6)0.0762 (3)0.0586 (13)
H140.82690.88850.05300.070*
C150.9639 (4)0.7257 (6)0.0495 (2)0.0533 (12)
H150.96710.70980.00530.064*
C161.0201 (3)0.2954 (5)0.4291 (2)0.0395 (10)
C171.0911 (3)0.0326 (5)0.33629 (17)0.0306 (8)
C181.1829 (3)0.0036 (5)0.3047 (2)0.0439 (10)
H181.19860.08310.27250.053*
C191.2509 (3)0.1418 (6)0.3206 (2)0.0461 (11)
H191.31250.16010.29960.055*
C201.2267 (3)0.2594 (5)0.3678 (2)0.0389 (10)
C211.1376 (3)0.2323 (5)0.3997 (2)0.0484 (11)
H211.12260.31200.43200.058*
C221.0702 (3)0.0868 (5)0.3841 (2)0.0455 (11)
H221.00970.06860.40600.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0303 (3)0.0277 (3)0.0417 (3)0.0076 (2)0.0078 (2)0.0011 (2)
Br10.0584 (3)0.0489 (3)0.0780 (4)0.0306 (2)0.0181 (3)0.0102 (3)
N10.0335 (18)0.0312 (17)0.0363 (18)0.0084 (14)0.0065 (14)0.0016 (15)
N20.048 (2)0.045 (2)0.0387 (19)0.0278 (17)0.0043 (16)0.0063 (16)
N30.070 (3)0.065 (3)0.041 (2)0.031 (2)0.002 (2)0.005 (2)
C10.028 (2)0.030 (2)0.038 (2)0.0045 (16)0.0073 (17)0.0006 (18)
C20.030 (2)0.0270 (19)0.033 (2)0.0053 (16)0.0019 (16)0.0024 (16)
C30.027 (2)0.0275 (19)0.037 (2)0.0008 (16)0.0081 (17)0.0005 (17)
C40.027 (2)0.0300 (19)0.039 (2)0.0041 (16)0.0100 (17)0.0031 (17)
C50.026 (2)0.0267 (19)0.031 (2)0.0012 (15)0.0091 (16)0.0010 (16)
C60.028 (2)0.0263 (18)0.035 (2)0.0034 (16)0.0058 (16)0.0018 (17)
C70.029 (2)0.035 (2)0.036 (2)0.0065 (17)0.0084 (16)0.0015 (17)
C80.033 (2)0.040 (2)0.048 (3)0.0059 (18)0.0007 (18)0.005 (2)
C90.041 (2)0.041 (2)0.034 (2)0.013 (2)0.0084 (18)0.0028 (19)
C100.037 (2)0.0253 (19)0.042 (2)0.0050 (17)0.0114 (18)0.0030 (18)
C110.036 (3)0.052 (3)0.075 (4)0.018 (2)0.012 (2)0.008 (3)
C120.060 (3)0.052 (3)0.064 (3)0.035 (3)0.005 (3)0.003 (2)
C130.067 (4)0.035 (2)0.080 (4)0.021 (2)0.023 (3)0.012 (3)
C140.055 (3)0.035 (2)0.088 (4)0.006 (2)0.020 (3)0.011 (3)
C150.053 (3)0.050 (3)0.059 (3)0.017 (2)0.020 (2)0.011 (2)
C160.042 (3)0.037 (2)0.039 (3)0.0170 (19)0.006 (2)0.0008 (19)
C170.028 (2)0.0270 (19)0.037 (2)0.0028 (16)0.0087 (16)0.0027 (17)
C180.048 (3)0.038 (2)0.049 (3)0.0091 (19)0.018 (2)0.006 (2)
C190.038 (2)0.047 (2)0.058 (3)0.011 (2)0.024 (2)0.003 (2)
C200.033 (2)0.032 (2)0.052 (3)0.0118 (17)0.0080 (19)0.003 (2)
C210.050 (3)0.039 (2)0.061 (3)0.012 (2)0.023 (2)0.013 (2)
C220.040 (2)0.042 (2)0.059 (3)0.012 (2)0.024 (2)0.007 (2)
Geometric parameters (Å, º) top
Fe1—C72.013 (4)C7—C81.412 (5)
Fe1—C132.017 (4)C7—H70.9300
Fe1—C122.028 (4)C8—C91.416 (5)
Fe1—C62.033 (4)C8—H80.9300
Fe1—C142.035 (4)C9—C101.419 (5)
Fe1—C112.037 (4)C9—H90.9300
Fe1—C152.041 (4)C10—H100.9300
Fe1—C102.042 (4)C11—C151.404 (6)
Fe1—C82.049 (4)C11—C121.417 (6)
Fe1—C92.054 (4)C11—H110.9300
Br1—C201.897 (4)C12—C131.406 (6)
N1—C11.340 (5)C12—H120.9300
N1—C51.342 (4)C13—C141.404 (7)
N2—C11.351 (4)C13—H130.9300
N2—H2A0.8600C14—C151.392 (6)
N2—H2B0.8600C14—H140.9300
N3—C161.140 (5)C15—H150.9300
C1—C21.415 (5)C17—C221.380 (5)
C2—C31.402 (5)C17—C181.392 (5)
C2—C161.420 (6)C18—C191.379 (5)
C3—C41.382 (5)C18—H180.9300
C3—C171.495 (5)C19—C201.374 (5)
C4—C51.404 (5)C19—H190.9300
C4—H40.9300C20—C211.365 (5)
C5—C61.468 (5)C21—C221.375 (5)
C6—C71.423 (5)C21—H210.9300
C6—C101.435 (5)C22—H220.9300
C7—Fe1—C13105.30 (18)C6—C7—Fe170.1 (2)
C7—Fe1—C12122.73 (18)C8—C7—H7125.6
C13—Fe1—C1240.67 (19)C6—C7—H7125.6
C7—Fe1—C641.17 (14)Fe1—C7—H7124.8
C13—Fe1—C6119.91 (18)C7—C8—C9107.8 (3)
C12—Fe1—C6106.72 (17)C7—C8—Fe168.3 (2)
C7—Fe1—C14119.64 (17)C9—C8—Fe170.0 (2)
C13—Fe1—C1440.54 (18)C7—C8—H8126.1
C12—Fe1—C1468.3 (2)C9—C8—H8126.1
C6—Fe1—C14155.28 (18)Fe1—C8—H8127.2
C7—Fe1—C11160.93 (17)C8—C9—C10108.5 (3)
C13—Fe1—C1168.2 (2)C8—C9—Fe169.6 (2)
C12—Fe1—C1140.81 (18)C10—C9—Fe169.3 (2)
C6—Fe1—C11125.17 (17)C8—C9—H9125.7
C14—Fe1—C1167.84 (19)C10—C9—H9125.7
C7—Fe1—C15155.64 (17)Fe1—C9—H9127.0
C13—Fe1—C1567.7 (2)C9—C10—C6107.7 (3)
C12—Fe1—C1568.07 (19)C9—C10—Fe170.2 (2)
C6—Fe1—C15162.71 (17)C6—C10—Fe169.1 (2)
C14—Fe1—C1539.94 (17)C9—C10—H10126.1
C11—Fe1—C1540.27 (17)C6—C10—H10126.1
C7—Fe1—C1069.07 (15)Fe1—C10—H10126.2
C13—Fe1—C10156.9 (2)C15—C11—C12107.7 (5)
C12—Fe1—C10122.33 (18)C15—C11—Fe170.1 (2)
C6—Fe1—C1041.23 (14)C12—C11—Fe169.3 (2)
C14—Fe1—C10161.78 (19)C15—C11—H11126.2
C11—Fe1—C10109.48 (18)C12—C11—H11126.2
C15—Fe1—C10126.43 (17)Fe1—C11—H11126.1
C7—Fe1—C840.67 (15)C13—C12—C11107.2 (4)
C13—Fe1—C8122.68 (19)C13—C12—Fe169.2 (2)
C12—Fe1—C8159.3 (2)C11—C12—Fe169.9 (2)
C6—Fe1—C868.75 (15)C13—C12—H12126.4
C14—Fe1—C8106.87 (18)C11—C12—H12126.4
C11—Fe1—C8157.92 (18)Fe1—C12—H12126.0
C15—Fe1—C8122.02 (18)C14—C13—C12108.6 (5)
C10—Fe1—C868.44 (16)C14—C13—Fe170.4 (3)
C7—Fe1—C968.36 (15)C12—C13—Fe170.1 (2)
C13—Fe1—C9160.0 (2)C14—C13—H13125.7
C12—Fe1—C9158.7 (2)C12—C13—H13125.7
C6—Fe1—C968.62 (15)Fe1—C13—H13125.3
C14—Fe1—C9124.71 (19)C15—C14—C13107.8 (5)
C11—Fe1—C9123.72 (18)C15—C14—Fe170.3 (2)
C15—Fe1—C9109.84 (17)C13—C14—Fe169.0 (3)
C10—Fe1—C940.53 (14)C15—C14—H14126.1
C8—Fe1—C940.36 (15)C13—C14—H14126.1
C1—N1—C5118.3 (3)Fe1—C14—H14126.2
C1—N2—H2A120.0C14—C15—C11108.7 (4)
C1—N2—H2B120.0C14—C15—Fe169.8 (2)
H2A—N2—H2B120.0C11—C15—Fe169.7 (2)
N1—C1—N2116.1 (3)C14—C15—H15125.6
N1—C1—C2122.3 (3)C11—C15—H15125.6
N2—C1—C2121.6 (3)Fe1—C15—H15126.5
C3—C2—C1119.0 (3)N3—C16—C2174.9 (4)
C3—C2—C16122.8 (3)C22—C17—C18118.5 (3)
C1—C2—C16118.2 (3)C22—C17—C3121.4 (3)
C4—C3—C2118.0 (3)C18—C17—C3120.0 (3)
C4—C3—C17120.4 (3)C19—C18—C17120.7 (4)
C2—C3—C17121.5 (3)C19—C18—H18119.7
C3—C4—C5119.6 (3)C17—C18—H18119.7
C3—C4—H4120.2C20—C19—C18119.3 (4)
C5—C4—H4120.2C20—C19—H19120.4
N1—C5—C4122.7 (3)C18—C19—H19120.4
N1—C5—C6115.6 (3)C21—C20—C19120.9 (4)
C4—C5—C6121.6 (3)C21—C20—Br1120.0 (3)
C7—C6—C10107.1 (3)C19—C20—Br1119.1 (3)
C7—C6—C5125.0 (3)C20—C21—C22119.8 (4)
C10—C6—C5127.7 (3)C20—C21—H21120.1
C7—C6—Fe168.7 (2)C22—C21—H21120.1
C10—C6—Fe169.7 (2)C21—C22—C17120.9 (4)
C5—C6—Fe1123.7 (2)C21—C22—H22119.5
C8—C7—C6108.8 (3)C17—C22—H22119.5
C8—C7—Fe171.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.293.050 (5)148
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C17H11BrN3)]
Mr458.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.250 (2), 7.4511 (12), 20.698 (3)
β (°) 97.729 (3)
V3)1872.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.16 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.650, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
9276, 3290, 2327
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.02
No. of reflections3290
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.50

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.862.293.050 (5)148.0
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of the Jiangsu Province (grant No. BK2006033) for financial support.

References

First citationAlyoubi, A. O. (2000). Spectrochim. Acta Part A, 56, 2397–2404.  CrossRef Google Scholar
First citationBruker (1998). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382–385.  Google Scholar
First citationDombrowski, K. E., Baldwin, W. & Sheats, J. E. (1986). J. Organomet. Chem. 302, 281–306.  CrossRef CAS Web of Science Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., Fukushima, K., Nunami, N., Yamauchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, K. B., Bacon, K. B. & Lowinger, T. B. (2004). Bioorg. Med. Chem. Lett. 14, 4019–4022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds