organic compounds
1,6-Dihydroxy-3-hydroxymethyl-8-methoxyanthracene-9,10-dione monohydrate
aKey Laboratory of Marine Drugs of the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, People's Republic of China
*Correspondence e-mail: weimingzhu@ouc.edu.cn
The title compound, C16H12O6·H2O, isolated from the halotolerant fungus Aspergillus variecolor B-17, is also known as questinol monohydrate. In the O—H⋯O hydrogen bonds link the molecules, forming a three-dimensional network. π–π stacking interactions consolidate the supramolecular structure [the shortest interplanar distances are 3.456 (3), 3.366 (4) and 3.382 (4) Å].
Related literature
For general background, see: Stickings & Mahmoodian (1962); Slater et al. (1971); Kimura et al. (1983); Arai et al. (1989); Nielsen et al. (2004); Wang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807066986/bq2051sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066986/bq2051Isup2.hkl
The isolated halotolerant fugal strain Aspergillus variecolor B-17, was isolated from the sediments collected in Jilantai salt field, Alashan, Inner Mongolia, China. The working strain was cultured under static conditions at 303 K for 45 days in thirty 1000-ml conical flasks containing the liquid medium (300 ml/flask) composed of maltose (20 g/L), mannitol (20 g/L), glucose (10 g/L), monosodium glutamate (10 g/L), NH4Cl (10 g/L), MgSO4 (10 g/L), yeast extract paste (3 g/L), maize paste (3 g/L), NaCl (120 g/L) and KCl (5 g/L) after adjusting its pH to 7.0. The fermented whole broth (9 liters) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia was extracted three times with acetone and the acetone solution was concentrated under reduced pressure to afford crude extract (7.8 g). The crude extract, which was subjected to
over silica gel column using a stepwise of CHCl3—MeOH, to yield four fractions (Fr.1-Fr.4). Fr.3 was subjected to chromatographing on a silica gel column eluting with CHCl3—MeOH (93:7), to afford sixteen subfractions (Fr.3–1-Fr.3–16). The title compound (9 mg) was purified by extensive preparative HPLC using MeOH-H2O from Fr.3–3 and Fr.3–4. The single crystals were obtained by slow evaporation of CHCl3—MeOH (1:1) solution at 299 K.Water H atoms were found in a difference Fouier map and were treated as riding, with fixed Uiso(H) = 1.2Ueq. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93–0.97 (C—H) and 0.82 Å (O—H), and with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(Cmethyl, Ohydroxyl).
Questinol was first isolated from the metabolites of Penicillium frequentans (Stickings & Mahmoodian, 1962). This compound and related derivatives arise from their biological activities (Slater et al., 1971; Kimura et al., 1983; Arai et al., 1989; Nielsen et al., 2004). We isolated the title compound (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganism (Wang et al., 2007). This was the first report about the X-ray crystallographic study of the title compound.
As shown in Fig. 1, crystal water connected with questinol by a O-H···O hydrogen bond. There is an intramolecular hydrogen bond between a hydroxyl O1 and carbonyl oxygen atom O6. The three six-membered rings adopt a planar conformation with the maximum deviation being 0.070 (3) Å (for atom C13).
In the π-π stacking interactions (Fig. 3). The shortest interplanar distances for these π-π stacking interactions are 3.456 (3) Å, 3.366 (4) Å and 3.382 (4) Å, respectively.
O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to form a three-dimensional network. A supramolecular structure is consolidated by three types (Symmetry codes: (iii) x, 3/2-y, z-1/2; (iv) X, 3/2-Y, z+1/2; (v) 2-X, 1-Y, 2-Z) ofFor general background, see: Stickings & Mahmoodian (1962); Slater et al. (1971); Kimura et al. (1983); Arai et al. (1989); Nielsen et al. (2004); Wang, et al. (2007).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H12O6·H2O | F(000) = 664 |
Mr = 318.27 | Dx = 1.550 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2ybc | Cell parameters from 901 reflections |
a = 11.3317 (11) Å | θ = 2.2–25.2° |
b = 16.7515 (19) Å | µ = 0.12 mm−1 |
c = 7.2193 (9) Å | T = 298 K |
β = 95.453 (2)° | Flake, yellow |
V = 1364.2 (3) Å3 | 0.18 × 0.14 × 0.05 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2404 independent reflections |
Radiation source: fine-focus sealed tube | 1108 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
φ and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −13→10 |
Tmin = 0.978, Tmax = 0.994 | k = −19→19 |
7003 measured reflections | l = −8→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0163P)2] where P = (Fo2 + 2Fc2)/3 |
2404 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C16H12O6·H2O | V = 1364.2 (3) Å3 |
Mr = 318.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.3317 (11) Å | µ = 0.12 mm−1 |
b = 16.7515 (19) Å | T = 298 K |
c = 7.2193 (9) Å | 0.18 × 0.14 × 0.05 mm |
β = 95.453 (2)° |
Bruker SMART CCD area-detector diffractometer | 2404 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1108 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.994 | Rint = 0.090 |
7003 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.23 e Å−3 |
2404 reflections | Δρmin = −0.24 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.47014 (19) | 0.62825 (13) | 0.9624 (3) | 0.0409 (7) | |
H1 | 0.4927 | 0.5828 | 0.9423 | 0.061* | |
O2 | 0.4486 (2) | 0.91888 (13) | 0.8924 (3) | 0.0452 (7) | |
H2 | 0.4215 | 0.9337 | 0.7887 | 0.068* | |
O3 | 0.9454 (2) | 0.74461 (14) | 0.7759 (4) | 0.0548 (8) | |
O4 | 1.1510 (2) | 0.48495 (14) | 0.6863 (3) | 0.0489 (7) | |
H4 | 1.1898 | 0.5246 | 0.6644 | 0.073* | |
O5 | 0.77278 (19) | 0.40952 (13) | 0.8557 (3) | 0.0446 (7) | |
O6 | 0.6237 (2) | 0.52178 (13) | 0.9245 (3) | 0.0419 (7) | |
O7 | 0.2909 (2) | 0.61113 (14) | 0.6547 (3) | 0.0609 (8) | |
H7A | 0.3423 | 0.6145 | 0.7481 | 0.073* | |
H7B | 0.3279 | 0.6016 | 0.5601 | 0.073* | |
C1 | 0.5559 (3) | 0.6817 (2) | 0.9249 (4) | 0.0302 (9) | |
C2 | 0.5248 (3) | 0.76155 (18) | 0.9251 (4) | 0.0316 (9) | |
H2A | 0.4486 | 0.7763 | 0.9485 | 0.038* | |
C3 | 0.6068 (3) | 0.8194 (2) | 0.8904 (4) | 0.0303 (9) | |
C4 | 0.7203 (3) | 0.79692 (18) | 0.8534 (4) | 0.0314 (9) | |
H4A | 0.7757 | 0.8358 | 0.8308 | 0.038* | |
C5 | 0.7514 (3) | 0.7171 (2) | 0.8500 (4) | 0.0290 (8) | |
C6 | 0.8705 (3) | 0.6940 (2) | 0.8020 (4) | 0.0334 (9) | |
C7 | 0.9000 (3) | 0.60779 (19) | 0.7896 (4) | 0.0294 (9) | |
C8 | 1.0101 (3) | 0.5876 (2) | 0.7384 (4) | 0.0363 (9) | |
H8 | 1.0626 | 0.6274 | 0.7094 | 0.044* | |
C9 | 1.0428 (3) | 0.5076 (2) | 0.7301 (4) | 0.0351 (9) | |
C10 | 0.9635 (3) | 0.4471 (2) | 0.7656 (4) | 0.0366 (10) | |
H10 | 0.9851 | 0.3939 | 0.7549 | 0.044* | |
C11 | 0.8527 (3) | 0.4668 (2) | 0.8167 (4) | 0.0334 (9) | |
C12 | 0.8161 (3) | 0.54798 (19) | 0.8292 (4) | 0.0285 (8) | |
C13 | 0.7004 (3) | 0.5714 (2) | 0.8841 (4) | 0.0304 (9) | |
C14 | 0.6699 (3) | 0.65733 (19) | 0.8854 (4) | 0.0278 (8) | |
C15 | 0.5733 (3) | 0.90622 (19) | 0.8933 (4) | 0.0393 (9) | |
H15A | 0.6132 | 0.9309 | 1.0036 | 0.047* | |
H15B | 0.6010 | 0.9324 | 0.7856 | 0.047* | |
C16 | 0.8055 (3) | 0.3271 (2) | 0.8389 (5) | 0.0564 (12) | |
H16A | 0.8225 | 0.3165 | 0.7135 | 0.085* | |
H16B | 0.7413 | 0.2936 | 0.8694 | 0.085* | |
H16C | 0.8746 | 0.3160 | 0.9226 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0374 (16) | 0.0249 (15) | 0.0619 (17) | −0.0027 (12) | 0.0123 (13) | −0.0018 (12) |
O2 | 0.0414 (16) | 0.0392 (16) | 0.0558 (17) | 0.0107 (13) | 0.0084 (13) | 0.0035 (12) |
O3 | 0.0387 (17) | 0.0291 (16) | 0.100 (2) | −0.0081 (13) | 0.0226 (15) | 0.0001 (14) |
O4 | 0.0384 (16) | 0.0398 (17) | 0.0711 (19) | 0.0066 (13) | 0.0182 (14) | 0.0000 (13) |
O5 | 0.0337 (15) | 0.0244 (15) | 0.0771 (19) | 0.0011 (13) | 0.0122 (14) | −0.0005 (14) |
O6 | 0.0333 (15) | 0.0244 (15) | 0.0702 (18) | −0.0049 (12) | 0.0167 (13) | 0.0007 (12) |
O7 | 0.0491 (18) | 0.073 (2) | 0.0616 (18) | −0.0052 (15) | 0.0096 (14) | −0.0054 (15) |
C1 | 0.029 (2) | 0.029 (2) | 0.032 (2) | −0.0075 (18) | 0.0036 (18) | −0.0010 (16) |
C2 | 0.033 (2) | 0.025 (2) | 0.038 (2) | 0.0050 (18) | 0.0069 (18) | 0.0032 (16) |
C3 | 0.039 (2) | 0.022 (2) | 0.030 (2) | 0.0024 (19) | 0.0027 (18) | −0.0010 (15) |
C4 | 0.033 (2) | 0.023 (2) | 0.039 (2) | −0.0027 (18) | 0.0053 (17) | 0.0039 (17) |
C5 | 0.028 (2) | 0.030 (2) | 0.030 (2) | −0.0011 (18) | 0.0053 (17) | 0.0013 (16) |
C6 | 0.033 (2) | 0.027 (2) | 0.041 (2) | −0.0038 (19) | 0.0032 (18) | −0.0011 (17) |
C7 | 0.029 (2) | 0.028 (2) | 0.032 (2) | −0.0014 (18) | 0.0073 (17) | 0.0002 (16) |
C8 | 0.036 (2) | 0.032 (2) | 0.043 (2) | −0.001 (2) | 0.0117 (18) | 0.0018 (18) |
C9 | 0.028 (2) | 0.042 (3) | 0.036 (2) | 0.009 (2) | 0.0072 (18) | −0.0001 (18) |
C10 | 0.034 (2) | 0.031 (2) | 0.045 (2) | 0.0034 (18) | 0.0025 (19) | −0.0053 (17) |
C11 | 0.028 (2) | 0.031 (2) | 0.040 (2) | −0.0017 (19) | 0.0008 (18) | −0.0001 (17) |
C12 | 0.024 (2) | 0.027 (2) | 0.035 (2) | 0.0004 (18) | 0.0047 (17) | −0.0012 (16) |
C13 | 0.029 (2) | 0.034 (2) | 0.028 (2) | −0.0038 (19) | −0.0002 (17) | −0.0044 (17) |
C14 | 0.030 (2) | 0.026 (2) | 0.027 (2) | 0.0021 (17) | 0.0045 (17) | −0.0017 (15) |
C15 | 0.042 (2) | 0.035 (2) | 0.041 (2) | 0.002 (2) | 0.0071 (19) | −0.0018 (18) |
C16 | 0.061 (3) | 0.020 (2) | 0.089 (3) | 0.003 (2) | 0.013 (2) | 0.002 (2) |
O1—C1 | 1.368 (3) | C4—H4A | 0.9300 |
O1—H1 | 0.8200 | C5—C14 | 1.403 (4) |
O2—C15 | 1.428 (3) | C5—C6 | 1.476 (4) |
O2—H2 | 0.8200 | C6—C7 | 1.486 (4) |
O3—C6 | 1.227 (3) | C7—C8 | 1.376 (4) |
O4—C9 | 1.349 (3) | C7—C12 | 1.428 (4) |
O4—H4 | 0.8200 | C8—C9 | 1.394 (4) |
O5—C11 | 1.367 (4) | C8—H8 | 0.9300 |
O5—C16 | 1.439 (4) | C9—C10 | 1.394 (4) |
O6—C13 | 1.256 (3) | C10—C11 | 1.382 (4) |
O7—H7A | 0.8500 | C10—H10 | 0.9300 |
O7—H7B | 0.8500 | C11—C12 | 1.428 (4) |
C1—C2 | 1.382 (4) | C12—C13 | 1.460 (4) |
C1—C14 | 1.409 (4) | C13—C14 | 1.481 (4) |
C2—C3 | 1.381 (4) | C15—H15A | 0.9700 |
C2—H2A | 0.9300 | C15—H15B | 0.9700 |
C3—C4 | 1.390 (4) | C16—H16A | 0.9600 |
C3—C15 | 1.504 (4) | C16—H16B | 0.9600 |
C4—C5 | 1.383 (4) | C16—H16C | 0.9600 |
C1—O1—H1 | 109.5 | O4—C9—C10 | 117.0 (3) |
C15—O2—H2 | 109.5 | C8—C9—C10 | 120.9 (3) |
C9—O4—H4 | 109.5 | C11—C10—C9 | 119.6 (3) |
C11—O5—C16 | 118.3 (3) | C11—C10—H10 | 120.2 |
H7A—O7—H7B | 107.3 | C9—C10—H10 | 120.2 |
O1—C1—C2 | 116.6 (3) | O5—C11—C10 | 121.7 (3) |
O1—C1—C14 | 122.1 (3) | O5—C11—C12 | 116.9 (3) |
C2—C1—C14 | 121.3 (3) | C10—C11—C12 | 121.4 (3) |
C3—C2—C1 | 120.1 (3) | C11—C12—C7 | 116.9 (3) |
C3—C2—H2A | 119.9 | C11—C12—C13 | 123.2 (3) |
C1—C2—H2A | 119.9 | C7—C12—C13 | 119.9 (3) |
C2—C3—C4 | 119.7 (3) | O6—C13—C12 | 123.0 (3) |
C2—C3—C15 | 120.0 (3) | O6—C13—C14 | 118.3 (3) |
C4—C3—C15 | 120.3 (3) | C12—C13—C14 | 118.6 (3) |
C5—C4—C3 | 120.5 (3) | C5—C14—C1 | 117.5 (3) |
C5—C4—H4A | 119.8 | C5—C14—C13 | 122.3 (3) |
C3—C4—H4A | 119.8 | C1—C14—C13 | 120.2 (3) |
C4—C5—C14 | 120.9 (3) | O2—C15—C3 | 113.2 (3) |
C4—C5—C6 | 119.9 (3) | O2—C15—H15A | 108.9 |
C14—C5—C6 | 119.2 (3) | C3—C15—H15A | 108.9 |
O3—C6—C5 | 121.0 (3) | O2—C15—H15B | 108.9 |
O3—C6—C7 | 120.0 (3) | C3—C15—H15B | 108.9 |
C5—C6—C7 | 119.0 (3) | H15A—C15—H15B | 107.7 |
C8—C7—C12 | 121.3 (3) | O5—C16—H16A | 109.5 |
C8—C7—C6 | 118.0 (3) | O5—C16—H16B | 109.5 |
C12—C7—C6 | 120.8 (3) | H16A—C16—H16B | 109.5 |
C7—C8—C9 | 119.9 (3) | O5—C16—H16C | 109.5 |
C7—C8—H8 | 120.0 | H16A—C16—H16C | 109.5 |
C9—C8—H8 | 120.0 | H16B—C16—H16C | 109.5 |
O4—C9—C8 | 122.1 (3) | ||
O1—C1—C2—C3 | 179.3 (3) | O5—C11—C12—C7 | 179.6 (3) |
C14—C1—C2—C3 | −1.6 (5) | C10—C11—C12—C7 | −1.0 (5) |
C1—C2—C3—C4 | 0.7 (5) | O5—C11—C12—C13 | 1.2 (5) |
C1—C2—C3—C15 | −179.2 (3) | C10—C11—C12—C13 | −179.5 (3) |
C2—C3—C4—C5 | 0.4 (5) | C8—C7—C12—C11 | 1.2 (5) |
C15—C3—C4—C5 | −179.8 (3) | C6—C7—C12—C11 | −179.0 (3) |
C3—C4—C5—C14 | −0.6 (5) | C8—C7—C12—C13 | 179.7 (3) |
C3—C4—C5—C6 | 177.2 (3) | C6—C7—C12—C13 | −0.5 (4) |
C4—C5—C6—O3 | 4.5 (5) | C11—C12—C13—O6 | −0.1 (5) |
C14—C5—C6—O3 | −177.7 (3) | C7—C12—C13—O6 | −178.4 (3) |
C4—C5—C6—C7 | −176.9 (3) | C11—C12—C13—C14 | −177.7 (3) |
C14—C5—C6—C7 | 1.0 (4) | C7—C12—C13—C14 | 3.9 (4) |
O3—C6—C7—C8 | −3.5 (5) | C4—C5—C14—C1 | −0.2 (5) |
C5—C6—C7—C8 | 177.8 (3) | C6—C5—C14—C1 | −178.0 (3) |
O3—C6—C7—C12 | 176.7 (3) | C4—C5—C14—C13 | −179.6 (3) |
C5—C6—C7—C12 | −2.0 (4) | C6—C5—C14—C13 | 2.6 (4) |
C12—C7—C8—C9 | −2.0 (5) | O1—C1—C14—C5 | −179.6 (3) |
C6—C7—C8—C9 | 178.2 (3) | C2—C1—C14—C5 | 1.3 (5) |
C7—C8—C9—O4 | −177.9 (3) | O1—C1—C14—C13 | −0.2 (4) |
C7—C8—C9—C10 | 2.7 (5) | C2—C1—C14—C13 | −179.3 (3) |
O4—C9—C10—C11 | 178.0 (3) | O6—C13—C14—C5 | 177.2 (3) |
C8—C9—C10—C11 | −2.5 (5) | C12—C13—C14—C5 | −5.1 (4) |
C16—O5—C11—C10 | −1.2 (4) | O6—C13—C14—C1 | −2.2 (4) |
C16—O5—C11—C12 | 178.1 (3) | C12—C13—C14—C1 | 175.5 (3) |
C9—C10—C11—O5 | −178.9 (3) | C2—C3—C15—O2 | −13.1 (4) |
C9—C10—C11—C12 | 1.7 (5) | C4—C3—C15—O2 | 167.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O6 | 0.82 | 1.82 | 2.525 (3) | 144 |
O2—H2···O5i | 0.82 | 2.38 | 2.945 (3) | 127 |
O2—H2···O6i | 0.82 | 2.16 | 2.919 (3) | 154 |
O4—H4···O7ii | 0.82 | 1.85 | 2.665 (3) | 170 |
O7—H7A···O1 | 0.85 | 2.03 | 2.878 (3) | 176 |
O7—H7B···O2iii | 0.85 | 1.94 | 2.771 (3) | 165 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H12O6·H2O |
Mr | 318.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 11.3317 (11), 16.7515 (19), 7.2193 (9) |
β (°) | 95.453 (2) |
V (Å3) | 1364.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.18 × 0.14 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.978, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7003, 2404, 1108 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.099, 1.01 |
No. of reflections | 2404 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.24 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O6 | 0.82 | 1.82 | 2.525 (3) | 143.7 |
O2—H2···O5i | 0.82 | 2.38 | 2.945 (3) | 126.8 |
O2—H2···O6i | 0.82 | 2.16 | 2.919 (3) | 154.2 |
O4—H4···O7ii | 0.82 | 1.85 | 2.665 (3) | 170.2 |
O7—H7A···O1 | 0.85 | 2.03 | 2.878 (3) | 176.3 |
O7—H7B···O2iii | 0.85 | 1.94 | 2.771 (3) | 164.8 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
This work was supported by the Chinese National Natural Science Fund (grant Nos. 30470196 and 30670219).
References
Arai, K., Aoki, Y. & Yamamoto, Y. (1989). Chem. Pharm. Bull. 37, 621–625. CrossRef CAS Google Scholar
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kimura, Y., Kozawa, M., Baba, K. & Hata, K. (1983). Planta Med. 48, 164–168. CrossRef PubMed CAS Web of Science Google Scholar
Nielsen, K. F., Holm, G., Uttrup, L. P. & Nielsen, P. A. (2004). Int. Biodeter. Biodegr. 54, 325–336. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Slater, G. P., Haskins, R. H. & Hogge, L. R. (1971). Can. J. Microbiol. 17, 1576–1579. CrossRef CAS PubMed Web of Science Google Scholar
Stickings, C. E. & Mahmoodian, A. (1962). Chem. Ind. (London), 40, 1718–1719. Google Scholar
Wang, W. L., Zhu, T. J., Tao, H. W., Lu, Z. Y., Fang, Y. C., Gu, Q. Q. & Zhu, W. M. (2007). J. Antibiot. 60, 603–607. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Questinol was first isolated from the metabolites of Penicillium frequentans (Stickings & Mahmoodian, 1962). This compound and related derivatives arise from their biological activities (Slater et al., 1971; Kimura et al., 1983; Arai et al., 1989; Nielsen et al., 2004). We isolated the title compound (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganism (Wang et al., 2007). This was the first report about the X-ray crystallographic study of the title compound.
As shown in Fig. 1, crystal water connected with questinol by a O-H···O hydrogen bond. There is an intramolecular hydrogen bond between a hydroxyl O1 and carbonyl oxygen atom O6. The three six-membered rings adopt a planar conformation with the maximum deviation being 0.070 (3) Å (for atom C13).
In the crystal structure, O—H···O hydrogen bonds (Table 1, Fig. 2) link the molecules to form a three-dimensional network. A supramolecular structure is consolidated by three types (Symmetry codes: (iii) x, 3/2-y, z-1/2; (iv) X, 3/2-Y, z+1/2; (v) 2-X, 1-Y, 2-Z) of π-π stacking interactions (Fig. 3). The shortest interplanar distances for these π-π stacking interactions are 3.456 (3) Å, 3.366 (4) Å and 3.382 (4) Å, respectively.