metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)(5,5′-imino­di­tetra­zolato)cadmium(II) 2,2′-bi­pyridine hemisolvate monohydrate

aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dw320@yahoo.com.cn

(Received 19 November 2007; accepted 13 December 2007; online 21 December 2007)

The title complex, [Cd(C2HN9)(C10H8N2)2]·0.5C10H8N2·H2O, was prepared under hydro­thermal reaction conditions. The asymmetric unit contains the cadmium complex, half a 2,2′-bipyridine solvent mol­ecule and a solvent water mol­ecule. The CdII ion is coordinated by four N atoms from two 2,2′-bipyridine ligands and two N atoms from an HBTA anion ligand [where H2BTA is N,N-bis­(1H-tetra­zol-5-yl)amine], forming an octa­hedral geometry. The complex is linked into a three-dimensional network by O—H⋯N and N—H⋯N hydrogen bonds and by the stacking inter­actions of rings, with distances of 3.5–3.7 Å between the atoms of two parallel 2,2′-bipyridine rings.

Related literature

Other complexes of the N,N-bis-[1(2)H-tetra­zol-5-yl]imine ligand are rare; for a related copper(II) complex, see: Friedrich et al. (2005[Friedrich, M., Gólvez-Ruiz, J. C., Klapötke, T. M., Mayer, P., Weber, R. & Weigand, J. J. (2005). Inorg. Chem. 44, 8044-8052.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2HN9)(C10H8N2)2]·0.5C10H8N2·H2O

  • Mr = 672.00

  • Monoclinic, P 21 /n

  • a = 15.1919 (12) Å

  • b = 11.2383 (9) Å

  • c = 17.5759 (14) Å

  • β = 106.073 (3)°

  • V = 2883.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 (2) K

  • 0.24 × 0.23 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.901

  • 41852 measured reflections

  • 6569 independent reflections

  • 5669 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.07

  • 6569 reflections

  • 477 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯N4i 0.77 (2) 2.17 (2) 2.929 (2) 174 (2)
O1—H22⋯N9 0.82 (4) 2.08 (4) 2.893 (3) 172 (4)
O1—H23⋯N3i 0.92 (4) 2.02 (5) 2.901 (3) 159 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SAINT-Plus (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.054). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.054). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SAINT-Plus (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.054). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The H2BTA (where H2BTA is N,N-bis(1(2)H-tetrazol-5-yl)-amine) and its deprotonated anions contain nine nitrogen electron-donating atoms and show hundreds of different coordinating or bridging modes in their complexes. However, the complexes of H2BTA ligand have been not widely investigated in past decades (Friedrich et al., 2005). The title complex, (I), consists of the cadmium complex of 2,2'-bipyridine and HBTA- anion ligands, half 2,2'-bipyridine guest molecule and a solvent water molecule (Fig. 1). The HBTA- ligand acts as a chelatingbidentate and the CdII cation is coordinated to four N atoms from two 2,2'-bipyridine ligands and two N atoms from a HBTA- anion ligand to form an octahedral mononuclear complex. In the crystal structure, an extensive range of O—H···N and N—H···N hydrogen bonds as well as the stacking interactions of aryls between the parallel 2,2'-bipyridine molecules links the complex, 2,2'-bipyridine guest molecules and the water molecules into a three dimensional networks (Table 1 and Fig. 2).

Related literature top

Other complexes of the N,N-bis-[1(2)H-tetrazol-5-yl]-amine ligand are rare; for a related copper(II) complex, see: Friedrich et al. (2005).

Experimental top

A 20 mL aqueous solution of Cd(Cl)2.4H2O (0.026 g, 0.1 mmol), H2BTA (0.016 g, 0.01 mmol) and 2,2'-bipyridine (0.039 g, 0.025 mmol) was heated in a 25 ml Teflon-lined autoclave at 433 K for 3 d, followed by slow cooling to room temperature. The resulting mixture was filtered and washed with 95% methanol, and colorless crystal were collected and dried in air. Elemental analysis, calc (%) for C27H23Cd1N14O1: C 48.21, H 3.42, N 27.08; found (%): C 47.96, H 3.87, N 26.78.

Refinement top

All hydrogen atoms were located in difference Fourier maps and freely refined with isotropic displacement parameters.

Structure description top

The H2BTA (where H2BTA is N,N-bis(1(2)H-tetrazol-5-yl)-amine) and its deprotonated anions contain nine nitrogen electron-donating atoms and show hundreds of different coordinating or bridging modes in their complexes. However, the complexes of H2BTA ligand have been not widely investigated in past decades (Friedrich et al., 2005). The title complex, (I), consists of the cadmium complex of 2,2'-bipyridine and HBTA- anion ligands, half 2,2'-bipyridine guest molecule and a solvent water molecule (Fig. 1). The HBTA- ligand acts as a chelatingbidentate and the CdII cation is coordinated to four N atoms from two 2,2'-bipyridine ligands and two N atoms from a HBTA- anion ligand to form an octahedral mononuclear complex. In the crystal structure, an extensive range of O—H···N and N—H···N hydrogen bonds as well as the stacking interactions of aryls between the parallel 2,2'-bipyridine molecules links the complex, 2,2'-bipyridine guest molecules and the water molecules into a three dimensional networks (Table 1 and Fig. 2).

Other complexes of the N,N-bis-[1(2)H-tetrazol-5-yl]-amine ligand are rare; for a related copper(II) complex, see: Friedrich et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex, with atom labels and 30% probability displacement ellipsoids for non-H atoms. Symmetry code (i): -x, -y, -z.
[Figure 2] Fig. 2. The packing diagram of the complex, showing a three-dimensional network connected by O—H···N and N—H···N hydrogen bonds (dashed lines) and by the stacking interactions of aryls between the parallel 2,2'-bipyridine molecules. H atoms not involved in hydrogen bonding have been omitted.
Bis(2,2'-bipyridine)(5,5'-iminoditetrazolato)cadmium(II) 2,2'-bipyridine hemisolvate monohydrate top
Crystal data top
[Cd(C2HN9)(C10H8N2)2]·0.5C10H8N2·H2OF(000) = 1356
Mr = 672.00Dx = 1.548 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 6569 reflections
a = 15.1919 (12) Åθ = 27.5–1.0°
b = 11.2383 (9) ŵ = 0.81 mm1
c = 17.5759 (14) ÅT = 296 K
β = 106.073 (3)°Block, colourless
V = 2883.5 (4) Å30.24 × 0.23 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6569 independent reflections
Radiation source: fine-focus sealed tube5669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.824, Tmax = 0.901k = 1414
41852 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.9028P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
6569 reflectionsΔρmax = 0.27 e Å3
477 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00357 (18)
Crystal data top
[Cd(C2HN9)(C10H8N2)2]·0.5C10H8N2·H2OV = 2883.5 (4) Å3
Mr = 672.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1919 (12) ŵ = 0.81 mm1
b = 11.2383 (9) ÅT = 296 K
c = 17.5759 (14) Å0.24 × 0.23 × 0.13 mm
β = 106.073 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5669 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.901Rint = 0.026
41852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064All H-atom parameters refined
S = 1.07Δρmax = 0.27 e Å3
6569 reflectionsΔρmin = 0.30 e Å3
477 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.532267 (9)0.270422 (13)0.774688 (8)0.04977 (6)
N10.53723 (11)0.28970 (14)0.64584 (10)0.0532 (4)
N20.56948 (13)0.20365 (15)0.60598 (11)0.0626 (4)
N60.49834 (12)0.46846 (15)0.74874 (10)0.0562 (4)
N30.56653 (15)0.24290 (15)0.53653 (11)0.0669 (5)
N50.48085 (12)0.48791 (16)0.60938 (11)0.0576 (4)
N90.47554 (13)0.64671 (15)0.69592 (11)0.0663 (5)
N80.48433 (14)0.65384 (17)0.77468 (12)0.0714 (5)
N40.53314 (12)0.35578 (15)0.52681 (9)0.0592 (4)
N70.49775 (13)0.54972 (17)0.80637 (11)0.0652 (4)
C10.51621 (12)0.38009 (16)0.59524 (10)0.0479 (4)
C20.48555 (12)0.53204 (16)0.68325 (11)0.0495 (4)
N100.45883 (14)0.27233 (15)0.87647 (11)0.0621 (4)
N120.68118 (11)0.31927 (17)0.85200 (11)0.0624 (4)
N110.39018 (11)0.17392 (15)0.73247 (11)0.0594 (4)
N130.62379 (11)0.09995 (15)0.79609 (10)0.0553 (4)
C70.37105 (17)0.23839 (18)0.85718 (15)0.0639 (6)
C170.74399 (14)0.2331 (2)0.86491 (13)0.0602 (5)
C120.36175 (15)0.1183 (2)0.66307 (16)0.0735 (6)
C80.33420 (13)0.18067 (18)0.77886 (14)0.0606 (5)
C180.71146 (13)0.1114 (2)0.83875 (12)0.0579 (5)
C160.83514 (18)0.2601 (3)0.9003 (2)0.0903 (9)
C60.3187 (3)0.2561 (3)0.9092 (2)0.0921 (9)
C30.4959 (2)0.3204 (3)0.94745 (15)0.0824 (7)
C110.27651 (18)0.0677 (3)0.6357 (2)0.0915 (9)
C220.59252 (17)0.0076 (2)0.77108 (16)0.0703 (6)
C140.79708 (19)0.4612 (3)0.90888 (19)0.0904 (8)
C150.8608 (2)0.3740 (3)0.9222 (2)0.1035 (10)
C90.24676 (18)0.1321 (3)0.7531 (2)0.0864 (8)
C130.70807 (17)0.4305 (2)0.87371 (17)0.0808 (7)
C190.76731 (19)0.0129 (3)0.8578 (2)0.0885 (8)
C100.21877 (19)0.0756 (3)0.6815 (2)0.0998 (10)
C40.4464 (4)0.3369 (3)1.00196 (19)0.1007 (11)
C210.6447 (2)0.1090 (2)0.7879 (2)0.0860 (8)
C50.3577 (3)0.3043 (3)0.9816 (2)0.1103 (12)
C200.7331 (2)0.0975 (3)0.8319 (2)0.1006 (10)
O10.40434 (19)0.8585 (2)0.60636 (19)0.1105 (8)
C280.54281 (19)0.0235 (2)0.02531 (14)0.0757 (6)
C270.5463 (2)0.0710 (2)0.09726 (16)0.0844 (7)
H210.49380.07430.11470.101*
C260.6255 (3)0.1129 (3)0.1425 (2)0.1115 (11)
C250.7028 (3)0.1084 (3)0.1179 (2)0.1102 (11)
N140.6182 (2)0.0168 (2)0.00166 (16)0.1035 (8)
H10.4760 (15)0.533 (2)0.5756 (13)0.062 (7)*
H90.4053 (16)0.116 (2)0.6320 (13)0.072 (7)*
H60.2165 (19)0.139 (2)0.7846 (16)0.087 (9)*
H70.158 (2)0.044 (3)0.6619 (17)0.106 (9)*
H80.260 (2)0.026 (3)0.5852 (19)0.121 (11)*
H20.5629 (19)0.338 (3)0.9605 (16)0.096 (9)*
H40.323 (2)0.316 (3)1.021 (2)0.131 (11)*
H50.259 (2)0.233 (3)0.894 (2)0.105 (11)*
H30.475 (2)0.365 (3)1.0450 (19)0.098 (10)*
H170.5337 (17)0.013 (2)0.7381 (14)0.074 (7)*
H130.874 (2)0.201 (3)0.9080 (16)0.088 (9)*
H110.8101 (19)0.542 (3)0.9196 (16)0.100 (9)*
H100.6577 (19)0.491 (2)0.8614 (16)0.095 (9)*
H160.6172 (18)0.179 (3)0.7664 (16)0.089 (8)*
H150.769 (2)0.165 (3)0.8439 (19)0.121 (11)*
H120.923 (2)0.395 (3)0.9494 (19)0.126 (11)*
H140.828 (2)0.027 (3)0.8895 (18)0.108 (10)*
H200.632 (2)0.143 (3)0.194 (2)0.130 (13)*
H190.764 (2)0.129 (3)0.150 (2)0.125 (12)*
C240.6980 (3)0.0596 (4)0.0460 (2)0.1138 (11)
H220.421 (3)0.801 (4)0.635 (2)0.123 (14)*
H230.398 (3)0.830 (4)0.556 (3)0.163 (17)*
H180.747 (2)0.040 (3)0.0236 (19)0.113 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04460 (8)0.04959 (9)0.05279 (9)0.00138 (5)0.00960 (6)0.00035 (6)
N10.0591 (9)0.0464 (9)0.0542 (9)0.0083 (7)0.0155 (7)0.0006 (7)
N20.0781 (12)0.0494 (9)0.0594 (10)0.0113 (8)0.0176 (9)0.0033 (7)
N60.0640 (10)0.0518 (9)0.0536 (9)0.0071 (8)0.0176 (7)0.0036 (7)
N30.0874 (14)0.0537 (10)0.0578 (11)0.0134 (9)0.0172 (9)0.0073 (8)
N50.0724 (11)0.0490 (9)0.0507 (10)0.0141 (8)0.0161 (8)0.0047 (8)
N90.0865 (12)0.0474 (9)0.0725 (11)0.0051 (8)0.0345 (10)0.0034 (8)
N80.0873 (13)0.0584 (11)0.0757 (13)0.0026 (9)0.0346 (10)0.0135 (9)
N40.0760 (11)0.0510 (9)0.0475 (9)0.0117 (8)0.0117 (8)0.0035 (7)
N70.0777 (12)0.0613 (11)0.0613 (10)0.0061 (9)0.0270 (9)0.0092 (8)
C10.0464 (9)0.0465 (10)0.0471 (10)0.0024 (7)0.0070 (7)0.0037 (7)
C20.0452 (9)0.0479 (10)0.0574 (11)0.0037 (7)0.0173 (8)0.0024 (8)
N100.0755 (12)0.0562 (10)0.0570 (10)0.0062 (8)0.0224 (9)0.0046 (8)
N120.0481 (9)0.0621 (10)0.0714 (11)0.0040 (8)0.0073 (8)0.0030 (9)
N110.0478 (8)0.0524 (9)0.0789 (12)0.0007 (7)0.0189 (8)0.0104 (8)
N130.0517 (9)0.0550 (9)0.0579 (9)0.0049 (7)0.0129 (7)0.0045 (7)
C70.0736 (14)0.0490 (11)0.0790 (15)0.0158 (10)0.0377 (12)0.0169 (10)
C170.0468 (10)0.0762 (14)0.0556 (11)0.0014 (9)0.0107 (8)0.0070 (10)
C120.0545 (12)0.0710 (15)0.0938 (17)0.0029 (10)0.0184 (12)0.0273 (13)
C80.0520 (10)0.0483 (10)0.0850 (15)0.0097 (9)0.0247 (10)0.0091 (10)
C180.0489 (10)0.0693 (13)0.0558 (11)0.0089 (9)0.0152 (8)0.0094 (9)
C160.0484 (13)0.103 (2)0.108 (2)0.0046 (13)0.0014 (13)0.0003 (17)
C60.105 (2)0.0825 (19)0.109 (3)0.0165 (16)0.064 (2)0.0100 (16)
C30.110 (2)0.0793 (17)0.0581 (14)0.0035 (16)0.0240 (14)0.0028 (12)
C110.0566 (13)0.0860 (19)0.123 (2)0.0047 (12)0.0092 (15)0.0384 (17)
C220.0635 (13)0.0597 (13)0.0857 (16)0.0034 (10)0.0174 (12)0.0001 (11)
C140.0697 (16)0.088 (2)0.102 (2)0.0256 (15)0.0054 (14)0.0134 (16)
C150.0550 (14)0.122 (3)0.118 (2)0.0214 (17)0.0017 (15)0.013 (2)
C90.0552 (13)0.0894 (19)0.122 (2)0.0056 (12)0.0370 (15)0.0111 (17)
C130.0613 (14)0.0732 (16)0.0964 (19)0.0095 (12)0.0028 (13)0.0129 (13)
C190.0597 (14)0.0825 (19)0.117 (2)0.0207 (13)0.0145 (15)0.0136 (16)
C100.0529 (14)0.091 (2)0.148 (3)0.0109 (13)0.0150 (17)0.0166 (19)
C40.169 (4)0.0783 (19)0.0608 (17)0.014 (2)0.041 (2)0.0034 (14)
C210.0878 (19)0.0567 (15)0.120 (2)0.0085 (13)0.0395 (17)0.0005 (14)
C50.162 (4)0.095 (2)0.103 (3)0.022 (2)0.085 (3)0.0110 (19)
C200.0833 (19)0.0758 (19)0.143 (3)0.0311 (16)0.0323 (19)0.0184 (18)
O10.146 (2)0.0835 (14)0.1159 (19)0.0489 (14)0.0601 (16)0.0008 (14)
C280.110 (2)0.0503 (12)0.0725 (16)0.0102 (12)0.0343 (13)0.0153 (10)
C270.113 (2)0.0722 (16)0.0732 (16)0.0032 (15)0.0348 (16)0.0052 (13)
C260.155 (4)0.087 (2)0.098 (3)0.002 (2)0.043 (3)0.0129 (19)
C250.130 (3)0.093 (2)0.101 (3)0.022 (2)0.020 (2)0.0030 (19)
N140.130 (2)0.0973 (18)0.0890 (17)0.0021 (17)0.0396 (17)0.0085 (14)
C240.123 (3)0.115 (3)0.112 (3)0.008 (2)0.046 (2)0.006 (2)
Geometric parameters (Å, º) top
Cd1—N12.2970 (17)C6—C51.358 (5)
Cd1—N62.3015 (17)C6—H50.91 (3)
Cd1—N132.3357 (16)C3—C41.384 (4)
Cd1—N112.3451 (16)C3—H21.00 (3)
Cd1—N102.3559 (18)C11—C101.348 (5)
Cd1—N122.3587 (16)C11—H80.97 (3)
N1—C11.329 (2)C22—C211.373 (3)
N1—N21.362 (2)C22—H170.92 (2)
N2—N31.287 (3)C14—C151.352 (5)
N6—C21.322 (2)C14—C131.366 (3)
N6—N71.366 (2)C14—H110.93 (3)
N3—N41.359 (2)C15—H120.96 (3)
N5—C21.373 (2)C9—C101.367 (5)
N5—C11.376 (2)C9—H60.82 (3)
N5—H10.77 (2)C13—H101.00 (3)
N9—C21.324 (3)C19—C201.373 (4)
N9—N81.356 (3)C19—H140.95 (3)
N8—N71.288 (3)C10—H70.96 (3)
N4—C11.326 (2)C4—C51.346 (5)
N10—C31.333 (3)C4—H30.82 (3)
N10—C71.337 (3)C21—C201.357 (4)
N12—C171.334 (3)C21—H160.92 (3)
N12—C131.338 (3)C5—H40.98 (4)
N11—C121.332 (3)C20—H150.92 (3)
N11—C81.333 (3)O1—H220.82 (4)
N13—C221.328 (3)O1—H230.92 (4)
N13—C181.341 (2)C28—N141.357 (4)
C7—C61.382 (4)C28—C271.361 (3)
C7—C81.484 (3)C28—C28i1.456 (5)
C17—C161.386 (3)C27—C261.332 (5)
C17—C181.483 (3)C27—H210.9300
C12—C111.373 (3)C26—C251.360 (5)
C12—H90.97 (2)C26—H200.94 (4)
C8—C91.391 (3)C25—C241.361 (5)
C18—C191.378 (3)C25—H190.97 (3)
C16—C151.362 (5)N14—C241.357 (5)
C16—H130.88 (3)C24—H180.96 (3)
N1—Cd1—N677.29 (6)C15—C16—C17120.4 (3)
N1—Cd1—N1393.18 (6)C15—C16—H13123.0 (19)
N6—Cd1—N13156.31 (6)C17—C16—H13117 (2)
N1—Cd1—N1190.59 (6)C5—C6—C7119.7 (4)
N6—Cd1—N11104.39 (6)C5—C6—H5122 (2)
N13—Cd1—N1197.26 (6)C7—C6—H5119 (2)
N1—Cd1—N10154.10 (7)N10—C3—C4122.2 (3)
N6—Cd1—N1090.83 (6)N10—C3—H2115.7 (16)
N13—Cd1—N10105.73 (6)C4—C3—H2122.0 (16)
N11—Cd1—N1069.92 (7)C10—C11—C12118.0 (3)
N1—Cd1—N12104.95 (6)C10—C11—H8122 (2)
N6—Cd1—N1290.89 (6)C12—C11—H8120 (2)
N13—Cd1—N1270.42 (6)N13—C22—C21123.5 (2)
N11—Cd1—N12160.38 (7)N13—C22—H17117.5 (15)
N10—Cd1—N1298.09 (7)C21—C22—H17118.9 (16)
C1—N1—N2104.62 (16)C15—C14—C13117.9 (3)
C1—N1—Cd1131.62 (12)C15—C14—H11124.4 (18)
N2—N1—Cd1123.69 (12)C13—C14—H11117.6 (18)
N3—N2—N1108.74 (16)C14—C15—C16119.8 (3)
C2—N6—N7104.75 (16)C14—C15—H12118 (2)
C2—N6—Cd1131.75 (13)C16—C15—H12122 (2)
N7—N6—Cd1123.14 (13)C10—C9—C8120.5 (3)
N2—N3—N4110.66 (16)C10—C9—H6125 (2)
C2—N5—C1124.64 (17)C8—C9—H6114 (2)
C2—N5—H1117.6 (18)N12—C13—C14123.4 (3)
C1—N5—H1113.5 (18)N12—C13—H10114.6 (16)
C2—N9—N8104.23 (17)C14—C13—H10122.0 (16)
N7—N8—N9110.31 (16)C20—C19—C18119.6 (3)
C1—N4—N3103.75 (16)C20—C19—H14124.2 (19)
N8—N7—N6108.63 (17)C18—C19—H14116 (2)
N4—C1—N1112.23 (16)C11—C10—C9119.5 (3)
N4—C1—N5121.93 (17)C11—C10—H7118.7 (18)
N1—C1—N5125.85 (17)C9—C10—H7121.8 (18)
N6—C2—N9112.07 (17)C5—C4—C3118.3 (3)
N6—C2—N5125.76 (17)C5—C4—H3125 (2)
N9—C2—N5122.17 (18)C3—C4—H3116 (2)
C3—N10—C7119.1 (2)C20—C21—C22117.7 (3)
C3—N10—Cd1123.25 (19)C20—C21—H16125.4 (17)
C7—N10—Cd1116.97 (15)C22—C21—H16116.9 (18)
C17—N12—C13118.86 (19)C4—C5—C6120.2 (3)
C17—N12—Cd1117.10 (14)C4—C5—H4118 (2)
C13—N12—Cd1123.39 (16)C6—C5—H4122 (2)
C12—N11—C8119.13 (19)C21—C20—C19119.9 (3)
C12—N11—Cd1122.94 (15)C21—C20—H15119 (2)
C8—N11—Cd1117.85 (14)C19—C20—H15121 (2)
C22—N13—C18118.75 (19)H22—O1—H23104 (4)
C22—N13—Cd1123.41 (14)N14—C28—C27121.8 (3)
C18—N13—Cd1117.78 (14)N14—C28—C28i117.6 (3)
N10—C7—C6120.5 (3)C27—C28—C28i120.5 (3)
N10—C7—C8116.96 (19)C26—C27—C28119.3 (3)
C6—C7—C8122.6 (3)C26—C27—H21120.3
N12—C17—C16119.7 (2)C28—C27—H21120.3
N12—C17—C18117.10 (18)C27—C26—C25121.0 (4)
C16—C17—C18123.2 (2)C27—C26—H20123 (2)
N11—C12—C11123.4 (3)C25—C26—H20116 (2)
N11—C12—H9115.5 (14)C26—C25—C24118.7 (4)
C11—C12—H9121.1 (14)C26—C25—H19126 (2)
N11—C8—C9119.5 (2)C24—C25—H19115 (2)
N11—C8—C7116.84 (19)C28—N14—C24117.4 (3)
C9—C8—C7123.7 (2)N14—C24—C25121.7 (4)
N13—C18—C19120.5 (2)N14—C24—H18109 (2)
N13—C18—C17117.10 (18)C25—C24—H18129 (2)
C19—C18—C17122.3 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N4ii0.77 (2)2.17 (2)2.929 (2)174 (2)
O1—H22···N90.82 (4)2.08 (4)2.893 (3)172 (4)
O1—H23···N3ii0.92 (4)2.02 (5)2.901 (3)159 (4)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C2HN9)(C10H8N2)2]·0.5C10H8N2·H2O
Mr672.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.1919 (12), 11.2383 (9), 17.5759 (14)
β (°) 106.073 (3)
V3)2883.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.24 × 0.23 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.824, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
41852, 6569, 5669
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.07
No. of reflections6569
No. of parameters477
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N4i0.77 (2)2.17 (2)2.929 (2)174 (2)
O1—H22···N90.82 (4)2.08 (4)2.893 (3)172 (4)
O1—H23···N3i0.92 (4)2.02 (5)2.901 (3)159 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support by the National Natural Science Foundation of China (grant No. 206710214), and the Science and Technology Program Foundation of Guang Zhou (2007 J1-co381).

References

First citationBruker (2005). SAINT-Plus (Version 6.45), SHELXTL (Version 6.14) and SMART (Version 5.054). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriedrich, M., Gólvez-Ruiz, J. C., Klapötke, T. M., Mayer, P., Weber, R. & Weigand, J. J. (2005). Inorg. Chem. 44, 8044–8052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds