metal-organic compounds
(Acetonitrile)[bis(2-pyridylmethyl)amine]bis(perchlorato)copper(II)
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title compound, [Cu(ClO4)2(C12H13N3)(C2H3N)], the CuII atom is six-coordinate in a Jahn–Teller distorted octahedral geometry, with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions. The tridentate ligand bis(2-pyridylmethyl)amine chelates meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. The two perchlorate anions are disordered with site occupancy factors of 0.72/0.28. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H⋯O interactions.
Related literature
For related literature, see: Belle et al. (2002); Gultneh et al. (1999); Humphreys et al. (2002); Palaniandavar et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Bruker, 1997); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807067001/bq2058sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807067001/bq2058Isup2.hkl
The title compound, bis(2-pyridylmethyl)amine copper(II) acetonitrile bis(perchlorate), was obtained by refluxing bis(2-pyridylmethyl)amine (2 mmol) and copper(II) perchlorate hexahydrate (2 mmol) in 200 ml of acetonitrile for 1 h. The product deposited on cooling the solution. Suitable crystals suited for crystallographic
were obtained by slow diffusion of diethyl ether into the nitromethane solution of the complex.The two perchlorate anions are disordered such that O11 and O21 are unique and the remaining O atoms are disordered over two conformations with occupancy factors of 0.708 (9), 0.292 (9) and 0.73 (3), 0.27 (3), respectively. The H atoms were idealized with an N—H distance of 0.91 and C—H distances were idealized at 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons).
Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.
The
shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).For related literature, see: Belle et al. (2002); Gultneh et al. (1999); Humphreys et al. (2002); Palaniandavar et al. (1995).
Data collection: XSCANS (Bruker, 1997); cell
XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. The title compound with numbering scheme used. Ellipsoids are drawn at the 20% probability level. | |
Fig. 2. The packing arrangement viewed down the c axis showing the intramolecular N—H···O and intermolecular C—H···O interactions in dashed lines. |
[Cu(ClO4)2(C12H13N3)(C2H3N)] | F(000) = 1020 |
Mr = 502.75 | Dx = 1.714 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2ybc | Cell parameters from 54 reflections |
a = 8.3046 (16) Å | θ = 2.6–13.1° |
b = 31.453 (4) Å | µ = 1.45 mm−1 |
c = 8.4978 (11) Å | T = 293 K |
β = 118.646 (10)° | Plate, blue |
V = 1948.0 (5) Å3 | 0.45 × 0.21 × 0.07 mm |
Z = 4 |
Bruker P4S diffractometer | 2718 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
2θ/ω scans | h = 0→9 |
Absorption correction: empirical (using intensity measurements) via psi scans (North et al., 1968) | k = −40→0 |
Tmin = 0.757, Tmax = 0.964 | l = −11→9 |
4638 measured reflections | 3 standard reflections every 97 reflections |
4347 independent reflections | intensity decay: <2 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0863P)2 + 3.5739P] where P = (Fo2 + 2Fc2)/3 |
4347 reflections | (Δ/σ)max = 0.001 |
320 parameters | Δρmax = 0.49 e Å−3 |
92 restraints | Δρmin = −0.46 e Å−3 |
[Cu(ClO4)2(C12H13N3)(C2H3N)] | V = 1948.0 (5) Å3 |
Mr = 502.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3046 (16) Å | µ = 1.45 mm−1 |
b = 31.453 (4) Å | T = 293 K |
c = 8.4978 (11) Å | 0.45 × 0.21 × 0.07 mm |
β = 118.646 (10)° |
Bruker P4S diffractometer | 2718 reflections with I > 2σ(I) |
Absorption correction: empirical (using intensity measurements) via psi scans (North et al., 1968) | Rint = 0.030 |
Tmin = 0.757, Tmax = 0.964 | 3 standard reflections every 97 reflections |
4638 measured reflections | intensity decay: <2 |
4347 independent reflections |
R[F2 > 2σ(F2)] = 0.064 | 92 restraints |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.49 e Å−3 |
4347 reflections | Δρmin = −0.46 e Å−3 |
320 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.85396 (9) | 0.12165 (2) | −0.01007 (9) | 0.0455 (2) | |
Cl1 | 0.5466 (2) | 0.19134 (7) | −0.4772 (2) | 0.0704 (5) | |
Cl2 | 1.07924 (18) | 0.04196 (5) | 0.29953 (18) | 0.0480 (4) | |
O11 | 0.6293 (8) | 0.1760 (2) | −0.2975 (7) | 0.104 (2) | |
O12 | 0.5827 (15) | 0.1680 (3) | −0.5954 (12) | 0.107 (4) | 0.708 (9) |
O13 | 0.3563 (10) | 0.1998 (4) | −0.5489 (12) | 0.106 (3) | 0.708 (9) |
O14 | 0.6252 (16) | 0.2343 (3) | −0.4642 (15) | 0.128 (4) | 0.708 (9) |
O12A | 0.412 (3) | 0.1546 (6) | −0.561 (3) | 0.123 (7) | 0.292 (9) |
O13A | 0.673 (3) | 0.1865 (9) | −0.538 (3) | 0.121 (8) | 0.292 (9) |
O14A | 0.449 (3) | 0.2264 (6) | −0.510 (3) | 0.134 (8) | 0.292 (9) |
O21 | 1.2524 (7) | 0.0234 (2) | 0.4056 (8) | 0.105 (2) | |
O22 | 1.0940 (12) | 0.0848 (3) | 0.2525 (18) | 0.073 (3) | 0.73 (3) |
O23 | 0.9968 (17) | 0.0176 (3) | 0.1363 (12) | 0.091 (4) | 0.73 (3) |
O24 | 0.9656 (18) | 0.0399 (5) | 0.378 (2) | 0.114 (5) | 0.73 (3) |
O22A | 1.083 (3) | 0.0726 (9) | 0.180 (4) | 0.061 (5) | 0.27 (3) |
O23A | 0.945 (3) | 0.0114 (7) | 0.200 (4) | 0.103 (11) | 0.27 (3) |
O24A | 1.031 (4) | 0.0626 (11) | 0.422 (3) | 0.120 (13) | 0.27 (3) |
N | 0.8033 (7) | 0.07655 (17) | −0.1923 (6) | 0.0535 (12) | |
H0A | 0.8722 | 0.0536 | −0.1326 | 0.064* | |
N1 | 0.8876 (7) | 0.16941 (18) | 0.1547 (7) | 0.0578 (13) | |
N1A | 0.6448 (6) | 0.09486 (15) | 0.0037 (6) | 0.0437 (10) | |
N1B | 1.0370 (7) | 0.14026 (16) | −0.0821 (7) | 0.0505 (12) | |
C1 | 0.9117 (9) | 0.1962 (2) | 0.2536 (9) | 0.0592 (16) | |
C2 | 0.9472 (12) | 0.2296 (3) | 0.3847 (12) | 0.085 (2) | |
H21 | 0.9179 | 0.2194 | 0.4746 | 0.127* | |
H22 | 0.8726 | 0.2539 | 0.3259 | 0.127* | |
H23 | 1.0744 | 0.2375 | 0.4402 | 0.127* | |
C1A | 0.5988 (8) | 0.1008 (2) | 0.1336 (7) | 0.0501 (14) | |
H1AA | 0.6635 | 0.1206 | 0.2237 | 0.060* | |
C2A | 0.4574 (8) | 0.0783 (2) | 0.1363 (8) | 0.0568 (16) | |
H2AA | 0.4302 | 0.0820 | 0.2296 | 0.068* | |
C3A | 0.3585 (8) | 0.0508 (2) | 0.0004 (9) | 0.0579 (16) | |
H3AA | 0.2603 | 0.0361 | −0.0017 | 0.069* | |
C4A | 0.4043 (8) | 0.04453 (19) | −0.1353 (9) | 0.0544 (15) | |
H4AA | 0.3383 | 0.0256 | −0.2285 | 0.065* | |
C5A | 0.5498 (7) | 0.06705 (18) | −0.1285 (7) | 0.0440 (12) | |
C6A | 0.6090 (8) | 0.0636 (2) | −0.2696 (8) | 0.0608 (17) | |
H6AA | 0.5946 | 0.0345 | −0.3126 | 0.073* | |
H6AB | 0.5331 | 0.0818 | −0.3704 | 0.073* | |
C1B | 1.1723 (8) | 0.1693 (2) | 0.0060 (9) | 0.0613 (17) | |
H1BA | 1.1857 | 0.1809 | 0.1123 | 0.074* | |
C2B | 1.2893 (10) | 0.1821 (3) | −0.0557 (13) | 0.081 (2) | |
H2BA | 1.3817 | 0.2018 | 0.0070 | 0.097* | |
C3B | 1.2643 (11) | 0.1644 (3) | −0.2174 (13) | 0.090 (3) | |
H3BA | 1.3384 | 0.1731 | −0.2658 | 0.108* | |
C4B | 1.1319 (11) | 0.1345 (3) | −0.3037 (11) | 0.075 (2) | |
H4BA | 1.1176 | 0.1220 | −0.4087 | 0.090* | |
C5B | 1.0171 (9) | 0.1229 (2) | −0.2317 (9) | 0.0580 (16) | |
C6B | 0.8664 (10) | 0.0902 (2) | −0.3200 (8) | 0.0624 (17) | |
H6BA | 0.7647 | 0.1024 | −0.4259 | 0.075* | |
H6BB | 0.9120 | 0.0659 | −0.3569 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0421 (4) | 0.0597 (5) | 0.0456 (4) | −0.0037 (3) | 0.0299 (3) | −0.0057 (3) |
Cl1 | 0.0599 (10) | 0.0979 (14) | 0.0629 (10) | 0.0036 (9) | 0.0371 (9) | −0.0078 (9) |
Cl2 | 0.0430 (7) | 0.0613 (9) | 0.0422 (7) | −0.0001 (6) | 0.0225 (6) | −0.0009 (6) |
O11 | 0.086 (4) | 0.151 (6) | 0.072 (4) | 0.032 (4) | 0.036 (3) | 0.023 (4) |
O12 | 0.120 (8) | 0.114 (8) | 0.098 (6) | 0.021 (6) | 0.061 (6) | −0.035 (5) |
O13 | 0.070 (5) | 0.147 (9) | 0.101 (6) | 0.021 (5) | 0.041 (5) | 0.001 (6) |
O14 | 0.146 (9) | 0.093 (7) | 0.154 (9) | −0.027 (6) | 0.079 (8) | −0.022 (6) |
O12A | 0.110 (12) | 0.124 (13) | 0.105 (11) | −0.020 (11) | 0.026 (10) | −0.011 (11) |
O13A | 0.122 (16) | 0.131 (18) | 0.163 (16) | 0.012 (13) | 0.110 (13) | 0.011 (14) |
O14A | 0.122 (13) | 0.092 (12) | 0.166 (13) | 0.027 (12) | 0.050 (13) | 0.006 (12) |
O21 | 0.066 (3) | 0.113 (5) | 0.103 (5) | 0.021 (3) | 0.014 (3) | 0.016 (4) |
O22 | 0.070 (4) | 0.064 (5) | 0.072 (6) | −0.010 (4) | 0.023 (4) | −0.004 (4) |
O23 | 0.099 (7) | 0.075 (6) | 0.057 (5) | −0.009 (5) | 0.003 (5) | −0.010 (4) |
O24 | 0.127 (9) | 0.137 (11) | 0.137 (10) | 0.022 (8) | 0.111 (9) | 0.025 (8) |
O22A | 0.065 (7) | 0.066 (9) | 0.065 (9) | 0.014 (7) | 0.041 (8) | 0.020 (7) |
O23A | 0.101 (19) | 0.106 (19) | 0.08 (2) | −0.064 (15) | 0.026 (15) | −0.010 (14) |
O24A | 0.22 (4) | 0.11 (2) | 0.076 (16) | −0.01 (2) | 0.11 (2) | −0.034 (16) |
N | 0.057 (3) | 0.071 (3) | 0.045 (3) | 0.001 (2) | 0.035 (2) | −0.003 (2) |
N1 | 0.056 (3) | 0.065 (3) | 0.065 (3) | −0.009 (3) | 0.039 (3) | −0.014 (3) |
N1A | 0.040 (2) | 0.049 (3) | 0.050 (3) | 0.000 (2) | 0.028 (2) | 0.000 (2) |
N1B | 0.049 (3) | 0.061 (3) | 0.054 (3) | 0.013 (2) | 0.035 (2) | 0.014 (2) |
C1 | 0.049 (3) | 0.074 (5) | 0.060 (4) | −0.004 (3) | 0.030 (3) | −0.005 (3) |
C2 | 0.094 (6) | 0.067 (5) | 0.100 (6) | −0.017 (4) | 0.053 (5) | −0.029 (4) |
C1A | 0.042 (3) | 0.074 (4) | 0.042 (3) | −0.002 (3) | 0.026 (3) | −0.006 (3) |
C2A | 0.043 (3) | 0.084 (5) | 0.054 (4) | 0.001 (3) | 0.032 (3) | 0.007 (3) |
C3A | 0.039 (3) | 0.072 (4) | 0.066 (4) | 0.001 (3) | 0.028 (3) | 0.015 (3) |
C4A | 0.038 (3) | 0.049 (3) | 0.066 (4) | −0.002 (3) | 0.017 (3) | −0.002 (3) |
C5A | 0.036 (3) | 0.048 (3) | 0.048 (3) | 0.008 (2) | 0.020 (2) | −0.002 (2) |
C6A | 0.049 (3) | 0.084 (5) | 0.048 (3) | −0.004 (3) | 0.023 (3) | −0.016 (3) |
C1B | 0.047 (3) | 0.063 (4) | 0.074 (4) | −0.006 (3) | 0.030 (3) | 0.008 (3) |
C2B | 0.055 (4) | 0.085 (5) | 0.118 (7) | 0.010 (4) | 0.054 (5) | 0.030 (5) |
C3B | 0.076 (5) | 0.103 (7) | 0.125 (8) | 0.024 (5) | 0.075 (6) | 0.053 (6) |
C4B | 0.080 (5) | 0.093 (6) | 0.083 (5) | 0.033 (4) | 0.064 (4) | 0.034 (4) |
C5B | 0.055 (4) | 0.075 (4) | 0.061 (4) | 0.019 (3) | 0.040 (3) | 0.023 (3) |
C6B | 0.074 (4) | 0.080 (5) | 0.051 (3) | 0.014 (4) | 0.045 (3) | 0.003 (3) |
Cu—N1 | 1.980 (5) | N1B—C1B | 1.360 (8) |
Cu—N1B | 1.980 (5) | C1—C2 | 1.455 (10) |
Cu—N1A | 1.984 (4) | C2—H21 | 0.9600 |
Cu—N | 1.991 (5) | C2—H22 | 0.9600 |
Cu—O22A | 2.379 (17) | C2—H23 | 0.9600 |
Cu—O22 | 2.455 (9) | C1A—C2A | 1.380 (8) |
Cu—O11 | 2.828 (5) | C1A—H1AA | 0.9300 |
Cl1—O14A | 1.317 (13) | C2A—C3A | 1.360 (9) |
Cl1—O12 | 1.387 (7) | C2A—H2AA | 0.9300 |
Cl1—O13A | 1.389 (13) | C3A—C4A | 1.390 (9) |
Cl1—O13 | 1.420 (7) | C3A—H3AA | 0.9300 |
Cl1—O11 | 1.425 (5) | C4A—C5A | 1.377 (8) |
Cl1—O14 | 1.483 (8) | C4A—H4AA | 0.9300 |
Cl1—O12A | 1.524 (14) | C5A—C6A | 1.503 (8) |
Cl2—O24 | 1.394 (7) | C6A—H6AA | 0.9700 |
Cl2—O21 | 1.406 (5) | C6A—H6AB | 0.9700 |
Cl2—O23A | 1.407 (13) | C1B—C2B | 1.367 (9) |
Cl2—O22A | 1.412 (12) | C1B—H1BA | 0.9300 |
Cl2—O22 | 1.428 (7) | C2B—C3B | 1.403 (12) |
Cl2—O24A | 1.435 (12) | C2B—H2BA | 0.9300 |
Cl2—O23 | 1.438 (7) | C3B—C4B | 1.364 (12) |
N—C6A | 1.477 (8) | C3B—H3BA | 0.9300 |
N—C6B | 1.478 (7) | C4B—C5B | 1.405 (8) |
N—H0A | 0.9100 | C4B—H4BA | 0.9300 |
N1—C1 | 1.137 (8) | C5B—C6B | 1.512 (10) |
N1A—C5A | 1.341 (7) | C6B—H6BA | 0.9700 |
N1A—C1A | 1.344 (6) | C6B—H6BB | 0.9700 |
N1B—C5B | 1.320 (8) | ||
N1—Cu—N1B | 97.2 (2) | C1A—N1A—Cu | 126.2 (4) |
N1—Cu—N1A | 96.40 (19) | C5B—N1B—C1B | 119.8 (5) |
N1B—Cu—N1A | 165.3 (2) | C5B—N1B—Cu | 114.5 (4) |
N1—Cu—N | 175.1 (2) | C1B—N1B—Cu | 125.6 (4) |
N1B—Cu—N | 83.0 (2) | N1—C1—C2 | 178.1 (8) |
N1A—Cu—N | 83.01 (19) | C1—C2—H21 | 109.5 |
N1—Cu—O22A | 102.5 (9) | C1—C2—H22 | 109.5 |
N1B—Cu—O22A | 85.3 (4) | H21—C2—H22 | 109.5 |
N1A—Cu—O22A | 97.0 (5) | C1—C2—H23 | 109.5 |
N—Cu—O22A | 82.4 (9) | H21—C2—H23 | 109.5 |
N1—Cu—O22 | 86.4 (4) | H22—C2—H23 | 109.5 |
N1B—Cu—O22 | 90.6 (3) | N1A—C1A—C2A | 121.4 (6) |
N1A—Cu—O22 | 95.6 (3) | N1A—C1A—H1AA | 119.3 |
N—Cu—O22 | 98.5 (4) | C2A—C1A—H1AA | 119.3 |
O22A—Cu—O22 | 16.4 (6) | C3A—C2A—C1A | 119.0 (6) |
N1—Cu—O11 | 87.9 (2) | C3A—C2A—H2AA | 120.5 |
N1B—Cu—O11 | 80.84 (18) | C1A—C2A—H2AA | 120.5 |
N1A—Cu—O11 | 94.23 (19) | C2A—C3A—C4A | 120.0 (6) |
N—Cu—O11 | 87.3 (2) | C2A—C3A—H3AA | 120.0 |
O12—Cl1—O13 | 111.7 (6) | C4A—C3A—H3AA | 120.0 |
O14A—Cl1—O11 | 116.3 (11) | C5A—C4A—C3A | 118.4 (6) |
O12—Cl1—O11 | 115.9 (5) | C5A—C4A—H4AA | 120.8 |
O13A—Cl1—O11 | 107.6 (10) | C3A—C4A—H4AA | 120.8 |
O13—Cl1—O11 | 112.9 (5) | N1A—C5A—C4A | 121.5 (5) |
O12—Cl1—O14 | 107.2 (6) | N1A—C5A—C6A | 115.4 (5) |
O13—Cl1—O14 | 102.8 (6) | C4A—C5A—C6A | 123.1 (5) |
O11—Cl1—O14 | 105.1 (5) | N—C6A—C5A | 109.3 (5) |
O14A—Cl1—O12A | 107.3 (12) | N—C6A—H6AA | 109.8 |
O13A—Cl1—O12A | 104.8 (12) | C5A—C6A—H6AA | 109.8 |
O24—Cl2—O21 | 113.2 (6) | N—C6A—H6AB | 109.8 |
O21—Cl2—O23A | 112.0 (11) | C5A—C6A—H6AB | 109.8 |
O21—Cl2—O22A | 112.0 (9) | H6AA—C6A—H6AB | 108.3 |
O23A—Cl2—O22A | 108.6 (10) | N1B—C1B—C2B | 122.6 (7) |
O24—Cl2—O22 | 110.2 (6) | N1B—C1B—H1BA | 118.7 |
O21—Cl2—O22 | 111.8 (4) | C2B—C1B—H1BA | 118.7 |
O21—Cl2—O24A | 106.0 (10) | C1B—C2B—C3B | 117.4 (8) |
O23A—Cl2—O24A | 109.1 (12) | C1B—C2B—H2BA | 121.3 |
O22A—Cl2—O24A | 108.9 (11) | C3B—C2B—H2BA | 121.3 |
O24—Cl2—O23 | 108.6 (6) | C4B—C3B—C2B | 120.2 (7) |
O21—Cl2—O23 | 105.4 (5) | C4B—C3B—H3BA | 119.9 |
O22—Cl2—O23 | 107.3 (5) | C2B—C3B—H3BA | 119.9 |
Cl1—O11—Cu | 155.4 (4) | C3B—C4B—C5B | 119.1 (8) |
Cl2—O22—Cu | 124.0 (5) | C3B—C4B—H4BA | 120.5 |
Cl2—O22A—Cu | 130.1 (12) | C5B—C4B—H4BA | 120.5 |
C6A—N—C6B | 116.7 (5) | N1B—C5B—C4B | 120.9 (7) |
C6A—N—Cu | 108.7 (4) | N1B—C5B—C6B | 116.8 (5) |
C6B—N—Cu | 110.3 (4) | C4B—C5B—C6B | 122.2 (7) |
C6A—N—H0A | 106.9 | N—C6B—C5B | 109.5 (5) |
C6B—N—H0A | 106.9 | N—C6B—H6BA | 109.8 |
Cu—N—H0A | 106.9 | C5B—C6B—H6BA | 109.8 |
C1—N1—Cu | 177.8 (6) | N—C6B—H6BB | 109.8 |
C5A—N1A—C1A | 119.6 (5) | C5B—C6B—H6BB | 109.8 |
C5A—N1A—Cu | 114.1 (3) | H6BA—C6B—H6BB | 108.2 |
O14A—Cl1—O11—Cu | −174.7 (16) | O22—Cu—N1A—C5A | −109.8 (5) |
O12—Cl1—O11—Cu | 3.7 (12) | O11—Cu—N1A—C5A | 74.8 (4) |
O13A—Cl1—O11—Cu | −35.7 (16) | N1—Cu—N1A—C1A | −19.9 (5) |
O13—Cl1—O11—Cu | 134.3 (10) | N1B—Cu—N1A—C1A | −177.9 (7) |
O14—Cl1—O11—Cu | −114.4 (10) | N—Cu—N1A—C1A | 165.0 (5) |
O12A—Cl1—O11—Cu | 72.2 (14) | O22A—Cu—N1A—C1A | 83.6 (10) |
N1—Cu—O11—Cl1 | 152.0 (10) | O22—Cu—N1A—C1A | 67.1 (6) |
N1B—Cu—O11—Cl1 | 54.3 (10) | O11—Cu—N1A—C1A | −108.2 (5) |
N1A—Cu—O11—Cl1 | −111.8 (10) | N1—Cu—N1B—C5B | −161.1 (4) |
N—Cu—O11—Cl1 | −29.0 (10) | N1A—Cu—N1B—C5B | −3.1 (10) |
O22A—Cu—O11—Cl1 | 22 (3) | N—Cu—N1B—C5B | 14.0 (4) |
O22—Cu—O11—Cl1 | 93 (2) | O22A—Cu—N1B—C5B | 96.9 (10) |
O24—Cl2—O22—Cu | −76.8 (8) | O22—Cu—N1B—C5B | 112.5 (5) |
O21—Cl2—O22—Cu | 156.4 (6) | O11—Cu—N1B—C5B | −74.4 (4) |
O23A—Cl2—O22—Cu | 9.1 (16) | N1—Cu—N1B—C1B | 17.1 (5) |
O22A—Cl2—O22—Cu | 60 (2) | N1A—Cu—N1B—C1B | 175.0 (7) |
O24A—Cl2—O22—Cu | −99.3 (11) | N—Cu—N1B—C1B | −167.9 (5) |
O23—Cl2—O22—Cu | 41.3 (8) | O22A—Cu—N1B—C1B | −85.0 (10) |
N1—Cu—O22—Cl2 | 132.1 (10) | O22—Cu—N1B—C1B | −69.4 (6) |
N1B—Cu—O22—Cl2 | −130.7 (10) | O11—Cu—N1B—C1B | 103.7 (5) |
N1A—Cu—O22—Cl2 | 36.0 (10) | C5A—N1A—C1A—C2A | 1.2 (9) |
N—Cu—O22—Cl2 | −47.7 (10) | Cu—N1A—C1A—C2A | −175.6 (4) |
O22A—Cu—O22—Cl2 | −59.7 (17) | N1A—C1A—C2A—C3A | −2.6 (10) |
O11—Cu—O22—Cl2 | −169.2 (11) | C1A—C2A—C3A—C4A | 2.1 (10) |
O24—Cl2—O22A—Cu | −21 (3) | C2A—C3A—C4A—C5A | −0.5 (9) |
O21—Cl2—O22A—Cu | −171.5 (18) | C1A—N1A—C5A—C4A | 0.5 (8) |
O23A—Cl2—O22A—Cu | 64 (2) | Cu—N1A—C5A—C4A | 177.7 (4) |
O22—Cl2—O22A—Cu | −76 (3) | C1A—N1A—C5A—C6A | 178.4 (5) |
O24A—Cl2—O22A—Cu | −55 (2) | Cu—N1A—C5A—C6A | −4.4 (6) |
O23—Cl2—O22A—Cu | 86 (2) | C3A—C4A—C5A—N1A | −0.9 (9) |
N1—Cu—O22A—Cl2 | 83 (3) | C3A—C4A—C5A—C6A | −178.6 (6) |
N1B—Cu—O22A—Cl2 | 180 (3) | C6B—N—C6A—C5A | −158.4 (5) |
N1A—Cu—O22A—Cl2 | −15 (3) | Cu—N—C6A—C5A | −32.9 (6) |
N—Cu—O22A—Cl2 | −97 (3) | N1A—C5A—C6A—N | 25.0 (8) |
O22—Cu—O22A—Cl2 | 71 (2) | C4A—C5A—C6A—N | −157.1 (6) |
O11—Cu—O22A—Cl2 | −148.2 (9) | C5B—N1B—C1B—C2B | 1.1 (10) |
N1B—Cu—N—C6A | −150.7 (4) | Cu—N1B—C1B—C2B | −177.0 (5) |
N1A—Cu—N—C6A | 25.0 (4) | N1B—C1B—C2B—C3B | 0.6 (11) |
O22A—Cu—N—C6A | 123.1 (6) | C1B—C2B—C3B—C4B | −2.2 (11) |
O22—Cu—N—C6A | 119.7 (5) | C2B—C3B—C4B—C5B | 2.2 (11) |
O11—Cu—N—C6A | −69.6 (4) | C1B—N1B—C5B—C4B | −1.1 (9) |
N1B—Cu—N—C6B | −21.5 (4) | Cu—N1B—C5B—C4B | 177.1 (5) |
N1A—Cu—N—C6B | 154.2 (4) | C1B—N1B—C5B—C6B | 178.8 (6) |
O22A—Cu—N—C6B | −107.7 (6) | Cu—N1B—C5B—C6B | −3.0 (7) |
O22—Cu—N—C6B | −111.1 (5) | C3B—C4B—C5B—N1B | −0.5 (10) |
O11—Cu—N—C6B | 59.6 (4) | C3B—C4B—C5B—C6B | 179.6 (7) |
N1—Cu—N1A—C5A | 163.1 (4) | C6A—N—C6B—C5B | 149.5 (6) |
N1B—Cu—N1A—C5A | 5.1 (10) | Cu—N—C6B—C5B | 24.8 (6) |
N—Cu—N1A—C5A | −12.0 (4) | N1B—C5B—C6B—N | −14.8 (8) |
O22A—Cu—N1A—C5A | −93.4 (9) | C4B—C5B—C6B—N | 165.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O22A | 0.91 | 2.45 | 2.89 (3) | 110 |
N—H0A···O23 | 0.91 | 2.30 | 3.084 (12) | 144 |
N—H0A···O23i | 0.91 | 2.50 | 3.317 (10) | 150 |
C2—H21···O13Aii | 0.96 | 2.23 | 2.98 (2) | 133 |
C2—H22···O14iii | 0.96 | 2.36 | 3.103 (14) | 134 |
C1A—H1AA···O12ii | 0.93 | 2.46 | 3.176 (9) | 134 |
C3A—H3AA···O23iv | 0.93 | 2.53 | 3.376 (15) | 152 |
C3A—H3AA···O23Aiv | 0.93 | 2.29 | 2.993 (14) | 133 |
C6A—H6AA···O21i | 0.97 | 2.56 | 3.381 (9) | 143 |
C2B—H2BA···O14Av | 0.93 | 2.35 | 3.112 (16) | 140 |
C3B—H3BA···O11vi | 0.93 | 2.56 | 3.429 (10) | 156 |
C4B—H4BA···O24Avii | 0.93 | 2.25 | 3.06 (3) | 145 |
C6B—H6BA···O12 | 0.97 | 2.56 | 3.425 (13) | 149 |
C6B—H6BB···O24Avii | 0.97 | 2.51 | 3.211 (16) | 129 |
Symmetry codes: (i) −x+2, −y, −z; (ii) x, y, z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y, −z; (v) x+1, −y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(ClO4)2(C12H13N3)(C2H3N)] |
Mr | 502.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.3046 (16), 31.453 (4), 8.4978 (11) |
β (°) | 118.646 (10) |
V (Å3) | 1948.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.45 |
Crystal size (mm) | 0.45 × 0.21 × 0.07 |
Data collection | |
Diffractometer | Bruker P4S |
Absorption correction | Empirical (using intensity measurements) via psi scans (North et al., 1968) |
Tmin, Tmax | 0.757, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4638, 4347, 2718 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.193, 1.04 |
No. of reflections | 4347 |
No. of parameters | 320 |
No. of restraints | 92 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.46 |
Computer programs: XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
N—H0A···O22A | 0.91 | 2.45 | 2.89 (3) | 110.0 |
N—H0A···O23 | 0.91 | 2.30 | 3.084 (12) | 143.7 |
N—H0A···O23i | 0.91 | 2.50 | 3.317 (10) | 150.1 |
C2—H21···O13Aii | 0.96 | 2.23 | 2.98 (2) | 133.3 |
C2—H22···O14iii | 0.96 | 2.36 | 3.103 (14) | 133.6 |
C1A—H1AA···O12ii | 0.93 | 2.46 | 3.176 (9) | 134.2 |
C3A—H3AA···O23iv | 0.93 | 2.53 | 3.376 (15) | 152.1 |
C3A—H3AA···O23Aiv | 0.93 | 2.29 | 2.993 (14) | 132.5 |
C6A—H6AA···O21i | 0.97 | 2.56 | 3.381 (9) | 143.0 |
C2B—H2BA···O14Av | 0.93 | 2.35 | 3.112 (16) | 139.5 |
C3B—H3BA···O11vi | 0.93 | 2.56 | 3.429 (10) | 156.3 |
C4B—H4BA···O24Avii | 0.93 | 2.25 | 3.06 (3) | 144.9 |
C6B—H6BA···O12 | 0.97 | 2.56 | 3.425 (13) | 149.1 |
C6B—H6BB···O24Avii | 0.97 | 2.51 | 3.211 (16) | 129.0 |
Symmetry codes: (i) −x+2, −y, −z; (ii) x, y, z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y, −z; (v) x+1, −y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z−1. |
Acknowledgements
RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington, DC, USA, for access to their diffractometer.
References
Belle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F. & Storelli, S. (2002). Inorg. Chem. 41, 479–491. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7–18. Web of Science CSD CrossRef CAS Google Scholar
Humphreys, K. J., Karlin, K. D. & Rokita, S. E. (2002). J. Am. Chem. Soc. 124, 8055–8066. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Palaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. & Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455–461. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.
The crystal structure shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).