metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­cadmium(II)]-μ-4,4′-bi­pyridine] fumarate tetra­hydrate]

aDepartment of Chemistry, Tong Hua Teachers' College, Tong Hua 134002, People's Republic of China
*Correspondence e-mail: panyr441@yahoo.com.cn

(Received 11 November 2007; accepted 26 November 2007; online 18 December 2007)

In the crystal structure of the title compound, [Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O, the CdII atom, on an inversion centre, is six-coordinated by four O atoms from four water mol­ecules and two N atoms from 4,4′-bpy mol­ecules in a distorted octa­hedral coordination geometry. Weak C—H⋯O inter­actions between uncoordinated carboxyl­ate O atoms of fumaric acid and water mol­ecules contribute to the crystal packing stability.

Related literature

For related literature, see: Dai et al. (2003[Dai, J.-C., Hu, S.-M., Wu, X.-T., Fu, Z.-Y., Du, W.-X., Zhang, H.-H. & Sun, R.-Q. (2003). New J. Chem. 27, 914-918.]); Dalai et al. (2002[Dalai, S., Mukherjee, P.-S., Zangrando, E., Lloret, F. & Chaudhuri, N.-R. (2002). J. Chem. Soc. Dalton Trans. pp. 822-823.]); Devereux et al. (2000[Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205-1211.]); Kang et al. (2004[Kang, Y., Li, Z.-J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Chin. J. Struct. Chem. 23, 862-864.]); Konar et al. (2003[Konar, S., Zangrando, E. & Chaudhuri, N.-R. (2003). Inorg. Chim. Acta, 355, 264-271.]); Shen et al. (2004[Shen, L., Wang, H.-T. & Zhang, Y.-J. (2004). Chin. J. Inorg. Chem. 20, 857-859.]); Tao et al. (2000[Tao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.]); Ying, Zheng & Zhang (2004[Ying, E.-B., Zheng, Y.-Q. & Zhang, H.-J. (2004). J. Coord. Chem. 57, 459-467.]); Ying, Zheng & Zhou (2004[Ying, E.-B., Zheng, Y.-Q. & Zhou, Q.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 65-66.]); Zheng et al. (2002[Zheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 195-196.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O

  • Mr = 526.77

  • Triclinic, [P \overline 1]

  • a = 7.183 (5) Å

  • b = 7.802 (5) Å

  • c = 10.038 (5) Å

  • α = 80.434 (5)°

  • β = 87.791 (5)°

  • γ = 73.288 (5)°

  • V = 531.3 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 (2) K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.804, Tmax = 0.854

  • 3414 measured reflections

  • 2378 independent reflections

  • 2363 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.08

  • 2378 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—O2W 2.259 (2)
Cd1—N1 2.295 (2)
Cd1—O1W 2.348 (2)
O2Wi—Cd1—O2W 180
O2Wi—Cd1—N1 91.00 (8)
O2W—Cd1—N1 89.00 (8)
N1i—Cd1—N1 180
O2Wi—Cd1—O1W 86.81 (9)
O2W—Cd1—O1W 93.19 (9)
N1i—Cd1—O1W 89.40 (8)
N1—Cd1—O1W 90.60 (8)
Symmetry code: (i) -x, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O3Wii 0.71 (4) 2.10 (4) 2.811 (3) 175 (4)
O1W—H1WA⋯O4Wiii 0.76 (5) 2.04 (5) 2.790 (3) 168 (5)
O4W—H4WB⋯O3W 0.77 (4) 2.16 (4) 2.929 (3) 173 (4)
O3W—H3WB⋯O1iv 0.74 (4) 2.06 (4) 2.759 (3) 157 (4)
O4W—H4WA⋯O2 0.70 (4) 2.02 (4) 2.714 (3) 170 (4)
O3W—H3WA⋯O1v 0.85 (4) 1.98 (4) 2.833 (3) 172 (3)
O2W—H2WB⋯O2vi 0.72 (4) 1.91 (4) 2.615 (3) 168 (4)
O2W—H2WA⋯O4Wvii 0.73 (3) 2.02 (3) 2.748 (3) 175 (3)
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x-1, y-1, z+1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1; (vii) x, y-1, z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, 4,4'-bipyridine (bpy) hve been used to construct coordination polymers (Tao et al., 2000; Dai et al., 2003). A few structures of copper (Dalai et al., 2002; Ying, Zheng & Zhou, 2004; Kang et al., 2004), manganese (Devereux et al., 2000; Ying, Zheng & Zhang, 2004), nickel (Zheng et al., 2002) and cobalt (Shen et al., 2004; Konar et al., 2003] fumarate complexes with 4,4'-bpy are known. Herein, we report the structure of the title complex with 4,4'-bpy and fumaric acid, [Cd(4,4'-bpy)(H2O)4](C4H2O4)(H2O)4 (I).

The structure of the title compound, shown in Fig. 1, consists of one [Cd(4,4'-bpy)(H2O)4]2+ cation, one uncoordination fumarate anion and four water molecules. The CdII ion is coordinated by one bpy and four water molecules in a distorted octahedral geometry to form a one-dimensional chain. Table 1 gives a listing of selected bond lengths and bond angles, which are comparable to those values found in other such complexes.

There are weak C—H···O hydrogen bonds between uncoordinated carboxylate O atoms of fumaric acid and lattice water molecules, which extend one-dimensional chain into three-dimensional supramolecular packing structure (Fig. 2, Table 2).

Related literature top

For related literature, see: Dai et al. (2003); Dalai et al. (2002); Devereux et al. (2000); Kang et al. (2004); Konar et al. (2003); Shen et al. (2004); Tao et al. (2000); Ying et al. (2004); Zheng et al. (2002).

Experimental top

Cadmium(II) acetate dihydrate (0.080 g, 0.3 mol), 4,4'-bipyridine (0.039 g, 0.2 mmol), fumaric acid (0.232 g, 0.2 mmol), sodium hydroxide (0.024 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colorless crystals of (I) were obtained. Analysis found: C 31.78, H 5.02, N 5.29%; calculated for C14H26N2O12Cd: C 31.89, H 4.94, N 5.34%.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions with C—H = 0.93Å and refined in riding mode;Uiso(H) = 1.2 times Ueq(C).

Structure description top

Recently, 4,4'-bipyridine (bpy) hve been used to construct coordination polymers (Tao et al., 2000; Dai et al., 2003). A few structures of copper (Dalai et al., 2002; Ying, Zheng & Zhou, 2004; Kang et al., 2004), manganese (Devereux et al., 2000; Ying, Zheng & Zhang, 2004), nickel (Zheng et al., 2002) and cobalt (Shen et al., 2004; Konar et al., 2003] fumarate complexes with 4,4'-bpy are known. Herein, we report the structure of the title complex with 4,4'-bpy and fumaric acid, [Cd(4,4'-bpy)(H2O)4](C4H2O4)(H2O)4 (I).

The structure of the title compound, shown in Fig. 1, consists of one [Cd(4,4'-bpy)(H2O)4]2+ cation, one uncoordination fumarate anion and four water molecules. The CdII ion is coordinated by one bpy and four water molecules in a distorted octahedral geometry to form a one-dimensional chain. Table 1 gives a listing of selected bond lengths and bond angles, which are comparable to those values found in other such complexes.

There are weak C—H···O hydrogen bonds between uncoordinated carboxylate O atoms of fumaric acid and lattice water molecules, which extend one-dimensional chain into three-dimensional supramolecular packing structure (Fig. 2, Table 2).

For related literature, see: Dai et al. (2003); Dalai et al. (2002); Devereux et al. (2000); Kang et al. (2004); Konar et al. (2003); Shen et al. (2004); Tao et al. (2000); Ying et al. (2004); Zheng et al. (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x,-y,-z + 2.
[Figure 2] Fig. 2. A packing diagram for the two-dimensional supramolecular hydrogen-bonding framework via C—H···O interactions. The view shows a layer parallel to the ac plane; the view direction is parallel to the b axis. Hydrogen bonds are indicated by dashed lines.
catena-Poly[[[tetraaquacadmium(II)]-µ-4,4'-bipyridine] fumarate tetrahydrate] top
Crystal data top
[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2OZ = 1
Mr = 526.77F(000) = 268
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71069 Å
a = 7.183 (5) ÅCell parameters from 3394 reflections
b = 7.802 (5) Åθ = 2.1–28.0°
c = 10.038 (5) ŵ = 1.09 mm1
α = 80.434 (5)°T = 293 K
β = 87.791 (5)°Block, colorless
γ = 73.288 (5)°0.21 × 0.19 × 0.15 mm
V = 531.3 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2378 independent reflections
Radiation source: fine-focus sealed tube2363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10 pixels mm-1θmax = 28.2°, θmin = 2.1°
ω scanh = 99
Absorption correction: multi-scan
(Higashi, 1995)
k = 1010
Tmin = 0.804, Tmax = 0.854l = 1310
3414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2Oγ = 73.288 (5)°
Mr = 526.77V = 531.3 (6) Å3
Triclinic, P1Z = 1
a = 7.183 (5) ÅMo Kα radiation
b = 7.802 (5) ŵ = 1.09 mm1
c = 10.038 (5) ÅT = 293 K
α = 80.434 (5)°0.21 × 0.19 × 0.15 mm
β = 87.791 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2378 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
2363 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.854Rint = 0.045
3414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.58 e Å3
2378 reflectionsΔρmin = 1.30 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00001.00000.03262 (9)
O1W0.1754 (3)0.1628 (3)0.9055 (2)0.0469 (4)
O2W0.2890 (3)0.1665 (3)0.9317 (2)0.0554 (5)
O3W0.4251 (4)0.9783 (3)0.3137 (2)0.0540 (5)
O4W0.5895 (3)0.7407 (3)0.1154 (2)0.0492 (4)
O10.6065 (3)0.1946 (3)0.4185 (2)0.0531 (4)
O20.6400 (4)0.3942 (3)0.2406 (2)0.0606 (5)
N10.0243 (3)0.1980 (2)0.80060 (18)0.0371 (4)
C10.5988 (3)0.3514 (3)0.3622 (2)0.0387 (4)
C20.5375 (4)0.5053 (3)0.4404 (2)0.0424 (5)
H20.55450.61620.40070.051*
C30.0421 (4)0.1372 (3)0.6866 (2)0.0465 (5)
H30.08230.01260.68730.056*
C40.0540 (4)0.2496 (3)0.5679 (2)0.0468 (5)
H40.10140.20050.49070.056*
C50.0050 (3)0.4372 (3)0.56279 (19)0.0317 (4)
C60.0735 (4)0.4991 (3)0.6825 (2)0.0438 (5)
H60.11350.62290.68520.053*
C70.0823 (4)0.3778 (3)0.7969 (2)0.0449 (5)
H70.13070.42270.87540.054*
H1WA0.248 (6)0.192 (6)0.955 (5)0.087 (15)*
H1WB0.233 (5)0.117 (5)0.847 (4)0.052 (10)*
H2WA0.366 (4)0.196 (4)0.983 (3)0.036 (7)*
H2WB0.300 (5)0.218 (5)0.877 (4)0.058 (10)*
H3WA0.406 (5)0.923 (5)0.392 (4)0.058 (9)*
H3WB0.493 (6)1.030 (6)0.324 (4)0.081 (13)*
H4WA0.615 (5)0.651 (5)0.147 (4)0.053 (10)*
H4WB0.555 (6)0.805 (6)0.167 (5)0.076 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04199 (14)0.02980 (13)0.02433 (12)0.00900 (8)0.00253 (8)0.00217 (7)
O1W0.0558 (10)0.0477 (10)0.0416 (10)0.0201 (8)0.0010 (9)0.0096 (8)
O2W0.0517 (10)0.0647 (12)0.0434 (10)0.0051 (9)0.0049 (8)0.0284 (9)
O3W0.0781 (13)0.0511 (11)0.0409 (10)0.0323 (10)0.0092 (9)0.0037 (8)
O4W0.0629 (11)0.0454 (11)0.0406 (10)0.0186 (9)0.0017 (8)0.0044 (8)
O10.0835 (13)0.0395 (9)0.0421 (9)0.0222 (9)0.0074 (9)0.0167 (7)
O20.0999 (15)0.0437 (10)0.0431 (10)0.0239 (10)0.0203 (10)0.0195 (8)
N10.0459 (9)0.0343 (9)0.0284 (8)0.0105 (7)0.0014 (7)0.0002 (7)
C10.0462 (11)0.0358 (10)0.0389 (11)0.0145 (8)0.0051 (8)0.0158 (9)
C20.0583 (13)0.0353 (10)0.0387 (11)0.0171 (9)0.0089 (9)0.0151 (8)
C30.0692 (15)0.0313 (10)0.0334 (11)0.0084 (10)0.0050 (10)0.0011 (8)
C40.0710 (15)0.0336 (11)0.0300 (11)0.0079 (10)0.0097 (10)0.0033 (8)
C50.0350 (9)0.0318 (9)0.0268 (9)0.0094 (7)0.0010 (7)0.0003 (8)
C60.0656 (14)0.0310 (10)0.0317 (10)0.0099 (9)0.0056 (9)0.0043 (8)
C70.0636 (14)0.0370 (11)0.0297 (10)0.0091 (10)0.0065 (9)0.0035 (8)
Geometric parameters (Å, º) top
Cd1—O2Wi2.259 (2)O2—C11.257 (3)
Cd1—O2W2.259 (2)N1—C31.331 (3)
Cd1—N1i2.295 (2)N1—C71.338 (3)
Cd1—N12.295 (2)C1—C21.495 (3)
Cd1—O1W2.348 (2)C2—C2ii1.293 (5)
Cd1—O1Wi2.348 (2)C2—H20.9300
O1W—H1WA0.76 (5)C3—C41.373 (3)
O1W—H1WB0.71 (4)C3—H30.9300
O2W—H2WA0.73 (3)C4—C51.394 (3)
O2W—H2WB0.72 (4)C4—H40.9300
O3W—H3WA0.85 (4)C5—C61.390 (3)
O3W—H3WB0.74 (4)C5—C5iii1.476 (4)
O4W—H4WA0.70 (4)C6—C71.373 (3)
O4W—H4WB0.77 (4)C6—H60.9300
O1—C11.246 (3)C7—H70.9300
O2Wi—Cd1—O2W180.0C3—N1—Cd1120.40 (15)
O2Wi—Cd1—N1i89.00 (8)C7—N1—Cd1121.73 (15)
O2W—Cd1—N1i91.00 (8)O1—C1—O2124.9 (2)
O2Wi—Cd1—N191.00 (8)O1—C1—C2120.0 (2)
O2W—Cd1—N189.00 (8)O2—C1—C2115.1 (2)
N1i—Cd1—N1180.0C2ii—C2—C1124.4 (3)
O2Wi—Cd1—O1W86.81 (9)C2ii—C2—H2117.8
O2W—Cd1—O1W93.19 (9)C1—C2—H2117.8
N1i—Cd1—O1W89.40 (8)N1—C3—C4123.1 (2)
N1—Cd1—O1W90.60 (8)N1—C3—H3118.4
O2Wi—Cd1—O1Wi93.19 (9)C4—C3—H3118.4
O2W—Cd1—O1Wi86.81 (9)C3—C4—C5120.1 (2)
N1i—Cd1—O1Wi90.60 (8)C3—C4—H4120.0
N1—Cd1—O1Wi89.40 (8)C5—C4—H4120.0
O1W—Cd1—O1Wi180.0C6—C5—C4116.28 (18)
Cd1—O1W—H1WA112 (3)C6—C5—C5iii121.9 (2)
Cd1—O1W—H1WB117 (3)C4—C5—C5iii121.8 (2)
H1WA—O1W—H1WB103 (4)C7—C6—C5120.1 (2)
Cd1—O2W—H2WA115 (2)C7—C6—H6119.9
Cd1—O2W—H2WB124 (3)C5—C6—H6119.9
H2WA—O2W—H2WB117 (4)N1—C7—C6123.0 (2)
H3WA—O3W—H3WB106 (4)N1—C7—H7118.5
H4WA—O4W—H4WB111 (4)C6—C7—H7118.5
C3—N1—C7117.36 (19)
O2Wi—Cd1—N1—C3144.1 (2)C7—N1—C3—C40.3 (4)
O2W—Cd1—N1—C335.9 (2)Cd1—N1—C3—C4171.6 (2)
O1W—Cd1—N1—C357.3 (2)N1—C3—C4—C50.0 (4)
O1Wi—Cd1—N1—C3122.7 (2)C3—C4—C5—C60.2 (4)
O2Wi—Cd1—N1—C744.3 (2)C3—C4—C5—C5iii179.8 (3)
O2W—Cd1—N1—C7135.7 (2)C4—C5—C6—C70.7 (3)
O1W—Cd1—N1—C7131.1 (2)C5iii—C5—C6—C7179.3 (3)
O1Wi—Cd1—N1—C748.9 (2)C3—N1—C7—C60.8 (4)
O1—C1—C2—C2ii10.8 (5)Cd1—N1—C7—C6171.0 (2)
O2—C1—C2—C2ii169.3 (3)C5—C6—C7—N11.0 (4)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3Wiii0.71 (4)2.10 (4)2.811 (3)175 (4)
O1W—H1WA···O4Wiv0.76 (5)2.04 (5)2.790 (3)168 (5)
O4W—H4WB···O3W0.77 (4)2.16 (4)2.929 (3)173 (4)
O3W—H3WB···O1v0.74 (4)2.06 (4)2.759 (3)157 (4)
O4W—H4WA···O20.70 (4)2.02 (4)2.714 (3)170 (4)
O3W—H3WA···O1ii0.85 (4)1.98 (4)2.833 (3)172 (3)
O2W—H2WB···O2vi0.72 (4)1.91 (4)2.615 (3)168 (4)
O2W—H2WA···O4Wvii0.73 (3)2.02 (3)2.748 (3)175 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x1, y1, z+1; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O
Mr526.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.183 (5), 7.802 (5), 10.038 (5)
α, β, γ (°)80.434 (5), 87.791 (5), 73.288 (5)
V3)531.3 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.804, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
3414, 2378, 2363
Rint0.045
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.08
No. of reflections2378
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 1.30

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Cd1—O2W2.259 (2)Cd1—O1W2.348 (2)
Cd1—N12.295 (2)
O2Wi—Cd1—O2W180.0O2Wi—Cd1—O1W86.81 (9)
O2Wi—Cd1—N191.00 (8)O2W—Cd1—O1W93.19 (9)
O2W—Cd1—N189.00 (8)N1i—Cd1—O1W89.40 (8)
N1i—Cd1—N1180.0N1—Cd1—O1W90.60 (8)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3Wii0.71 (4)2.10 (4)2.811 (3)175 (4)
O1W—H1WA···O4Wiii0.76 (5)2.04 (5)2.790 (3)168 (5)
O4W—H4WB···O3W0.77 (4)2.16 (4)2.929 (3)173 (4)
O3W—H3WB···O1iv0.74 (4)2.06 (4)2.759 (3)157 (4)
O4W—H4WA···O20.70 (4)2.02 (4)2.714 (3)170 (4)
O3W—H3WA···O1v0.85 (4)1.98 (4)2.833 (3)172 (3)
O2W—H2WB···O2vi0.72 (4)1.91 (4)2.615 (3)168 (4)
O2W—H2WA···O4Wvii0.73 (3)2.02 (3)2.748 (3)175 (3)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x, y1, z+1.
 

Acknowledgements

The author thanks Tong Hua Teachers' College for financial support.

References

First citationDai, J.-C., Hu, S.-M., Wu, X.-T., Fu, Z.-Y., Du, W.-X., Zhang, H.-H. & Sun, R.-Q. (2003). New J. Chem. 27, 914–918.  Web of Science CSD CrossRef CAS Google Scholar
First citationDalai, S., Mukherjee, P.-S., Zangrando, E., Lloret, F. & Chaudhuri, N.-R. (2002). J. Chem. Soc. Dalton Trans. pp. 822–823.  Web of Science CSD CrossRef Google Scholar
First citationDevereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKang, Y., Li, Z.-J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Chin. J. Struct. Chem. 23, 862–864.  CAS Google Scholar
First citationKonar, S., Zangrando, E. & Chaudhuri, N.-R. (2003). Inorg. Chim. Acta, 355, 264–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShen, L., Wang, H.-T. & Zhang, Y.-J. (2004). Chin. J. Inorg. Chem. 20, 857–859.  CAS Google Scholar
First citationTao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.  Web of Science CSD CrossRef Google Scholar
First citationYing, E.-B., Zheng, Y.-Q. & Zhang, H.-J. (2004). J. Coord. Chem. 57, 459–467.  Web of Science CSD CrossRef CAS Google Scholar
First citationYing, E.-B., Zheng, Y.-Q. & Zhou, Q.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 65–66.  CAS Google Scholar
First citationZheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 195–196.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds