organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Oxydichroman

aDepartment of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China, and bCollege of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
*Correspondence e-mail: adler_20008@yahoo.com.cn

(Received 15 November 2007; accepted 13 December 2007; online 18 December 2007)

The title compound, C18H18O3, was synthesized from dichroman in concentrated sulfuric acid. The mol­ecule has a twofold axis passing through the central O atom. The dihedral angle between the two symmetry-related benzene rings is 63.6 (3)°. Weak C—H⋯π inter­actions are present in the structure.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Li et al. (2006[Li, H.-Q., Ge, H.-M., Chen, Y.-X., Xu, C., Shi, L., Ding, H., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodivers. 3, 463-472.], 2007[Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361-1369.]); Xiao, Shi et al. (2007[Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703-3710.]); Xiao, Xue et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.]); Huang et al. (2007[Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263-267.]); Zhang et al. (2007[Zhang, L.-N., Xiao, Z.-P., Ding, H., Ge, H.-M., Xu, C., Zhu, H.-L. & Tan, R.-X. (2007). Chem. Biodivers. 4, 248-255.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Cao et al. (2007[Cao, P., Ding, H., Ge, H.-M. & Zhu, H.-L. (2007). Chem. Biodivers. 4, 881-886.]); Ruan et al. (2006[Ruan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodivers. 3, 975-981.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O3

  • Mr = 282.32

  • Orthorhombic, F d d 2

  • a = 17.515 (4) Å

  • b = 29.660 (6) Å

  • c = 5.7680 (12) Å

  • V = 2996.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 4727 measured reflections

  • 855 independent reflections

  • 810 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.216

  • S = 1.13

  • 855 reflections

  • 96 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg1i 0.97 2.91 3.856 (6) 167
Symmetry code: (i) [x+{\script{1\over 4}}, -y+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesized organic compounds with a pyran cycle are found being good biological activities (Li et al., 2007; Xiao, Shi et al., 2007; Xiao, Xue et al., 2007; Huang et al., 2007; Zhang et al., 2007; Shi et al., 2007; Cao et al., 2007; Ruan et al., 2006; Li et al., 2006). So we prepared a series of derivatives with pyran cycles. Here we report the crystal structure of the title compound.

The title compound consists of an oxygen atom bridged two chroman (Fig. 1). The molecule has a twofold axis symmetry position at the central O1 atom. The dihedal angle between the two symmetry-related benzene rings is 63.6 (3)°. In each chroman, all the atoms, except C8 atom, are nearly coplanar, with mean deviation from plane by 0.021 (4) Å. C8 atom is located 0.577 (4)Å above the plane defined by other non-hydrogen atoms. All the bond values are within normal ranges (Allen et al., 1987). There exists weak C8–H8B···Cg1 interaction (Cg1:C1—C6) (Table 1, Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Li et al. (2006, 2007); Xiao, Shi et al. (2007); Xiao, Xue et al. (2007); Huang et al. (2007); Zhang et al. (2007); Shi et al. (2007); Cao et al. (2007); Ruan et al. (2006).

Experimental top

Dichroman was disolved in toluene solution and a few drops of concentrated sulfuric acid was added. The above solution was refluxed for two hours. After the solution was cooled to room temperature colorless microcrystals were precipitated. They were filtered, washed with toluene for three times. Yield: 32%.

Refinement top

C-bound H atoms were included in the riding model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). 631 Friedel pairs were averaged before the final refinement as the absolute configuration could not be determined unambiguously.

Structure description top

Synthesized organic compounds with a pyran cycle are found being good biological activities (Li et al., 2007; Xiao, Shi et al., 2007; Xiao, Xue et al., 2007; Huang et al., 2007; Zhang et al., 2007; Shi et al., 2007; Cao et al., 2007; Ruan et al., 2006; Li et al., 2006). So we prepared a series of derivatives with pyran cycles. Here we report the crystal structure of the title compound.

The title compound consists of an oxygen atom bridged two chroman (Fig. 1). The molecule has a twofold axis symmetry position at the central O1 atom. The dihedal angle between the two symmetry-related benzene rings is 63.6 (3)°. In each chroman, all the atoms, except C8 atom, are nearly coplanar, with mean deviation from plane by 0.021 (4) Å. C8 atom is located 0.577 (4)Å above the plane defined by other non-hydrogen atoms. All the bond values are within normal ranges (Allen et al., 1987). There exists weak C8–H8B···Cg1 interaction (Cg1:C1—C6) (Table 1, Fig. 2).

For related literature, see: Allen et al. (1987); Li et al. (2006, 2007); Xiao, Shi et al. (2007); Xiao, Xue et al. (2007); Huang et al. (2007); Zhang et al. (2007); Shi et al. (2007); Cao et al. (2007); Ruan et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code (i): -x, 1 - y, z.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down the c axis. The weak C–H···Cg interactions are shown as dashed lines.
6,6'-Oxydichroman top
Crystal data top
C18H18O3F(000) = 1200
Mr = 282.32Dx = 1.252 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 872 reflections
a = 17.515 (4) Åθ = 2.5–24.3°
b = 29.660 (6) ŵ = 0.08 mm1
c = 5.7680 (12) ÅT = 298 K
V = 2996.4 (10) Å3Prism, colorless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker APEX area-detector
diffractometer
855 independent reflections
Radiation source: fine-focus sealed tube810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 26.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.981, Tmax = 0.983k = 3632
4727 measured reflectionsl = 76
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.1367P)2 + 4.7011P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
855 reflectionsΔρmax = 0.32 e Å3
96 parametersΔρmin = 0.55 e Å3
1 restraintAbsolute structure: Flack (1983), 631 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H18O3V = 2996.4 (10) Å3
Mr = 282.32Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 17.515 (4) ŵ = 0.08 mm1
b = 29.660 (6) ÅT = 298 K
c = 5.7680 (12) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker APEX area-detector
diffractometer
855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
810 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.073
4727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0731 restraint
wR(F2) = 0.216H-atom parameters constrained
S = 1.13Δρmax = 0.32 e Å3
855 reflectionsΔρmin = 0.55 e Å3
96 parametersAbsolute structure: Flack (1983), 631 Friedel pairs
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.50000.0623 (13)0.090 (2)
O20.7616 (2)0.44456 (13)0.5838 (9)0.0779 (14)
C10.6782 (2)0.43486 (12)0.2525 (7)0.0378 (9)
C20.6140 (2)0.44952 (12)0.1313 (7)0.0387 (9)
H20.60080.43450.00450.046*
C30.5687 (2)0.48541 (13)0.2029 (8)0.0386 (9)
C40.5900 (2)0.50701 (12)0.4073 (8)0.0412 (9)
H40.56090.53100.46150.049*
C50.6539 (2)0.49345 (13)0.5317 (8)0.0413 (9)
H50.66700.50870.66690.050*
C60.69851 (19)0.45734 (12)0.4570 (7)0.0360 (8)
C70.7245 (3)0.39470 (15)0.1747 (9)0.0561 (12)
H7A0.75900.40390.05210.067*
H7B0.69040.37190.11220.067*
C80.7703 (3)0.37452 (17)0.3725 (12)0.0640 (14)
H8A0.73610.35830.47540.077*
H8B0.80670.35310.31040.077*
C90.8113 (3)0.40910 (16)0.5053 (11)0.0614 (15)
H9A0.83550.39510.63840.074*
H9B0.85110.42200.40910.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.081 (4)0.128 (5)0.060 (4)0.032 (3)0.0000.000
O20.074 (2)0.075 (2)0.085 (3)0.0149 (17)0.036 (2)0.021 (2)
C10.0383 (17)0.0360 (17)0.039 (2)0.0011 (13)0.0009 (17)0.0039 (17)
C20.0395 (18)0.0405 (17)0.0360 (19)0.0017 (14)0.0002 (17)0.0066 (16)
C30.0315 (16)0.0445 (17)0.040 (2)0.0029 (13)0.0022 (16)0.0016 (17)
C40.0379 (18)0.0384 (17)0.047 (2)0.0051 (14)0.0054 (17)0.0053 (18)
C50.0408 (19)0.0434 (19)0.040 (2)0.0047 (15)0.0021 (17)0.0125 (17)
C60.0313 (15)0.0370 (16)0.040 (2)0.0023 (13)0.0014 (16)0.0013 (16)
C70.065 (3)0.053 (2)0.051 (3)0.019 (2)0.011 (2)0.010 (2)
C80.059 (3)0.057 (2)0.076 (4)0.020 (2)0.010 (3)0.003 (3)
C90.048 (2)0.064 (3)0.072 (4)0.0163 (19)0.018 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C3i1.514 (5)C4—H40.9300
O1—C31.514 (6)C5—C61.394 (5)
O2—C61.379 (5)C5—H50.9300
O2—C91.438 (6)C7—C81.518 (7)
C1—C21.393 (5)C7—H7A0.9700
C1—C61.401 (6)C7—H7B0.9700
C1—C71.509 (5)C8—C91.468 (7)
C2—C31.390 (5)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.393 (6)C9—H9A0.9700
C4—C51.388 (6)C9—H9B0.9700
C3i—O1—C3115.2 (6)C5—C6—C1118.9 (3)
C6—O2—C9121.3 (4)C1—C7—C8111.8 (4)
C2—C1—C6118.6 (3)C1—C7—H7A109.3
C2—C1—C7122.0 (4)C8—C7—H7A109.3
C6—C1—C7119.3 (3)C1—C7—H7B109.3
C3—C2—C1123.4 (4)C8—C7—H7B109.3
C3—C2—H2118.3H7A—C7—H7B107.9
C1—C2—H2118.3C9—C8—C7112.1 (4)
C2—C3—C4116.8 (3)C9—C8—H8A109.2
C2—C3—O1120.9 (4)C7—C8—H8A109.2
C4—C3—O1122.4 (4)C9—C8—H8B109.2
C5—C4—C3121.4 (3)C7—C8—H8B109.2
C5—C4—H4119.3H8A—C8—H8B107.9
C3—C4—H4119.3O2—C9—C8112.3 (4)
C4—C5—C6121.0 (4)O2—C9—H9A109.1
C4—C5—H5119.5C8—C9—H9A109.1
C6—C5—H5119.5O2—C9—H9B109.1
O2—C6—C5119.8 (4)C8—C9—H9B109.1
O2—C6—C1121.3 (3)H9A—C9—H9B107.9
C6—C1—C2—C30.1 (6)C4—C5—C6—O2180.0 (4)
C7—C1—C2—C3177.7 (4)C4—C5—C6—C10.3 (6)
C1—C2—C3—C40.2 (6)C2—C1—C6—O2179.7 (4)
C1—C2—C3—O1179.4 (3)C7—C1—C6—O22.4 (6)
C3i—O1—C3—C2142.1 (4)C2—C1—C6—C50.1 (5)
C3i—O1—C3—C438.3 (3)C7—C1—C6—C5177.8 (4)
C2—C3—C4—C50.5 (6)C2—C1—C7—C8158.0 (4)
O1—C3—C4—C5179.1 (4)C6—C1—C7—C819.9 (6)
C3—C4—C5—C60.6 (6)C1—C7—C8—C947.3 (6)
C9—O2—C6—C5176.6 (4)C6—O2—C9—C831.5 (7)
C9—O2—C6—C13.2 (7)C7—C8—C9—O253.2 (7)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8b···Cg1ii0.972.913.856 (6)167
Symmetry code: (ii) x+1/4, y+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC18H18O3
Mr282.32
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)17.515 (4), 29.660 (6), 5.7680 (12)
V3)2996.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4727, 855, 810
Rint0.073
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.216, 1.13
No. of reflections855
No. of parameters96
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.55
Absolute structureFlack (1983), 631 Friedel pairs

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8b···Cg1i0.972.9063.856 (6)166.49
Symmetry code: (i) x+1/4, y+3/4, z1/4.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCao, P., Ding, H., Ge, H.-M. & Zhu, H.-L. (2007). Chem. Biodivers. 4, 881–886.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Ge, H.-M., Chen, Y.-X., Xu, C., Shi, L., Ding, H., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodivers. 3, 463–472.  Web of Science CrossRef PubMed Google Scholar
First citationLi, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). ChemMedChem, 2, 1361–1369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodivers. 3, 975–981.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 3703–3710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, L.-N., Xiao, Z.-P., Ding, H., Ge, H.-M., Xu, C., Zhu, H.-L. & Tan, R.-X. (2007). Chem. Biodivers. 4, 248–255.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds