organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(4-Fluoro­phen­yl)-2-methyl-5-oxo-2,5-di­hydro­isoxazol-3-yl]-1-methyl­pyridinium iodide–4-[3-(4-fluoro­phen­yl)-2-methyl-5-oxo-2,5-di­hydro­isoxazol-4-yl]-1-methyl­pyridinium iodide (0.6/0.4)

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 30 October 2007; accepted 5 November 2007; online 18 December 2007)

The crystal structure of the title compound, C16H16FN2O2+·I, was determined as part of a study of the biological activity of isoxazolone derivatives as p38 mitogen-activated protein kinase (MAPK) inhibitors. The X-ray crystal structure of 4-[4-(4-fluoro­phenyl)-2-methyl-5-oxo-2,5-dihydro­isoxazol-3-yl]-1-methyl­pyridinium iodide showed the presence of the regioisomer 4-[3-(4-fluoro­phenyl)-2-methyl-5-oxo-2,5-dihydro­isoxazol-4-yl]-1-methyl­pyridinium iodide. The synthesis of the former compound was achieved by reacting 4-(4-fluoro­phenyl)-3-(4-pyridyl)isoxazol-5(2H)-one after treatment with Et3N in dimethyl­formamide, with iodo­methane. The unexpected formation of the regioisomer could be explained by a rearrangement occurring via aziridine of the isoxazolone compound. The regioisomers have site occupancies of 0.632 (4)/0.368 (4). The two six members rings make a dihedral angle of 66.8 (2)°.

Related literature

For general background on the pharmaceutical applications of isoxazolones, see: Laughlin et al. (2005[Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399-2403.]); Clark et al. (2002[Clark, M. P., Djung, J. F., Laughlin, S. K. & Tullis, J. (2002). World Patent WO 02/094 266 A1.]); Wang et al. (1998[Wang, Z., Canagarajah, B. J., Boehm, J. C., Kassisa, S., Cobb, M. H., Young, P. R., Abdel-Meguid, S., Adams, J. L. & Goldsmith, E. J. (1998). Structure, 6, 1117-1128.]); Foster et al. (2000[Foster, M. L., Halley, F. & Souness, J. E. (2000). Drug News Perspect. 13, 488-497.]); Adams et al. (1998[Adams, J. L., Boehm, J. C., Kassis, S., Gorycki, P. D., Webb, E. F., Hall, R., Sorenson, M., Lee, J. C., Ayrton, A., Griswold, D. E. & Gallagher, T. F. (1998). Bioorg. Med. Chem. Lett. 8, 3111-3116.]); Laufer & Wagner (2002[Laufer, S. & Wagner, G. K. (2002). J. Med. Chem. 45, 2733-2740.]); de Laszlo et al. (1998[Laszlo, S. E. de, Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., MacCoss, M., Mantlo, N., O'Neill, E. A., Orevillo, C., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Sidler, K. & Widmer, W. R. (1998). Bioorg. Med. Chem. Lett. 8, 2689-2694.]); Laufer et al. (2005[Laufer, S., Thuma, S., Greim, C., Herweh, Y., Albrecht, A. & Dehner, F. (2005). Anal. Biochem. 344, 135-137.], 2006[Laufer, S., Margutti, S. & Fritz, M. D. (2006). J. Med. Chem. 1, 197-207.]); Revesz et al. (2000[Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett. 10, 1261-1264.]); Ohkawa et al. (2001[Ohkawa, S., Naruo, K., Miwatashi, S. & Kimura, H. (2001). World Patent WO2001/074 811.]). The aziridine rearrangement of isoxazolones was described by Nishiwaki & Saito (1971[Nishiwaki, T. & Saito, T. (1971). J. Chem. Soc. C, pp. 2648-2651.]) and Sauers (1990[Sauers, R. R. (1990). J. Org. Chem. 55, 4011-4019.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FN2O2+·I

  • Mr = 398.17

  • Monoclinic, P 21 /c

  • a = 10.2804 (4) Å

  • b = 20.5895 (9) Å

  • c = 7.4907 (3) Å

  • β = 96.8828 (14)°

  • V = 1574.12 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 193 (2) K

  • 0.52 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2006[Bruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.415, Tmax = 0.853

  • 27681 measured reflections

  • 3897 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.07

  • 3897 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP (Johnson, 1968[Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compound (II) (Scheme 1) was prepared in the course of our study on isoxazolones derivatives bearing the typical vicinal 4-pyridyl and 4-fluorophenyl pharmacophores of MAP Kinase inhibitors. Isoxazolones are described in the literature as inhibitors for p38 MAP Kinase (Laughlin et al., 2005; Clark et al., 2002).

The prototypical pyridinylimidazole SB 203580 is one of the best studied p38 inhibitors reported until now. Fig. 1 shows the most important interactions between the ATP binding sites of p38 kinase and the imidazole inhibitor SB203580 (Wang et al., 1998). The 4-fluorophenyl ring of SB203580 occupies a hydrophobic back pocket gaining selectivity. Vicinal to this interaction site, 4-pyridinyl moiety forms a hydrogen bond from the backbone NH group of Met 109 of p38 MAP Kinase (Fig. 1).

However, certain liver toxicities, such as increased liver size and increased cytochrome P450 induction, have been reported (Foster et al., 2000; Adams et al., 1998). In light of this potential toxicity and the risks associated with developing human drugs, a continuing need exist for potent new small molecules inhibitors of cytokine production with improved pharmacokinetic and safety profiles.

Several research groups have undertaken studies in which the imidazole ring was replaced by other 5- or 6- membered heterocycles (Laufer & Wagner, 2002; de Laszlo et al., 1998; Laufer et al., 2006; Revesz et al., 2000; Ohkawa et al., 2001). Replacement of the core heterocycle representing a strategy to dissect inhibition of p38 from interferences with cytochrome P450 (CYP450).

Accordingly, and based on the research published by Laughlin and co-authors (Laughlin et al., 2005), we plane to prepare N-alkylated derivatives of compound (I) in order to get more accurate and comparable information about isoxazolones as p38 MAP Kinase inhibitors in terms of biological activity.

By testing compounds (I) and (II) in the in vitro p38-alpha MAPK assay (Laufer et al., 2005), only compound (I) was found to posses biological activity.

The loss of the biological activity of compound (II) can be attributed to the absence of hydrogen bond donor on the pyridine ring and, consequentely, impossibility of interaction with Met109.

Related literature top

For general background on the pharmaceutical applications of isoxazolones, see: Laughlin et al. (2005); Clark et al. (2002); Wang et al. (1998); Foster et al. (2000); Adams et al. (1998); Laufer & Wagner (2002); de Laszlo et al. (1998); Laufer et al. (2005, 2006); Revesz et al. (2000); Ohkawa et al. (2001). The aziridine rearrangement of isoxazolones was described by Nishiwaki & Saito (1971) and Sauers (1990). [These last two references are not cited anywhere but here. Please provide revised text to be added to the appropriate section of the CIF, or they will be removed]

Experimental top

For the synthesis of 2-(4-Fluoro-phenyl)-3-oxo-3-pyridin-4-yl-propionic acid ethyl ester (see scheme 1), to a suspension of 3.3 g (26.8 mmol) of isonicotinic acid in 15 ml of DMF, 7.3 g (45 mmol) of CDI were added. The reaction mixture was stirred at 298 K for 1 h. The limpid solution was then cooled at 273 K and 5 g (27.4 mmol) of (4-Fluoro-phenyl)-acetic acid ethyl and 1.7 g (70.8 mmol) of NaH were added. The reaction mixture was stirred at 273 K for 15 min, then the temperature was raised to 298 K and kept under vigorous stirring for 4 h. The reaction was then poured into water/ice, the pH adjusted to value 6 and extracted with ethylacetate. The combined organic layers were then collected, dried over Na2SO4 and concentrated under vacuum affording an oil that was chromatographed over SiO2 using acetone as eluent y ielding 75% of 2-(4-Fluoro-phenyl)-3-oxo-3-pyridin-4-yl-propionic acid ethyl ester. For the synthesis of (I), a suspension of 5.2 g (18.1 mmol) of 2-(4-Fluoro-phenyl)-3-oxo-3-pyridin -4-yl-propionic acid ethyl ester and 1.41 g (20.27 mmol) of hydroxylamine hydrochloride in 1.5 ml of H2O was warmed to 353 K. 8 ml of MeOH were added and the resulting solution allowed to reflux 4 h. The reaction mixture was then cooled to 298 K and stored at 277 K overnight whereupon a yellow solide precipitated, yielding 75% of (I). For the synthesis of (II) and (III), a suspension of 620 mg (2.5 mmol) of (I) in 1 ml of DMF was added of 0.620 ml (4.5 mmol) of Et3N and refluxed for 2 h. The reaction mixture was then cooled at 298 K, added of 0.231 ml (3.75 mmol) of iodomethane and stirred at 298 K for 2 h. The reaction mixture was then added of ethylacetate and the resulting precipitate separated by filtration and then crystalized from MeOH yielding 54% of (II) and (III).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 A% (aromatic) or 0.99–1.00 Å (sp3 C-atom). All H atoms were refined with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The regioisomers (II) and (III) have s.o.f.s of 0.632 (4)/0.368 (4). The coordinates and a.d.p.'s of the disorderd C, N and F atoms were constrained to be equal to achieve a good convergence of the refinement procedure.

Structure description top

Compound (II) (Scheme 1) was prepared in the course of our study on isoxazolones derivatives bearing the typical vicinal 4-pyridyl and 4-fluorophenyl pharmacophores of MAP Kinase inhibitors. Isoxazolones are described in the literature as inhibitors for p38 MAP Kinase (Laughlin et al., 2005; Clark et al., 2002).

The prototypical pyridinylimidazole SB 203580 is one of the best studied p38 inhibitors reported until now. Fig. 1 shows the most important interactions between the ATP binding sites of p38 kinase and the imidazole inhibitor SB203580 (Wang et al., 1998). The 4-fluorophenyl ring of SB203580 occupies a hydrophobic back pocket gaining selectivity. Vicinal to this interaction site, 4-pyridinyl moiety forms a hydrogen bond from the backbone NH group of Met 109 of p38 MAP Kinase (Fig. 1).

However, certain liver toxicities, such as increased liver size and increased cytochrome P450 induction, have been reported (Foster et al., 2000; Adams et al., 1998). In light of this potential toxicity and the risks associated with developing human drugs, a continuing need exist for potent new small molecules inhibitors of cytokine production with improved pharmacokinetic and safety profiles.

Several research groups have undertaken studies in which the imidazole ring was replaced by other 5- or 6- membered heterocycles (Laufer & Wagner, 2002; de Laszlo et al., 1998; Laufer et al., 2006; Revesz et al., 2000; Ohkawa et al., 2001). Replacement of the core heterocycle representing a strategy to dissect inhibition of p38 from interferences with cytochrome P450 (CYP450).

Accordingly, and based on the research published by Laughlin and co-authors (Laughlin et al., 2005), we plane to prepare N-alkylated derivatives of compound (I) in order to get more accurate and comparable information about isoxazolones as p38 MAP Kinase inhibitors in terms of biological activity.

By testing compounds (I) and (II) in the in vitro p38-alpha MAPK assay (Laufer et al., 2005), only compound (I) was found to posses biological activity.

The loss of the biological activity of compound (II) can be attributed to the absence of hydrogen bond donor on the pyridine ring and, consequentely, impossibility of interaction with Met109.

For general background on the pharmaceutical applications of isoxazolones, see: Laughlin et al. (2005); Clark et al. (2002); Wang et al. (1998); Foster et al. (2000); Adams et al. (1998); Laufer & Wagner (2002); de Laszlo et al. (1998); Laufer et al. (2005, 2006); Revesz et al. (2000); Ohkawa et al. (2001). The aziridine rearrangement of isoxazolones was described by Nishiwaki & Saito (1971) and Sauers (1990). [These last two references are not cited anywhere but here. Please provide revised text to be added to the appropriate section of the CIF, or they will be removed]

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Schematic drawing of important interactions between the prototypical pyridin-4-yl imidazole inhibitor SB 203580 and the ATP binding site of p38.
[Figure 2] Fig. 2. Schematic drawings of 4-[4-(4-Fluoro-phenyl)-2-methyl-5-oxo-2,5-dihydro-isoxazol-3-yl]-1-methyl- pyridinium iodide, (II), and 4-[3-(4-Fluoro-phenyl)-2-methyl-5-oxo-2,5-dihydro-isoxazol-3-yl]-1-methyl- pyridinium iodide, (III).
[Figure 3] Fig. 3. ORTEP (Johnson, 1968) view of (II) and (III). Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 4] Fig. 4. The formation of the title compound.
4-[4-(4-Fluorophenyl)-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1- methylpyridinium iodide– 4-[3-(4-fluorophenyl)-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methyl- pyridinium iodide (0.6/0.4) top
Crystal data top
C15H12FN2O2+·IF(000) = 776
Mr = 398.17Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 6868 reflections
a = 10.2804 (4) Åθ = 2.7–28.3°
b = 20.5895 (9) ŵ = 2.05 mm1
c = 7.4907 (3) ÅT = 193 K
β = 96.8828 (14)°Block, brown
V = 1574.12 (11) Å30.52 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3897 independent reflections
Radiation source: sealed Tube3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.126
CCD scanθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
h = 1313
Tmin = 0.415, Tmax = 0.853k = 2727
27681 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0617P)2 + 2.8681P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C15H12FN2O2+·IV = 1574.12 (11) Å3
Mr = 398.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2804 (4) ŵ = 2.05 mm1
b = 20.5895 (9) ÅT = 193 K
c = 7.4907 (3) Å0.52 × 0.20 × 0.08 mm
β = 96.8828 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
3369 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.853Rint = 0.126
27681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 1.60 e Å3
3897 reflectionsΔρmin = 0.51 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A1.0107 (3)0.20467 (16)1.6192 (4)0.0292 (4)0.632 (4)
F1B0.3217 (5)0.1835 (3)0.8219 (7)0.0292 (4)0.368 (4)
C10.9450 (4)0.08719 (19)0.9398 (5)0.0327 (7)
C20.8322 (4)0.07466 (19)0.8261 (5)0.0333 (7)
N30.8565 (3)0.0373 (2)0.6894 (5)0.0458 (9)
O40.9887 (3)0.02271 (16)0.7079 (4)0.0439 (7)
C51.0475 (4)0.0546 (2)0.8619 (6)0.0384 (8)
C60.7766 (4)0.0089 (2)0.5375 (6)0.0408 (9)
H6A0.83200.01680.46670.061*
H6B0.73370.04350.46230.061*
H6C0.71000.01910.58060.061*
O71.1646 (3)0.04901 (16)0.8994 (5)0.0489 (8)
C80.9607 (4)0.12052 (18)1.1149 (5)0.0332 (8)
C90.8538 (4)0.1315 (2)1.2097 (6)0.0359 (8)
H90.76870.11871.15840.043*
C100.8700 (4)0.1609 (2)1.3781 (6)0.0399 (9)
H100.79690.16911.44120.048*
C11A0.9937 (5)0.1776 (2)1.4501 (6)0.0462 (9)0.632 (4)
N11B0.9937 (5)0.1776 (2)1.4501 (6)0.0462 (9)0.368 (4)
H11B1.00460.19581.55710.055*0.368 (4)
C121.1020 (4)0.1672 (2)1.3625 (6)0.0458 (10)
H121.18680.17951.41620.055*
C131.0846 (4)0.1386 (2)1.1952 (6)0.0413 (9)
H131.15860.13101.13330.050*
C150.6988 (4)0.10094 (19)0.8287 (5)0.0312 (7)
C160.5906 (4)0.06123 (19)0.8311 (5)0.0336 (7)
H160.60030.01530.83480.040*
C170.4681 (4)0.0892 (2)0.8282 (5)0.0352 (8)
H170.39320.06230.83080.042*
N18A0.4542 (3)0.15364 (17)0.8217 (4)0.0292 (4)0.632 (4)
H18A0.37530.17050.81930.035*0.632 (4)
C18B0.4542 (3)0.15364 (17)0.8217 (4)0.0292 (4)0.368 (4)
C190.5569 (4)0.1931 (2)0.8188 (6)0.0364 (8)
H190.54410.23880.81560.044*
C200.6822 (4)0.16808 (19)0.8204 (5)0.0354 (8)
H200.75520.19610.81600.042*
I10.47781 (2)0.126317 (12)0.31747 (3)0.03385 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0284 (10)0.0371 (11)0.0211 (9)0.0016 (8)0.0013 (7)0.0038 (8)
F1B0.0284 (10)0.0371 (11)0.0211 (9)0.0016 (8)0.0013 (7)0.0038 (8)
C10.0289 (17)0.0352 (19)0.0353 (18)0.0032 (14)0.0087 (14)0.0040 (14)
C20.0329 (18)0.0339 (19)0.0339 (18)0.0020 (14)0.0065 (14)0.0026 (14)
N30.0312 (17)0.061 (2)0.045 (2)0.0125 (16)0.0037 (15)0.0117 (17)
O40.0336 (14)0.0525 (18)0.0474 (17)0.0086 (13)0.0122 (12)0.0064 (14)
C50.0325 (19)0.038 (2)0.045 (2)0.0013 (16)0.0092 (16)0.0042 (16)
C60.040 (2)0.042 (2)0.042 (2)0.0019 (17)0.0108 (17)0.0077 (17)
O70.0292 (14)0.0528 (18)0.067 (2)0.0032 (12)0.0151 (14)0.0009 (16)
C80.0303 (18)0.0346 (19)0.0349 (19)0.0006 (14)0.0047 (15)0.0048 (14)
C90.0286 (17)0.046 (2)0.0336 (19)0.0007 (15)0.0036 (15)0.0009 (15)
C100.037 (2)0.048 (2)0.035 (2)0.0035 (17)0.0049 (16)0.0002 (17)
C11A0.055 (2)0.043 (2)0.039 (2)0.0025 (18)0.0002 (18)0.0000 (17)
N11B0.055 (2)0.043 (2)0.039 (2)0.0025 (18)0.0002 (18)0.0000 (17)
C120.037 (2)0.050 (3)0.048 (2)0.0095 (18)0.0029 (18)0.0029 (19)
C130.0297 (19)0.048 (2)0.047 (2)0.0043 (16)0.0057 (17)0.0058 (18)
C150.0331 (17)0.0352 (18)0.0257 (16)0.0025 (14)0.0045 (13)0.0009 (14)
C160.0372 (19)0.0332 (18)0.0313 (17)0.0009 (15)0.0079 (15)0.0007 (14)
C170.0360 (19)0.038 (2)0.0323 (18)0.0024 (15)0.0063 (15)0.0016 (14)
N18A0.0284 (10)0.0371 (11)0.0211 (9)0.0016 (8)0.0013 (7)0.0038 (8)
C18B0.0284 (10)0.0371 (11)0.0211 (9)0.0016 (8)0.0013 (7)0.0038 (8)
C190.0344 (18)0.0363 (19)0.0381 (19)0.0028 (15)0.0025 (15)0.0013 (15)
C200.0318 (18)0.0329 (19)0.041 (2)0.0005 (14)0.0037 (15)0.0014 (15)
I10.03172 (15)0.03684 (16)0.03268 (16)0.00256 (9)0.00260 (10)0.00114 (9)
Geometric parameters (Å, º) top
F1A—C11A1.376 (5)C10—C11A1.365 (6)
C1—C21.378 (5)C10—H100.9500
C1—C51.431 (5)C11A—C121.375 (7)
C1—C81.472 (5)C12—C131.378 (7)
C2—N31.328 (5)C12—H120.9500
C2—C151.477 (5)C13—H130.9500
N3—O41.383 (4)C15—C161.383 (5)
N3—C61.444 (6)C15—C201.393 (6)
O4—C51.400 (5)C16—C171.382 (5)
C5—O71.208 (5)C16—H160.9500
C6—H6A0.9800C17—N18A1.336 (6)
C6—H6B0.9800C17—H170.9500
C6—H6C0.9800N18A—C191.334 (5)
C8—C131.392 (6)N18A—H18A0.8800
C8—C91.397 (6)C19—C201.386 (5)
C9—C101.390 (6)C19—H190.9500
C9—H90.9500C20—H200.9500
C2—C1—C5105.4 (3)C10—C11A—C12122.8 (4)
C2—C1—C8129.2 (3)C10—C11A—F1A118.4 (4)
C5—C1—C8125.1 (4)C12—C11A—F1A118.8 (4)
N3—C2—C1111.3 (3)C11A—C12—C13118.5 (4)
N3—C2—C15118.9 (3)C11A—C12—H12120.8
C1—C2—C15129.6 (4)C13—C12—H12120.8
C2—N3—O4108.8 (3)C12—C13—C8121.3 (4)
C2—N3—C6134.4 (4)C12—C13—H13119.4
O4—N3—C6116.8 (3)C8—C13—H13119.4
N3—O4—C5107.6 (3)C16—C15—C20119.5 (3)
O7—C5—O4117.8 (4)C16—C15—C2122.2 (4)
O7—C5—C1135.3 (4)C20—C15—C2118.1 (3)
O4—C5—C1106.9 (3)C17—C16—C15119.1 (4)
N3—C6—H6A109.5C17—C16—H16120.4
N3—C6—H6B109.5C15—C16—H16120.4
H6A—C6—H6B109.5N18A—C17—C16120.5 (4)
N3—C6—H6C109.5N18A—C17—H17119.7
H6A—C6—H6C109.5C16—C17—H17119.7
H6B—C6—H6C109.5C19—N18A—C17121.6 (3)
C13—C8—C9118.2 (4)C19—N18A—H18A119.2
C13—C8—C1120.4 (4)C17—N18A—H18A119.2
C9—C8—C1121.3 (4)N18A—C19—C20120.7 (4)
C10—C9—C8121.1 (4)N18A—C19—H19119.6
C10—C9—H9119.5C20—C19—H19119.6
C8—C9—H9119.5C19—C20—C15118.5 (4)
C11A—C10—C9118.2 (4)C19—C20—H20120.7
C11A—C10—H10120.9C15—C20—H20120.7
C9—C10—H10120.9
C5—C1—C2—N30.7 (5)C1—C8—C9—C10177.6 (4)
C8—C1—C2—N3173.3 (4)C8—C9—C10—C11A1.2 (6)
C5—C1—C2—C15173.3 (4)C9—C10—C11A—C120.7 (7)
C8—C1—C2—C1512.7 (7)C9—C10—C11A—F1A177.8 (4)
C1—C2—N3—O40.6 (5)C10—C11A—C12—C130.1 (7)
C15—C2—N3—O4175.3 (3)F1A—C11A—C12—C13178.4 (4)
C1—C2—N3—C6178.3 (5)C11A—C12—C13—C80.2 (7)
C15—C2—N3—C67.0 (8)C9—C8—C13—C120.7 (6)
C2—N3—O4—C51.7 (5)C1—C8—C13—C12177.1 (4)
C6—N3—O4—C5179.9 (4)N3—C2—C15—C1660.6 (5)
N3—O4—C5—O7178.4 (4)C1—C2—C15—C16125.8 (5)
N3—O4—C5—C12.1 (4)N3—C2—C15—C20116.6 (4)
C2—C1—C5—O7178.9 (5)C1—C2—C15—C2057.0 (6)
C8—C1—C5—O76.8 (8)C20—C15—C16—C171.0 (5)
C2—C1—C5—O41.7 (4)C2—C15—C16—C17178.1 (3)
C8—C1—C5—O4172.6 (3)C15—C16—C17—N18A0.5 (5)
C2—C1—C8—C13168.6 (4)C16—C17—N18A—C190.4 (5)
C5—C1—C8—C1318.5 (6)C17—N18A—C19—C200.7 (6)
C2—C1—C8—C915.1 (6)N18A—C19—C20—C151.2 (6)
C5—C1—C8—C9157.8 (4)C16—C15—C20—C191.4 (6)
C13—C8—C9—C101.3 (6)C2—C15—C20—C19178.6 (4)

Experimental details

Crystal data
Chemical formulaC15H12FN2O2+·I
Mr398.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)10.2804 (4), 20.5895 (9), 7.4907 (3)
β (°) 96.8828 (14)
V3)1574.12 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.52 × 0.20 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(APEX2; Bruker, 2006)
Tmin, Tmax0.415, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
27681, 3897, 3369
Rint0.126
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.07
No. of reflections3897
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 0.51

Computer programs: APEX2 (Bruker, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1968) and PLATON (Spek, 2003).

 

Acknowledgements

The authors thank the EU-Craft Programme, Project Macrocept (FP6), for funding.

References

First citationAdams, J. L., Boehm, J. C., Kassis, S., Gorycki, P. D., Webb, E. F., Hall, R., Sorenson, M., Lee, J. C., Ayrton, A., Griswold, D. E. & Gallagher, T. F. (1998). Bioorg. Med. Chem. Lett. 8, 3111–3116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2. Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, M. P., Djung, J. F., Laughlin, S. K. & Tullis, J. (2002). World Patent WO 02/094 266 A1.  Google Scholar
First citationFoster, M. L., Halley, F. & Souness, J. E. (2000). Drug News Perspect. 13, 488–497.  Web of Science PubMed CAS Google Scholar
First citationJohnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLaszlo, S. E. de, Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., MacCoss, M., Mantlo, N., O'Neill, E. A., Orevillo, C., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Sidler, K. & Widmer, W. R. (1998). Bioorg. Med. Chem. Lett. 8, 2689–2694.  Web of Science PubMed Google Scholar
First citationLaufer, S., Margutti, S. & Fritz, M. D. (2006). J. Med. Chem. 1, 197–207.  CAS Google Scholar
First citationLaufer, S., Thuma, S., Greim, C., Herweh, Y., Albrecht, A. & Dehner, F. (2005). Anal. Biochem. 344, 135–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. & Wagner, G. K. (2002). J. Med. Chem. 45, 2733–2740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403.  CrossRef PubMed CAS Google Scholar
First citationNishiwaki, T. & Saito, T. (1971). J. Chem. Soc. C, pp. 2648–2651.  Google Scholar
First citationOhkawa, S., Naruo, K., Miwatashi, S. & Kimura, H. (2001). World Patent WO2001/074 811.  Google Scholar
First citationRevesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett. 10, 1261–1264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSauers, R. R. (1990). J. Org. Chem. 55, 4011–4019.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Canagarajah, B. J., Boehm, J. C., Kassisa, S., Cobb, M. H., Young, P. R., Abdel-Meguid, S., Adams, J. L. & Goldsmith, E. J. (1998). Structure, 6, 1117–1128.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds