organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl N-(2-iso­propyl­thia­zol-4-ylmeth­yl)-N-methyl­carbamate

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technology, Xinmofan Road No.5, Nanjing 210009, People's Republic of China, and bCenter of Drug Discovery, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wangpeng159@163.com

(Received 11 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title compound, C15H17N3O4S, the benzene and thia­zole rings are oriented at a dihedral angle of 74.10 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds are found.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Ishikawa et al. (1998[Ishikawa,T., Utoh, M., Sawada, N., Nishida, N., Fukase, Y., Sekiguchi, F. & Ishitsuka, H. (1998). Biochem. Pharmacol. 55, 1091-1097..]); Riden & Hopkins (1961[Riden, J. R. & Hopkins, T. R. (1961). J. Agric. Food. Chem. 9, 47-48.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3O4S

  • Mr = 335.38

  • Orthorhombic, P b c a

  • a = 12.250 (3) Å

  • b = 10.876 (2) Å

  • c = 24.845 (5) Å

  • V = 3310.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.937, Tmax = 0.979

  • 3281 measured reflections

  • 3241 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.072

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.217

  • S = 1.04

  • 3241 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯O4i 0.96 2.58 3.493 (7) 159
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Siemens,1996[Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C15H17N3O4S, is one of aromatic carbamates which are an important class of esters compounds and have widespread applications from pharmaceuticals (Ishikawa et al., 1998) to agronomy (Riden & Hopkins, 1961). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C4/N1/C5/C6/S) and B (C10—C15) are almost planar and they are oriented at a dihedral angle of 74.1°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig.2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Allen et al. (1987); Ishikawa et al. (1998); Riden & Hopkins (1961).

Experimental top

For the preparation of the title compound, (I), a solution of N-methyl-N-((2-isopropyl-4-thiazoyl)methyl)amine (3.7 g, 21.7 mmol) and excess N-methyl morpholine in methylene chloride (70 ml) was cooled to 273 K, and treated with 4-nitophenyl chloroformate (6.0 g, 30 mmol). After being stirred for 6 h, the reaction mixture was diluted with CHCl3, washed successively with 1 N HCl, saturated aqueous NaHCO3, and saturated bine, dried over NaSO4, and concentrated in vacuo. The residue was purified by silica gel chromatography with 100% CHCl3 to provide the title compound, (I) (yield: 6.5 g, 87%). Crystals of (I) suitable for x-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

The title compound, C15H17N3O4S, is one of aromatic carbamates which are an important class of esters compounds and have widespread applications from pharmaceuticals (Ishikawa et al., 1998) to agronomy (Riden & Hopkins, 1961). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C4/N1/C5/C6/S) and B (C10—C15) are almost planar and they are oriented at a dihedral angle of 74.1°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig.2), in which they seem to be effective in the stabilization of the structure.

For related literature, see: Allen et al. (1987); Ishikawa et al. (1998); Riden & Hopkins (1961).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens,1996); software used to prepare material for publication: SHELXS97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
4-Nitrophenyl N-(2-isopropylthiazol-4-ylmethyl)-N-methylcarbamate top
Crystal data top
C15H17N3O4SDx = 1.346 Mg m3
Mr = 335.38Melting point: 330(2) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.250 (3) Åθ = 9–12°
b = 10.876 (2) ŵ = 0.22 mm1
c = 24.845 (5) ÅT = 298 K
V = 3310.1 (12) Å3Block, colourless
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 1408
Data collection top
Enraf–Nonius CAD-4
diffractometer
1335 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.937, Tmax = 0.979l = 030
3281 measured reflections3 standard reflections every 200 reflections
3241 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.070P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
3241 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H17N3O4SV = 3310.1 (12) Å3
Mr = 335.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.250 (3) ŵ = 0.22 mm1
b = 10.876 (2) ÅT = 298 K
c = 24.845 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1335 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.937, Tmax = 0.9793 standard reflections every 200 reflections
3281 measured reflections intensity decay: none
3241 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3241 reflectionsΔρmin = 0.39 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.33658 (15)0.04646 (16)0.50156 (7)0.089
N20.2887 (3)0.0166 (3)0.68311 (16)0.0430 (10)
O10.1531 (3)0.1308 (3)0.71949 (15)0.0610 (10)
C10.5582 (5)0.2987 (6)0.4986 (2)0.084
H1A0.59150.22830.51520.127*
H1B0.56180.36750.52270.127*
H1C0.59630.31820.46590.127*
O20.1198 (2)0.0537 (3)0.68088 (16)0.0585 (10)
N30.3347 (4)0.0160 (5)0.6666 (2)0.0668 (14)
C20.3731 (4)0.3175 (5)0.4459 (2)0.072
H2A0.41020.38090.42620.108*
H2B0.30870.35100.46230.108*
H2C0.35290.25230.42180.108*
O30.3851 (3)0.1042 (4)0.6861 (2)0.1009 (16)
C30.4429 (5)0.2710 (6)0.4862 (3)0.100 (2)
H3A0.46610.20490.46190.120*
O40.3738 (3)0.0692 (5)0.6433 (2)0.1038 (17)
C40.3950 (5)0.1777 (6)0.5238 (3)0.0841 (19)
N10.3889 (4)0.1941 (5)0.5758 (2)0.0771 (14)
C50.3383 (4)0.0953 (4)0.6001 (2)0.0504 (13)
C60.3035 (5)0.0073 (6)0.5665 (2)0.0785 (17)
H6A0.26700.06400.57670.094*
C70.3260 (4)0.0983 (4)0.6607 (2)0.0491 (13)
H7A0.39590.11910.67670.059*
H7B0.27460.16250.67030.059*
C80.3718 (3)0.1137 (4)0.6951 (2)0.0547 (15)
H8A0.33590.18510.70940.082*
H8B0.42310.08300.72100.082*
H8C0.40960.13530.66260.082*
C90.1861 (4)0.0440 (5)0.69588 (18)0.0460 (12)
C100.0078 (3)0.0370 (4)0.6816 (2)0.0448 (12)
C110.0386 (4)0.0625 (4)0.6552 (2)0.0494 (12)
H11A0.00580.12380.64090.059*
C120.1534 (4)0.0707 (5)0.6500 (2)0.0564 (13)
H12A0.18710.13560.63220.068*
C130.2133 (3)0.0258 (5)0.67368 (19)0.0457 (12)
C140.1691 (4)0.1211 (4)0.6979 (2)0.0483 (12)
H14A0.21270.18390.71130.058*
C150.0556 (3)0.1265 (4)0.70306 (18)0.041
H15A0.02350.19180.72130.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0890.0890.0890.0000.0000.000
N20.035 (2)0.035 (2)0.059 (3)0.0008 (17)0.0029 (19)0.009 (2)
O10.059 (2)0.044 (2)0.080 (3)0.0118 (18)0.006 (2)0.019 (2)
C10.0840.0840.0840.0000.0000.000
O20.0345 (17)0.0361 (19)0.105 (3)0.0031 (15)0.0086 (19)0.008 (2)
N30.041 (3)0.083 (4)0.076 (4)0.009 (3)0.014 (3)0.024 (3)
C20.0720.0720.0720.0000.0000.000
O30.049 (2)0.095 (3)0.159 (5)0.014 (2)0.002 (3)0.009 (3)
C30.091 (5)0.102 (6)0.106 (6)0.012 (4)0.000 (5)0.016 (5)
O40.052 (2)0.129 (4)0.131 (4)0.030 (3)0.001 (3)0.026 (4)
C40.067 (4)0.099 (4)0.087 (4)0.016 (3)0.010 (4)0.024 (4)
N10.067 (3)0.081 (3)0.083 (3)0.019 (3)0.014 (3)0.033 (3)
C50.040 (3)0.037 (3)0.074 (3)0.005 (2)0.001 (3)0.003 (2)
C60.082 (4)0.073 (4)0.080 (4)0.011 (3)0.000 (3)0.010 (3)
C70.041 (3)0.034 (3)0.072 (4)0.007 (2)0.001 (3)0.001 (3)
C80.043 (3)0.030 (3)0.092 (4)0.015 (2)0.001 (3)0.003 (3)
C90.048 (3)0.053 (3)0.037 (3)0.011 (3)0.002 (2)0.010 (3)
C100.041 (2)0.040 (3)0.054 (3)0.006 (2)0.009 (2)0.015 (2)
C110.045 (3)0.043 (3)0.060 (3)0.003 (2)0.007 (2)0.002 (2)
C120.050 (3)0.061 (3)0.058 (3)0.000 (3)0.017 (3)0.004 (3)
C130.031 (2)0.055 (3)0.051 (3)0.005 (2)0.002 (2)0.000 (2)
C140.040 (2)0.038 (3)0.067 (3)0.000 (2)0.008 (3)0.002 (2)
C150.0410.0260.0550.0030.0130.003
Geometric parameters (Å, º) top
S—C41.689 (7)C4—N11.307 (7)
S—C61.716 (6)N1—C51.379 (6)
N2—C91.330 (5)C5—C61.341 (7)
N2—C71.442 (5)C5—C71.513 (7)
N2—C81.496 (5)C6—H6A0.9300
O1—C91.183 (5)C7—H7A0.9700
C1—C31.477 (6)C7—H7B0.9700
C1—H1A0.9600C8—H8A0.9600
C1—H1B0.9600C8—H8B0.9600
C1—H1C0.9600C8—H8C0.9600
O2—C101.384 (5)C10—C151.355 (6)
O2—C91.388 (5)C10—C111.387 (6)
N3—O41.193 (6)C11—C121.415 (6)
N3—O31.239 (6)C11—H11A0.9300
N3—C131.502 (6)C12—C131.409 (7)
C2—C31.411 (7)C12—H12A0.9300
C2—H2A0.9600C13—C141.314 (6)
C2—H2B0.9600C14—C151.398 (6)
C2—H2C0.9600C14—H14A0.9300
C3—C41.498 (7)C15—H15A0.9300
C3—H3A0.9800
C4—S—C690.2 (3)S—C6—H6A125.3
C9—N2—C7125.8 (4)N2—C7—C5113.4 (4)
C9—N2—C8115.9 (4)N2—C7—H7A108.9
C7—N2—C8118.3 (4)C5—C7—H7A108.9
C3—C1—H1A109.5N2—C7—H7B108.9
C3—C1—H1B109.5C5—C7—H7B108.9
H1A—C1—H1B109.5H7A—C7—H7B107.7
C3—C1—H1C109.5N2—C8—H8A109.5
H1A—C1—H1C109.5N2—C8—H8B109.5
H1B—C1—H1C109.5H8A—C8—H8B109.5
C10—O2—C9118.4 (4)N2—C8—H8C109.5
O4—N3—O3126.3 (5)H8A—C8—H8C109.5
O4—N3—C13120.6 (5)H8B—C8—H8C109.5
O3—N3—C13113.1 (5)O1—C9—N2128.3 (5)
C3—C2—H2A109.5O1—C9—O2123.0 (4)
C3—C2—H2B109.5N2—C9—O2108.5 (4)
H2A—C2—H2B109.5C15—C10—O2118.6 (4)
C3—C2—H2C109.5C15—C10—C11120.8 (4)
H2A—C2—H2C109.5O2—C10—C11120.2 (4)
H2B—C2—H2C109.5C10—C11—C12119.9 (5)
C2—C3—C1130.9 (6)C10—C11—H11A120.0
C2—C3—C4116.5 (5)C12—C11—H11A120.0
C1—C3—C4112.6 (6)C13—C12—C11115.6 (5)
C2—C3—H3A90.1C13—C12—H12A122.2
C1—C3—H3A90.1C11—C12—H12A122.2
C4—C3—H3A90.1C14—C13—C12124.3 (4)
N1—C4—C3123.1 (6)C14—C13—N3121.2 (5)
N1—C4—S114.4 (5)C12—C13—N3114.4 (5)
C3—C4—S122.3 (5)C13—C14—C15119.0 (5)
C4—N1—C5110.7 (5)C13—C14—H14A120.5
C6—C5—N1115.2 (5)C15—C14—H14A120.5
C6—C5—C7127.1 (5)C10—C15—C14120.3 (5)
N1—C5—C7117.6 (5)C10—C15—H15A119.9
C5—C6—S109.5 (5)C14—C15—H15A119.9
C5—C6—H6A125.3
C2—C3—C4—N1120.0 (7)C8—N2—C9—O2178.4 (4)
C1—C3—C4—N159.8 (9)C10—O2—C9—O116.1 (7)
C2—C3—C4—S55.9 (8)C10—O2—C9—N2168.8 (4)
C1—C3—C4—S124.4 (6)C9—O2—C10—C15135.6 (4)
C6—S—C4—N11.3 (5)C9—O2—C10—C1151.9 (6)
C6—S—C4—C3177.5 (6)C15—C10—C11—C120.5 (7)
C3—C4—N1—C5178.2 (5)O2—C10—C11—C12171.8 (4)
S—C4—N1—C52.1 (7)C10—C11—C12—C130.8 (7)
C4—N1—C5—C62.0 (7)C11—C12—C13—C142.1 (8)
C4—N1—C5—C7179.1 (5)C11—C12—C13—N3178.8 (4)
N1—C5—C6—S1.0 (6)O4—N3—C13—C14178.0 (5)
C7—C5—C6—S179.8 (4)O3—N3—C13—C140.6 (7)
C4—S—C6—C50.1 (5)O4—N3—C13—C121.1 (7)
C9—N2—C7—C597.3 (5)O3—N3—C13—C12177.5 (5)
C8—N2—C7—C584.9 (5)C12—C13—C14—C152.9 (8)
C6—C5—C7—N210.8 (7)N3—C13—C14—C15179.5 (4)
N1—C5—C7—N2170.4 (4)O2—C10—C15—C14171.1 (4)
C7—N2—C9—O1171.1 (5)C11—C10—C15—C141.3 (7)
C8—N2—C9—O16.8 (8)C13—C14—C15—C102.5 (7)
C7—N2—C9—O23.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O4i0.962.583.493 (7)159
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H17N3O4S
Mr335.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.250 (3), 10.876 (2), 24.845 (5)
V3)3310.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.937, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
3281, 3241, 1335
Rint0.072
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.217, 1.04
No. of reflections3241
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.39

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens,1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O4i0.96002.58003.493 (7)159.00
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIshikawa,T., Utoh, M., Sawada, N., Nishida, N., Fukase, Y., Sekiguchi, F. & Ishitsuka, H. (1998). Biochem. Pharmacol. 55, 1091–1097..  CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRiden, J. R. & Hopkins, T. R. (1961). J. Agric. Food. Chem. 9, 47–48.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds