organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2′-Bis(3-nitro­benzyl­­idene)pyridine-2,6-dicarbohydrazide di­methyl­formamide disolvate trihydrate

aKey Laboratory of Catalysis and Materials Science of Hubei Provence, College of Chemistry and Materials Science, South Central University of Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: liuhwchem@mail.scuec.edu.cn

(Received 7 November 2007; accepted 7 November 2007; online 6 December 2007)

In the title compound, C21H15N7O6·2C3H7NO·3H2O, the N2,N2′-bis­(3-nitro­benzyl­idene)pyridine-2,6-dicarbohydrazide and one water mol­ecule are located on a twofold rotation axis. The mol­ecules are connected by hydrogen bonds. One dimethylformamide molecule is disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

Tridentate ligands with 2,6-dipicolinoyhydrazone have been intensively studied due to their inter­esting coordination modes (Paolucci et al., 1985[Paolucci, G., Stelluto, S. & Sitran, S. (1985). Inorg. Chim. Acta, 110, 19-23.]; Chen et al., 1996[Chen, X. Y., Zhan, S. Z. & Meng, Q. J. (1996). Transition Met. Chem. 21, 345-348.], 1997[Chen, X. Y., Zhan, S. Z., Hu, C. J., Meng, Q. J. & Liu, Y. J. (1997). J. Chem. Soc. Dalton Trans. pp. 245-250.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N7O6·2C3H7NO·3H2O

  • Mr = 661.64

  • Monoclinic, C 2/c

  • a = 24.704 (3) Å

  • b = 10.4815 (12) Å

  • c = 14.4792 (16) Å

  • β = 120.355 (2)°

  • V = 3235.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 (2) K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.979

  • 9211 measured reflections

  • 3170 independent reflections

  • 2222 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.169

  • S = 1.08

  • 3170 reflections

  • 272 parameters

  • 51 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.833 (16) 1.864 (17) 2.692 (2) 173 (3)
C9—H9⋯O4ii 0.93 2.60 3.438 (10) 150
N2—H2A⋯O5 0.90 (2) 2.03 (2) 2.9082 (19) 166.4 (19)
O6—H6A⋯O1 0.799 (18) 2.05 (2) 2.834 (2) 167 (4)
O6—H6B⋯O4 0.843 (18) 1.89 (2) 2.728 (7) 175 (4)
C5—H5⋯O5 0.93 2.48 3.2860 (18) 145
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (6.01). Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (6.01). Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (6.01). Bruker AXS, Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

In recent years, hydrazones, possessing different donor atoms or cavities, have been investigated due to their coordinating capability and some biological activities, especially in bis-arylhydrazones. (Paolucci et al., 1985; Chen et al., 1996, 1997) 2,6-dipicolinoylhydrazine as a multidentate ligand is very useful for the research of coordination modes. As part of our continuing studies of the structures of hydrazones, we report here the synthesis and crystal structure of a novel tridentate ligand. One water molecule is inserted in the cavity of the hydrazone, each of the remaining water molecules and dimethylformamide solvents are located at the two sides of pyridyl ring. N, N-dimethylformamide molecules are disordered over two sites with unequal occupancy (Figure 1). In the title compound (I), the two spacer units (one is from atom C1 to C6, another is from atom C1a to C6a.) adopt a nearly planar all-trans conformation. The pyridyl ring is effectively coplanar with two spacer units. The two independent aryl rings are essentially coplanar with these spacer units, while the nitro-groups are slightly twisted out of the plane of these spacer units. The independent molecular components are linked by hydrogen bonds.

Related literature top

Tridentate ligands with 2,6-dipicolinoyhydrazone have been intensively studied due to their interesting coordination modes (Paolucci et al., 1985; Chen et al., 1996, 1997).

Experimental top

To a solution of 3-nitrobenzaldehyde (1.66 g, 11 mmol) in absolute ethanol (40 ml) a suspension of 2,6-dipicolinoyhydrazine in the same solvent (50 ml) was added at 353 K. The mixture was left to react at reflux for 10 h, then the pale yellow product was filtered, washed with hot ethanol (20 ml portion) three times and dried in vacuo. Crystals suitable for X-ray diffraction were obtained from dimethylformamide-methanol (3:1 v/v) over a period of about three weeks. Melting point: 601 K.

Refinement top

Corresponding distances and angles of the disordered DMF molecule, were restrained to be equal. Their anisotropic displacement parameters were restrained to an isotropic shape. Refinement of the site-occupancy factors for the two components gave values of 0.78 (1) and 0.22 (1) for the major and minor components. All the H atoms bonded to C atoms were set to ideal geometrical positions with C–H ranging from 0.93Å to 0.96Å and with Uiso(H) =1.2Ueq(aromatic C) or 1.5Ueq(methyl C). Coordinates of the H atoms bonded to N or O atoms were refined with Uiso(H) =1.2Ueq(N) or 1.5Ueq(O), respectively.

Structure description top

In recent years, hydrazones, possessing different donor atoms or cavities, have been investigated due to their coordinating capability and some biological activities, especially in bis-arylhydrazones. (Paolucci et al., 1985; Chen et al., 1996, 1997) 2,6-dipicolinoylhydrazine as a multidentate ligand is very useful for the research of coordination modes. As part of our continuing studies of the structures of hydrazones, we report here the synthesis and crystal structure of a novel tridentate ligand. One water molecule is inserted in the cavity of the hydrazone, each of the remaining water molecules and dimethylformamide solvents are located at the two sides of pyridyl ring. N, N-dimethylformamide molecules are disordered over two sites with unequal occupancy (Figure 1). In the title compound (I), the two spacer units (one is from atom C1 to C6, another is from atom C1a to C6a.) adopt a nearly planar all-trans conformation. The pyridyl ring is effectively coplanar with two spacer units. The two independent aryl rings are essentially coplanar with these spacer units, while the nitro-groups are slightly twisted out of the plane of these spacer units. The independent molecular components are linked by hydrogen bonds.

Tridentate ligands with 2,6-dipicolinoyhydrazone have been intensively studied due to their interesting coordination modes (Paolucci et al., 1985; Chen et al., 1996, 1997).

Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
N2,N2'—Bis(3-nitrobenzylidene)pyridine-2,6-dicarbohydrazide dimethylformamide disolvate trihydrate top
Crystal data top
C21H15N7O6·2C3H7NO·3H2OF(000) = 1392
Mr = 661.64Dx = 1.358 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2433 reflections
a = 24.704 (3) Åθ = 2.4–24.1°
b = 10.4815 (12) ŵ = 0.11 mm1
c = 14.4792 (16) ÅT = 273 K
β = 120.355 (2)°Block, pale yellow
V = 3235.2 (6) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3170 independent reflections
Radiation source: fine-focus sealed tube2222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3030
Tmin = 0.977, Tmax = 0.979k = 1212
9211 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1056P)2 + 0.1192P]
where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.43 e Å3
51 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H15N7O6·2C3H7NO·3H2OV = 3235.2 (6) Å3
Mr = 661.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.704 (3) ŵ = 0.11 mm1
b = 10.4815 (12) ÅT = 273 K
c = 14.4792 (16) Å0.22 × 0.20 × 0.20 mm
β = 120.355 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2222 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.979Rint = 0.018
9211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04951 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
3170 reflectionsΔρmin = 0.17 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.02389 (8)0.81428 (16)0.20004 (15)0.0577 (5)
C20.02453 (11)0.94590 (19)0.1985 (2)0.0813 (7)
H20.04150.98880.16270.098*
C30.00001.0127 (3)0.25000.0923 (11)
H30.00001.10150.25000.111*
C40.05053 (9)0.74204 (17)0.14262 (16)0.0583 (5)
C50.07425 (8)0.42180 (18)0.11595 (15)0.0603 (5)
H50.05740.39090.15620.072*
C60.09827 (8)0.33080 (17)0.06894 (15)0.0563 (5)
C70.09512 (10)0.20133 (19)0.08487 (19)0.0724 (6)
H70.07770.17460.12550.087*
C80.11679 (11)0.11154 (19)0.0428 (2)0.0797 (7)
H80.11350.02530.05430.096*
C90.14336 (10)0.1483 (2)0.01612 (18)0.0739 (6)
H90.15850.08820.04470.089*
C100.14703 (8)0.27662 (19)0.03173 (15)0.0601 (5)
C110.12441 (8)0.36987 (18)0.00764 (15)0.0562 (5)
H110.12650.45580.00620.067*
N10.00000.74859 (17)0.25000.0504 (5)
N20.05128 (7)0.61435 (14)0.15307 (13)0.0569 (4)
H2A0.0369 (9)0.573 (2)0.1909 (17)0.068*
N30.07557 (7)0.54085 (15)0.10391 (12)0.0569 (4)
N40.17601 (8)0.3184 (2)0.09403 (15)0.0781 (5)
O10.06961 (7)0.79807 (14)0.09078 (13)0.0815 (5)
O20.18130 (10)0.4303 (2)0.10546 (17)0.1116 (7)
O30.19383 (10)0.2370 (2)0.13148 (17)0.1126 (7)
O50.00000.44674 (18)0.25000.0710 (6)
H5A0.0265 (11)0.402 (2)0.3000 (19)0.107*
O60.07737 (13)0.7056 (2)0.08613 (17)0.1214 (8)
H6A0.070 (2)0.726 (4)0.040 (3)0.182*
H6B0.1015 (18)0.756 (3)0.094 (4)0.182*
C120.18750 (15)0.7702 (3)0.1301 (2)0.0744 (9)0.781 (4)
H12A0.17560.68600.13000.089*0.781 (4)
C130.2617 (2)0.6854 (4)0.1750 (4)0.1137 (14)0.781 (4)
H13A0.24870.60650.15860.171*0.781 (4)
H13B0.30650.69280.13250.171*0.781 (4)
H13C0.24910.68710.24950.171*0.781 (4)
C140.2445 (2)0.9163 (4)0.1734 (4)0.1282 (17)0.781 (4)
H14A0.22290.97720.15410.192*0.781 (4)
H14B0.23010.92350.24840.192*0.781 (4)
H14C0.28880.93270.13300.192*0.781 (4)
O40.1592 (3)0.8575 (10)0.1098 (8)0.096 (2)0.781 (4)
N50.2325 (5)0.7922 (5)0.1510 (10)0.073 (2)0.781 (4)
C12'0.1999 (5)0.8886 (10)0.1353 (9)0.082 (3)0.219 (4)
H12B0.21770.96860.11090.099*0.219 (4)
C13'0.2179 (6)0.6684 (10)0.1392 (10)0.095 (4)0.219 (4)
H13D0.18130.66420.13240.142*0.219 (4)
H13E0.25440.64880.07160.142*0.219 (4)
H13F0.21410.60780.19190.142*0.219 (4)
C14'0.2747 (6)0.8196 (17)0.1897 (12)0.121 (6)0.219 (4)
H14D0.27480.90890.20450.181*0.219 (4)
H14E0.26950.77070.24970.181*0.219 (4)
H14F0.31370.79730.12720.181*0.219 (4)
O4'0.1497 (12)0.849 (4)0.142 (3)0.099 (8)0.219 (4)
N5'0.2237 (16)0.7926 (15)0.171 (3)0.062 (6)0.219 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0639 (10)0.0489 (10)0.0711 (12)0.0025 (8)0.0420 (10)0.0030 (8)
C20.1114 (17)0.0489 (11)0.1180 (19)0.0064 (10)0.0832 (16)0.0050 (10)
C30.136 (3)0.0412 (15)0.138 (3)0.0000.097 (3)0.000
C40.0662 (11)0.0531 (11)0.0706 (12)0.0024 (8)0.0455 (10)0.0034 (8)
C50.0680 (11)0.0576 (11)0.0738 (13)0.0000 (8)0.0493 (10)0.0025 (9)
C60.0582 (10)0.0519 (10)0.0657 (11)0.0016 (8)0.0363 (9)0.0012 (8)
C70.0847 (13)0.0597 (12)0.0920 (15)0.0015 (10)0.0589 (13)0.0080 (10)
C80.0949 (15)0.0510 (11)0.1070 (18)0.0048 (10)0.0612 (15)0.0002 (10)
C90.0766 (13)0.0655 (13)0.0842 (15)0.0101 (10)0.0441 (12)0.0066 (10)
C100.0562 (10)0.0695 (12)0.0600 (11)0.0031 (8)0.0334 (9)0.0026 (9)
C110.0557 (10)0.0547 (10)0.0615 (11)0.0002 (7)0.0319 (9)0.0001 (8)
N10.0563 (11)0.0434 (10)0.0603 (12)0.0000.0359 (10)0.000
N20.0685 (9)0.0526 (9)0.0702 (10)0.0018 (7)0.0503 (9)0.0019 (7)
N30.0634 (9)0.0556 (9)0.0663 (9)0.0017 (7)0.0434 (8)0.0011 (7)
N40.0780 (11)0.0949 (14)0.0733 (12)0.0066 (10)0.0469 (10)0.0077 (10)
O10.1125 (12)0.0662 (9)0.1074 (12)0.0021 (8)0.0861 (11)0.0069 (7)
O20.1550 (18)0.0978 (14)0.1371 (17)0.0115 (12)0.1145 (15)0.0072 (11)
O30.1362 (16)0.1242 (15)0.1246 (16)0.0128 (12)0.1007 (15)0.0147 (12)
O50.0975 (16)0.0544 (12)0.0868 (15)0.0000.0654 (13)0.000
O60.1643 (19)0.1363 (18)0.1002 (14)0.0651 (14)0.0939 (14)0.0337 (12)
C120.090 (2)0.0651 (18)0.080 (2)0.0044 (15)0.0518 (17)0.0003 (14)
C130.114 (3)0.124 (3)0.128 (3)0.012 (2)0.080 (3)0.008 (2)
C140.152 (4)0.118 (3)0.138 (3)0.064 (3)0.091 (3)0.016 (3)
O40.119 (3)0.088 (2)0.120 (6)0.003 (3)0.090 (4)0.002 (3)
N50.073 (3)0.085 (3)0.071 (6)0.0111 (18)0.044 (4)0.0078 (18)
C12'0.094 (6)0.074 (6)0.098 (7)0.016 (5)0.063 (5)0.008 (5)
C13'0.092 (7)0.077 (7)0.105 (8)0.010 (6)0.043 (6)0.016 (6)
C14'0.104 (8)0.175 (14)0.133 (10)0.008 (8)0.096 (8)0.035 (9)
O4'0.103 (9)0.126 (13)0.088 (13)0.006 (8)0.063 (8)0.002 (9)
N5'0.064 (9)0.083 (9)0.043 (8)0.004 (6)0.030 (7)0.001 (5)
Geometric parameters (Å, º) top
C1—N11.333 (2)N4—O21.202 (3)
C1—C21.380 (3)O5—O66.641 (2)
C1—C41.500 (3)O5—H5A0.833 (16)
C2—C31.368 (3)O6—H6A0.799 (18)
C2—H20.9300O6—H6B0.843 (18)
C3—C2i1.368 (3)C12—O41.272 (10)
C3—H30.9300C12—N51.312 (5)
C4—O11.220 (2)C12—H12A0.9300
C4—N21.346 (2)C13—N51.466 (6)
C5—N31.263 (2)C13—H13A0.9600
C5—C61.461 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C111.397 (3)C14—N51.408 (6)
C6—C71.385 (3)C14—H14A0.9600
C7—C81.369 (3)C14—H14B0.9600
C7—H70.9300C14—H14C0.9600
C8—C91.368 (3)C12'—O4'1.27 (2)
C8—H80.9300C12'—N5'1.394 (14)
C9—C101.375 (3)C12'—H12B0.9300
C9—H90.9300C13'—N5'1.414 (14)
C10—C111.384 (3)C13'—H13D0.9600
C10—N41.473 (3)C13'—H13E0.9600
C11—H110.9300C13'—H13F0.9600
N1—C1i1.333 (2)C14'—N5'1.440 (14)
N2—N31.376 (2)C14'—H14D0.9600
N2—O52.9082 (19)C14'—H14E0.9600
N2—H2A0.90 (2)C14'—H14F0.9600
N4—O31.207 (2)
N1—C1—C2122.48 (18)O2—N4—C10119.66 (18)
N1—C1—C4118.58 (15)N2—O5—H5A115 (2)
C2—C1—C4118.93 (17)O6—O5—H5A118 (2)
C3—C2—C1119.4 (2)O5—O6—H6B146 (3)
C3—C2—H2120.3H6A—O6—H6B114 (3)
C1—C2—H2120.3O4—C12—N5123.7 (5)
C2i—C3—C2118.4 (3)O4—C12—H12A118.2
C2i—C3—H3120.8N5—C12—H12A118.2
C2—C3—H3120.8N5—C13—H13A109.5
O1—C4—N2124.07 (17)N5—C13—H13B109.5
O1—C4—C1120.80 (16)H13A—C13—H13B109.5
N2—C4—C1115.13 (15)N5—C13—H13C109.5
N3—C5—C6122.41 (17)H13A—C13—H13C109.5
N3—C5—H5118.8H13B—C13—H13C109.5
C6—C5—H5118.8N5—C14—H14A109.5
C11—C6—C7118.41 (17)N5—C14—H14B109.5
C11—C6—C5122.13 (16)H14A—C14—H14B109.5
C7—C6—C5119.46 (17)N5—C14—H14C109.5
C8—C7—C6122.1 (2)H14A—C14—H14C109.5
C8—C7—H7118.9H14B—C14—H14C109.5
C6—C7—H7118.9C12—N5—C14121.2 (5)
C7—C8—C9120.19 (19)C12—N5—C13119.8 (4)
C7—C8—H8119.9C14—N5—C13117.6 (4)
C9—C8—H8119.9O4'—C12'—N5'109 (2)
C10—C9—C8118.04 (19)O4'—C12'—H12B125.7
C10—C9—H9121.0N5'—C12'—H12B125.7
C8—C9—H9121.0N5'—C13'—H13D109.5
C9—C10—C11123.34 (19)N5'—C13'—H13E109.5
C9—C10—N4118.96 (18)H13D—C13'—H13E109.5
C11—C10—N4117.70 (18)N5'—C13'—H13F109.5
C6—C11—C10117.86 (17)H13D—C13'—H13F109.5
C6—C11—H11121.1H13E—C13'—H13F109.5
C10—C11—H11121.1N5'—C14'—H14D109.5
C1i—N1—C1117.8 (2)N5'—C14'—H14E109.5
C4—N2—N3118.92 (15)H14D—C14'—H14E109.5
C4—N2—O5132.09 (12)N5'—C14'—H14F109.5
N3—N2—O5108.77 (11)H14D—C14'—H14F109.5
C4—N2—H2A124.1 (13)H14E—C14'—H14F109.5
N3—N2—H2A117.0 (13)C14'—N5'—C13'119.0 (15)
C5—N3—N2115.69 (15)C14'—N5'—C12'120.1 (16)
O3—N4—O2122.6 (2)C13'—N5'—C12'114.2 (14)
O3—N4—C10117.8 (2)
N1—C1—C2—C30.1 (3)C2—C1—N1—C1i0.07 (15)
C4—C1—C2—C3179.59 (17)C4—C1—N1—C1i179.52 (19)
C1—C2—C3—C2i0.07 (14)O1—C4—N2—N30.8 (3)
N1—C1—C4—O1175.80 (17)C1—C4—N2—N3179.30 (15)
C2—C1—C4—O13.7 (3)O1—C4—N2—O5173.09 (14)
N1—C1—C4—N24.1 (2)C1—C4—N2—O56.8 (3)
C2—C1—C4—N2176.45 (18)C6—C5—N3—N2179.94 (16)
N3—C5—C6—C110.1 (3)C4—N2—N3—C5179.27 (17)
N3—C5—C6—C7179.70 (17)O5—N2—N3—C54.04 (19)
C11—C6—C7—C80.1 (3)C9—C10—N4—O32.0 (3)
C5—C6—C7—C8179.9 (2)C11—C10—N4—O3177.54 (19)
C6—C7—C8—C90.8 (4)C9—C10—N4—O2177.7 (2)
C7—C8—C9—C100.4 (4)C11—C10—N4—O22.7 (3)
C8—C9—C10—C111.0 (3)C4—N2—O5—O6132.8 (3)
C8—C9—C10—N4179.4 (2)N3—N2—O5—O641.54 (13)
C7—C6—C11—C101.4 (3)O4—C12—N5—C1412.8 (15)
C5—C6—C11—C10178.74 (17)O4—C12—N5—C13179.1 (8)
C9—C10—C11—C61.9 (3)O4'—C12'—N5'—C14'170 (3)
N4—C10—C11—C6178.49 (16)O4'—C12'—N5'—C13'39 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6ii0.83 (2)1.86 (2)2.692 (2)173 (3)
C9—H9···O4iii0.932.603.438 (10)150
N2—H2A···O50.90 (2)2.03 (2)2.9082 (19)166.4 (19)
O6—H6A···O10.80 (2)2.05 (2)2.834 (2)167 (4)
O6—H6B···O40.84 (2)1.89 (2)2.728 (7)175 (4)
C5—H5···O50.932.483.2860 (18)145
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H15N7O6·2C3H7NO·3H2O
Mr661.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)24.704 (3), 10.4815 (12), 14.4792 (16)
β (°) 120.355 (2)
V3)3235.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.977, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
9211, 3170, 2222
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.169, 1.08
No. of reflections3170
No. of parameters272
No. of restraints51
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.17

Computer programs: SMART (Bruker 2001), SAINT-Plus (Bruker 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.833 (16)1.864 (17)2.692 (2)173 (3)
C9—H9···O4ii0.932.603.438 (10)150.4
N2—H2A···O50.90 (2)2.03 (2)2.9082 (19)166.4 (19)
O6—H6A···O10.799 (18)2.05 (2)2.834 (2)167 (4)
O6—H6B···O40.843 (18)1.89 (2)2.728 (7)175 (4)
C5—H5···O50.932.483.2860 (18)145.4
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Science Foundation of the South Central National University (grant No. y2205007) and Hubei Provincial Natural Science Foundation of China (grant No. 2007ABA345)

References

First citationBruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (6.01). Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. Y., Zhan, S. Z., Hu, C. J., Meng, Q. J. & Liu, Y. J. (1997). J. Chem. Soc. Dalton Trans. pp. 245–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, X. Y., Zhan, S. Z. & Meng, Q. J. (1996). Transition Met. Chem. 21, 345–348.  CrossRef CAS Web of Science Google Scholar
First citationPaolucci, G., Stelluto, S. & Sitran, S. (1985). Inorg. Chim. Acta, 110, 19–23.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds