metal-organic compounds
catena-Poly[[[tetraaquacadmium(II)]-μ-4,4′-bipyridine] fumarate tetrahydrate]
aDepartment of Chemistry, Tong Hua Teachers' College, Tong Hua 134002, People's Republic of China
*Correspondence e-mail: panyr441@yahoo.com.cn
In the 10H8N2)(H2O)4](C4H2O4)·4H2O, the CdII atom, on an inversion centre, is six-coordinated by four O atoms from four water molecules and two N atoms from 4,4′-bpy molecules in a distorted octahedral coordination geometry. Weak C—H⋯O interactions between uncoordinated carboxylate O atoms of fumaric acid and water molecules contribute to the crystal packing stability.
of the title compound, [Cd(CRelated literature
For related literature, see: Dai et al. (2003); Dalai et al. (2002); Devereux et al. (2000); Kang et al. (2004); Konar et al. (2003); Shen et al. (2004); Tao et al. (2000); Ying, Zheng & Zhang (2004); Ying, Zheng & Zhou (2004); Zheng et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807063507/bq2045sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063507/bq2045Isup2.hkl
Cadmium(II) acetate dihydrate (0.080 g, 0.3 mol), 4,4'-bipyridine (0.039 g, 0.2 mmol), fumaric acid (0.232 g, 0.2 mmol), sodium hydroxide (0.024 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colorless crystals of (I) were obtained. Analysis found: C 31.78, H 5.02, N 5.29%; calculated for C14H26N2O12Cd: C 31.89, H 4.94, N 5.34%.
Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions with C—H = 0.93Å and refined in riding mode;Uiso(H) = 1.2 times Ueq(C).
Recently, 4,4'-bipyridine (bpy) hve been used to construct coordination polymers (Tao et al., 2000; Dai et al., 2003). A few structures of copper (Dalai et al., 2002; Ying, Zheng & Zhou, 2004; Kang et al., 2004), manganese (Devereux et al., 2000; Ying, Zheng & Zhang, 2004), nickel (Zheng et al., 2002) and cobalt (Shen et al., 2004; Konar et al., 2003] fumarate complexes with 4,4'-bpy are known. Herein, we report the structure of the title complex with 4,4'-bpy and fumaric acid, [Cd(4,4'-bpy)(H2O)4](C4H2O4)(H2O)4 (I).
The structure of the title compound, shown in Fig. 1, consists of one [Cd(4,4'-bpy)(H2O)4]2+ cation, one uncoordination fumarate anion and four water molecules. The CdII ion is coordinated by one bpy and four water molecules in a distorted octahedral geometry to form a one-dimensional chain. Table 1 gives a listing of selected bond lengths and bond angles, which are comparable to those values found in other such complexes.
There are weak C—H···O hydrogen bonds between uncoordinated carboxylate O atoms of fumaric acid and lattice water molecules, which extend one-dimensional chain into three-dimensional supramolecular packing structure (Fig. 2, Table 2).
For related literature, see: Dai et al. (2003); Dalai et al. (2002); Devereux et al. (2000); Kang et al. (2004); Konar et al. (2003); Shen et al. (2004); Tao et al. (2000); Ying et al. (2004); Zheng et al. (2002).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. View of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x,-y,-z + 2. | |
Fig. 2. A packing diagram for the two-dimensional supramolecular hydrogen-bonding framework via C—H···O interactions. The view shows a layer parallel to the ac plane; the view direction is parallel to the b axis. Hydrogen bonds are indicated by dashed lines. |
[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O | Z = 1 |
Mr = 526.77 | F(000) = 268 |
Triclinic, P1 | Dx = 1.646 Mg m−3 |
Hall symbol: -p 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 7.183 (5) Å | Cell parameters from 3394 reflections |
b = 7.802 (5) Å | θ = 2.1–28.0° |
c = 10.038 (5) Å | µ = 1.09 mm−1 |
α = 80.434 (5)° | T = 293 K |
β = 87.791 (5)° | Block, colorless |
γ = 73.288 (5)° | 0.21 × 0.19 × 0.15 mm |
V = 531.3 (6) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2378 independent reflections |
Radiation source: fine-focus sealed tube | 2363 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10 pixels mm-1 | θmax = 28.2°, θmin = 2.1° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (Higashi, 1995) | k = −10→10 |
Tmin = 0.804, Tmax = 0.854 | l = −13→10 |
3414 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0549P)2] where P = (Fo2 + 2Fc2)/3 |
2378 reflections | (Δ/σ)max = 0.001 |
165 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −1.30 e Å−3 |
[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O | γ = 73.288 (5)° |
Mr = 526.77 | V = 531.3 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.183 (5) Å | Mo Kα radiation |
b = 7.802 (5) Å | µ = 1.09 mm−1 |
c = 10.038 (5) Å | T = 293 K |
α = 80.434 (5)° | 0.21 × 0.19 × 0.15 mm |
β = 87.791 (5)° |
Rigaku R-AXIS RAPID diffractometer | 2378 independent reflections |
Absorption correction: multi-scan (Higashi, 1995) | 2363 reflections with I > 2σ(I) |
Tmin = 0.804, Tmax = 0.854 | Rint = 0.045 |
3414 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.58 e Å−3 |
2378 reflections | Δρmin = −1.30 e Å−3 |
165 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.0000 | 0.0000 | 1.0000 | 0.03262 (9) | |
O1W | −0.1754 (3) | −0.1628 (3) | 0.9055 (2) | 0.0469 (4) | |
O2W | 0.2890 (3) | −0.1665 (3) | 0.9317 (2) | 0.0554 (5) | |
O3W | 0.4251 (4) | 0.9783 (3) | 0.3137 (2) | 0.0540 (5) | |
O4W | 0.5895 (3) | 0.7407 (3) | 0.1154 (2) | 0.0492 (4) | |
O1 | 0.6065 (3) | 0.1946 (3) | 0.4185 (2) | 0.0531 (4) | |
O2 | 0.6400 (4) | 0.3942 (3) | 0.2406 (2) | 0.0606 (5) | |
N1 | −0.0243 (3) | 0.1980 (2) | 0.80060 (18) | 0.0371 (4) | |
C1 | 0.5988 (3) | 0.3514 (3) | 0.3622 (2) | 0.0387 (4) | |
C2 | 0.5375 (4) | 0.5053 (3) | 0.4404 (2) | 0.0424 (5) | |
H2 | 0.5545 | 0.6162 | 0.4007 | 0.051* | |
C3 | 0.0421 (4) | 0.1372 (3) | 0.6866 (2) | 0.0465 (5) | |
H3 | 0.0823 | 0.0126 | 0.6873 | 0.056* | |
C4 | 0.0540 (4) | 0.2496 (3) | 0.5679 (2) | 0.0468 (5) | |
H4 | 0.1014 | 0.2005 | 0.4907 | 0.056* | |
C5 | −0.0050 (3) | 0.4372 (3) | 0.56279 (19) | 0.0317 (4) | |
C6 | −0.0735 (4) | 0.4991 (3) | 0.6825 (2) | 0.0438 (5) | |
H6 | −0.1135 | 0.6229 | 0.6852 | 0.053* | |
C7 | −0.0823 (4) | 0.3778 (3) | 0.7969 (2) | 0.0449 (5) | |
H7 | −0.1307 | 0.4227 | 0.8754 | 0.054* | |
H1WA | −0.248 (6) | −0.192 (6) | 0.955 (5) | 0.087 (15)* | |
H1WB | −0.233 (5) | −0.117 (5) | 0.847 (4) | 0.052 (10)* | |
H2WA | 0.366 (4) | −0.196 (4) | 0.983 (3) | 0.036 (7)* | |
H2WB | 0.300 (5) | −0.218 (5) | 0.877 (4) | 0.058 (10)* | |
H3WA | 0.406 (5) | 0.923 (5) | 0.392 (4) | 0.058 (9)* | |
H3WB | 0.493 (6) | 1.030 (6) | 0.324 (4) | 0.081 (13)* | |
H4WA | 0.615 (5) | 0.651 (5) | 0.147 (4) | 0.053 (10)* | |
H4WB | 0.555 (6) | 0.805 (6) | 0.167 (5) | 0.076 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04199 (14) | 0.02980 (13) | 0.02433 (12) | −0.00900 (8) | 0.00253 (8) | −0.00217 (7) |
O1W | 0.0558 (10) | 0.0477 (10) | 0.0416 (10) | −0.0201 (8) | −0.0010 (9) | −0.0096 (8) |
O2W | 0.0517 (10) | 0.0647 (12) | 0.0434 (10) | 0.0051 (9) | −0.0049 (8) | −0.0284 (9) |
O3W | 0.0781 (13) | 0.0511 (11) | 0.0409 (10) | −0.0323 (10) | −0.0092 (9) | −0.0037 (8) |
O4W | 0.0629 (11) | 0.0454 (11) | 0.0406 (10) | −0.0186 (9) | −0.0017 (8) | −0.0044 (8) |
O1 | 0.0835 (13) | 0.0395 (9) | 0.0421 (9) | −0.0222 (9) | 0.0074 (9) | −0.0167 (7) |
O2 | 0.0999 (15) | 0.0437 (10) | 0.0431 (10) | −0.0239 (10) | 0.0203 (10) | −0.0195 (8) |
N1 | 0.0459 (9) | 0.0343 (9) | 0.0284 (8) | −0.0105 (7) | 0.0014 (7) | 0.0002 (7) |
C1 | 0.0462 (11) | 0.0358 (10) | 0.0389 (11) | −0.0145 (8) | 0.0051 (8) | −0.0158 (9) |
C2 | 0.0583 (13) | 0.0353 (10) | 0.0387 (11) | −0.0171 (9) | 0.0089 (9) | −0.0151 (8) |
C3 | 0.0692 (15) | 0.0313 (10) | 0.0334 (11) | −0.0084 (10) | 0.0050 (10) | −0.0011 (8) |
C4 | 0.0710 (15) | 0.0336 (11) | 0.0300 (11) | −0.0079 (10) | 0.0097 (10) | −0.0033 (8) |
C5 | 0.0350 (9) | 0.0318 (9) | 0.0268 (9) | −0.0094 (7) | −0.0010 (7) | −0.0003 (8) |
C6 | 0.0656 (14) | 0.0310 (10) | 0.0317 (10) | −0.0099 (9) | 0.0056 (9) | −0.0043 (8) |
C7 | 0.0636 (14) | 0.0370 (11) | 0.0297 (10) | −0.0091 (10) | 0.0065 (9) | −0.0035 (8) |
Cd1—O2Wi | 2.259 (2) | O2—C1 | 1.257 (3) |
Cd1—O2W | 2.259 (2) | N1—C3 | 1.331 (3) |
Cd1—N1i | 2.295 (2) | N1—C7 | 1.338 (3) |
Cd1—N1 | 2.295 (2) | C1—C2 | 1.495 (3) |
Cd1—O1W | 2.348 (2) | C2—C2ii | 1.293 (5) |
Cd1—O1Wi | 2.348 (2) | C2—H2 | 0.9300 |
O1W—H1WA | 0.76 (5) | C3—C4 | 1.373 (3) |
O1W—H1WB | 0.71 (4) | C3—H3 | 0.9300 |
O2W—H2WA | 0.73 (3) | C4—C5 | 1.394 (3) |
O2W—H2WB | 0.72 (4) | C4—H4 | 0.9300 |
O3W—H3WA | 0.85 (4) | C5—C6 | 1.390 (3) |
O3W—H3WB | 0.74 (4) | C5—C5iii | 1.476 (4) |
O4W—H4WA | 0.70 (4) | C6—C7 | 1.373 (3) |
O4W—H4WB | 0.77 (4) | C6—H6 | 0.9300 |
O1—C1 | 1.246 (3) | C7—H7 | 0.9300 |
O2Wi—Cd1—O2W | 180.0 | C3—N1—Cd1 | 120.40 (15) |
O2Wi—Cd1—N1i | 89.00 (8) | C7—N1—Cd1 | 121.73 (15) |
O2W—Cd1—N1i | 91.00 (8) | O1—C1—O2 | 124.9 (2) |
O2Wi—Cd1—N1 | 91.00 (8) | O1—C1—C2 | 120.0 (2) |
O2W—Cd1—N1 | 89.00 (8) | O2—C1—C2 | 115.1 (2) |
N1i—Cd1—N1 | 180.0 | C2ii—C2—C1 | 124.4 (3) |
O2Wi—Cd1—O1W | 86.81 (9) | C2ii—C2—H2 | 117.8 |
O2W—Cd1—O1W | 93.19 (9) | C1—C2—H2 | 117.8 |
N1i—Cd1—O1W | 89.40 (8) | N1—C3—C4 | 123.1 (2) |
N1—Cd1—O1W | 90.60 (8) | N1—C3—H3 | 118.4 |
O2Wi—Cd1—O1Wi | 93.19 (9) | C4—C3—H3 | 118.4 |
O2W—Cd1—O1Wi | 86.81 (9) | C3—C4—C5 | 120.1 (2) |
N1i—Cd1—O1Wi | 90.60 (8) | C3—C4—H4 | 120.0 |
N1—Cd1—O1Wi | 89.40 (8) | C5—C4—H4 | 120.0 |
O1W—Cd1—O1Wi | 180.0 | C6—C5—C4 | 116.28 (18) |
Cd1—O1W—H1WA | 112 (3) | C6—C5—C5iii | 121.9 (2) |
Cd1—O1W—H1WB | 117 (3) | C4—C5—C5iii | 121.8 (2) |
H1WA—O1W—H1WB | 103 (4) | C7—C6—C5 | 120.1 (2) |
Cd1—O2W—H2WA | 115 (2) | C7—C6—H6 | 119.9 |
Cd1—O2W—H2WB | 124 (3) | C5—C6—H6 | 119.9 |
H2WA—O2W—H2WB | 117 (4) | N1—C7—C6 | 123.0 (2) |
H3WA—O3W—H3WB | 106 (4) | N1—C7—H7 | 118.5 |
H4WA—O4W—H4WB | 111 (4) | C6—C7—H7 | 118.5 |
C3—N1—C7 | 117.36 (19) | ||
O2Wi—Cd1—N1—C3 | −144.1 (2) | C7—N1—C3—C4 | 0.3 (4) |
O2W—Cd1—N1—C3 | 35.9 (2) | Cd1—N1—C3—C4 | −171.6 (2) |
O1W—Cd1—N1—C3 | −57.3 (2) | N1—C3—C4—C5 | 0.0 (4) |
O1Wi—Cd1—N1—C3 | 122.7 (2) | C3—C4—C5—C6 | 0.2 (4) |
O2Wi—Cd1—N1—C7 | 44.3 (2) | C3—C4—C5—C5iii | −179.8 (3) |
O2W—Cd1—N1—C7 | −135.7 (2) | C4—C5—C6—C7 | −0.7 (3) |
O1W—Cd1—N1—C7 | 131.1 (2) | C5iii—C5—C6—C7 | 179.3 (3) |
O1Wi—Cd1—N1—C7 | −48.9 (2) | C3—N1—C7—C6 | −0.8 (4) |
O1—C1—C2—C2ii | −10.8 (5) | Cd1—N1—C7—C6 | 171.0 (2) |
O2—C1—C2—C2ii | 169.3 (3) | C5—C6—C7—N1 | 1.0 (4) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O3Wiii | 0.71 (4) | 2.10 (4) | 2.811 (3) | 175 (4) |
O1W—H1WA···O4Wiv | 0.76 (5) | 2.04 (5) | 2.790 (3) | 168 (5) |
O4W—H4WB···O3W | 0.77 (4) | 2.16 (4) | 2.929 (3) | 173 (4) |
O3W—H3WB···O1v | 0.74 (4) | 2.06 (4) | 2.759 (3) | 157 (4) |
O4W—H4WA···O2 | 0.70 (4) | 2.02 (4) | 2.714 (3) | 170 (4) |
O3W—H3WA···O1ii | 0.85 (4) | 1.98 (4) | 2.833 (3) | 172 (3) |
O2W—H2WB···O2vi | 0.72 (4) | 1.91 (4) | 2.615 (3) | 168 (4) |
O2W—H2WA···O4Wvii | 0.73 (3) | 2.02 (3) | 2.748 (3) | 175 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x−1, y−1, z+1; (v) x, y+1, z; (vi) −x+1, −y, −z+1; (vii) x, y−1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O |
Mr | 526.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.183 (5), 7.802 (5), 10.038 (5) |
α, β, γ (°) | 80.434 (5), 87.791 (5), 73.288 (5) |
V (Å3) | 531.3 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.21 × 0.19 × 0.15 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (Higashi, 1995) |
Tmin, Tmax | 0.804, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3414, 2378, 2363 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.665 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.072, 1.08 |
No. of reflections | 2378 |
No. of parameters | 165 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.58, −1.30 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).
Cd1—O2W | 2.259 (2) | Cd1—O1W | 2.348 (2) |
Cd1—N1 | 2.295 (2) | ||
O2Wi—Cd1—O2W | 180.0 | O2Wi—Cd1—O1W | 86.81 (9) |
O2Wi—Cd1—N1 | 91.00 (8) | O2W—Cd1—O1W | 93.19 (9) |
O2W—Cd1—N1 | 89.00 (8) | N1i—Cd1—O1W | 89.40 (8) |
N1i—Cd1—N1 | 180.0 | N1—Cd1—O1W | 90.60 (8) |
Symmetry code: (i) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O3Wii | 0.71 (4) | 2.10 (4) | 2.811 (3) | 175 (4) |
O1W—H1WA···O4Wiii | 0.76 (5) | 2.04 (5) | 2.790 (3) | 168 (5) |
O4W—H4WB···O3W | 0.77 (4) | 2.16 (4) | 2.929 (3) | 173 (4) |
O3W—H3WB···O1iv | 0.74 (4) | 2.06 (4) | 2.759 (3) | 157 (4) |
O4W—H4WA···O2 | 0.70 (4) | 2.02 (4) | 2.714 (3) | 170 (4) |
O3W—H3WA···O1v | 0.85 (4) | 1.98 (4) | 2.833 (3) | 172 (3) |
O2W—H2WB···O2vi | 0.72 (4) | 1.91 (4) | 2.615 (3) | 168 (4) |
O2W—H2WA···O4Wvii | 0.73 (3) | 2.02 (3) | 2.748 (3) | 175 (3) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x−1, y−1, z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y−1, z+1. |
Acknowledgements
The author thanks Tong Hua Teachers' College for financial support.
References
Dai, J.-C., Hu, S.-M., Wu, X.-T., Fu, Z.-Y., Du, W.-X., Zhang, H.-H. & Sun, R.-Q. (2003). New J. Chem. 27, 914–918. Web of Science CSD CrossRef CAS Google Scholar
Dalai, S., Mukherjee, P.-S., Zangrando, E., Lloret, F. & Chaudhuri, N.-R. (2002). J. Chem. Soc. Dalton Trans. pp. 822–823. Web of Science CSD CrossRef Google Scholar
Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kang, Y., Li, Z.-J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Chin. J. Struct. Chem. 23, 862–864. CAS Google Scholar
Konar, S., Zangrando, E. & Chaudhuri, N.-R. (2003). Inorg. Chim. Acta, 355, 264–271. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shen, L., Wang, H.-T. & Zhang, Y.-J. (2004). Chin. J. Inorg. Chem. 20, 857–859. CAS Google Scholar
Tao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674. Web of Science CSD CrossRef Google Scholar
Ying, E.-B., Zheng, Y.-Q. & Zhang, H.-J. (2004). J. Coord. Chem. 57, 459–467. Web of Science CSD CrossRef CAS Google Scholar
Ying, E.-B., Zheng, Y.-Q. & Zhou, Q.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 65–66. CAS Google Scholar
Zheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 195–196. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, 4,4'-bipyridine (bpy) hve been used to construct coordination polymers (Tao et al., 2000; Dai et al., 2003). A few structures of copper (Dalai et al., 2002; Ying, Zheng & Zhou, 2004; Kang et al., 2004), manganese (Devereux et al., 2000; Ying, Zheng & Zhang, 2004), nickel (Zheng et al., 2002) and cobalt (Shen et al., 2004; Konar et al., 2003] fumarate complexes with 4,4'-bpy are known. Herein, we report the structure of the title complex with 4,4'-bpy and fumaric acid, [Cd(4,4'-bpy)(H2O)4](C4H2O4)(H2O)4 (I).
The structure of the title compound, shown in Fig. 1, consists of one [Cd(4,4'-bpy)(H2O)4]2+ cation, one uncoordination fumarate anion and four water molecules. The CdII ion is coordinated by one bpy and four water molecules in a distorted octahedral geometry to form a one-dimensional chain. Table 1 gives a listing of selected bond lengths and bond angles, which are comparable to those values found in other such complexes.
There are weak C—H···O hydrogen bonds between uncoordinated carboxylate O atoms of fumaric acid and lattice water molecules, which extend one-dimensional chain into three-dimensional supramolecular packing structure (Fig. 2, Table 2).