metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diaceto­nitrile­[N,N′-bis­­(3,4,5-tri­meth­oxy­benzyl­­idene)ethyl­enedi­amine]copper(I) perchlorate

aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran, bSchool of Chemistry and Biological Science, Yili Normal University, Yining 835000, People's Republic of China, and cCollege of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: cpzyyan@hotmail.com

(Received 13 November 2007; accepted 6 December 2007; online 12 December 2007)

In the title compound, [Cu(C2H3N)2(C22H28N2O6)]ClO4, the Cu atom is coordinated by two N atoms from one bidentate Schiff base ligand and two N atoms from two acetonitrile groups. The Cu atom adopts a tetra­hedral geometry. The Cu—N(ligand) distances are 2.076 (3) and 2.089 (3) Å, and the Cu—N(acetonitrile) distances are 1.964 (4) and 1.975 (4) Å.

Related literature

For related literature, see: Amirnasr et al. (2006[Amirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713-717.]); Chowdhury et al. (2000[Chowdhury, S., Patra, G. K., Drew, M. G. B., Chattopadhyay, N. & Datta, D. (2000). J. Chem. Soc. Dalton Trans. pp. 235-237.]); Dakin et al. (2000[Dakin, L. A., Ong, P. C., Panek, J. S., Staples, R. J. & Stavropoulos, P. (2000). Organometallics, 19, 2896-2908.]); Khalaji et al. (2007[Khalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3N)2(C22H28N2O6)]ClO4

  • Mr = 661.56

  • Triclinic, [P \overline 1]

  • a = 9.869 (2) Å

  • b = 11.903 (3) Å

  • c = 14.904 (3) Å

  • α = 80.537 (4)°

  • β = 71.677 (4)°

  • γ = 68.285 (4)°

  • V = 1541.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.862

  • 8034 measured reflections

  • 5414 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.01

  • 5414 reflections

  • 387 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes have long been used in organic synthesis as catalyst (Dakin et al., 2000), and the design of supramolecular arrays (Amirnasr et al., 2006).

The coordination of the Cu atom is nearly tetrahedral (Fig. 1), with four N atoms, two from two acetonitrile groups and the other two from one bidentate Schiff base ligand (3,4,5-MeO-ba)2en, forming the CuN4 chromophore. Although a tetrahedral geometry is to be expected for a four-coordinated Cu(I) complexes, the geometry about the Cu(I) in this structure is distorted by the bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is 84.97 (13) and N(3)—Cu(1)—N(4) angle is 103.04 (16)° in this structure being smaller than the tetrahedral values, however, other angles are larger than the tetrahedral values, which posses approximate C2 local symmetry. The Cu—N bond lengths [Cu(1)—N(3), 1.964 (4); Cu(1)—N(4), 1.975 (4); Cu(1)—N(2), 2.076 (3) and Cu(1)—N(1) 2.089 (3) Å] agree well with the same distances in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The N(1)=C(7) and N(2)=C(13) bond lengths of 1.274 (5) and 1.277 (5) Å, respectively, conform to the value for a double bond, while the C(11)—N(1) and C(12)—N(2) bond lengths of 1.475 (5) and 1.468 (5) Å, respectively, conform to the value for a single bond and are comparable to the corresponding values observed in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The ligand adopts a Z,Z configuration in this structure.

Related literature top

For related literature, see: Amirnasr et al. (2006); Chowdhury et al. (2000); Dakin et al. (2000); Khalaji et al. (2007).

Experimental top

The N,N'-Bis(3,4,5-trimethoxybenzylidene)ethylenediamine (3,4,5-MeO-ba)2en) ligand was prepared as reported elsewhere (Khalaji et al., 2007). The reaction between [Cu(CH3CN)4]ClO4 (0.326 mg, 0.1 mol) and the (3,4,5-MeO-ba)2en ligand (0.416 g, 0.1 mol) in 10 ml CH3CN at room temperature lead to the formation of the copper(I) complex.

Refinement top

All H atoms were positioned geometrically (C—H=0.93–0.97 Å), and refined as riding with Uiso(H)=1.2Ueq(carrier) or 1.5eq(methyl groups). All O—O distances of the ClO4- anion have been restrained to 2.35 (1) Å, and the Cl—O distances to 1.44 (1) Å. The displacement parameters of these O atoms have been restrained to an isotropic behaviour with an effective standard deviation of 0.01.

Structure description top

Copper(I) complexes have long been used in organic synthesis as catalyst (Dakin et al., 2000), and the design of supramolecular arrays (Amirnasr et al., 2006).

The coordination of the Cu atom is nearly tetrahedral (Fig. 1), with four N atoms, two from two acetonitrile groups and the other two from one bidentate Schiff base ligand (3,4,5-MeO-ba)2en, forming the CuN4 chromophore. Although a tetrahedral geometry is to be expected for a four-coordinated Cu(I) complexes, the geometry about the Cu(I) in this structure is distorted by the bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is 84.97 (13) and N(3)—Cu(1)—N(4) angle is 103.04 (16)° in this structure being smaller than the tetrahedral values, however, other angles are larger than the tetrahedral values, which posses approximate C2 local symmetry. The Cu—N bond lengths [Cu(1)—N(3), 1.964 (4); Cu(1)—N(4), 1.975 (4); Cu(1)—N(2), 2.076 (3) and Cu(1)—N(1) 2.089 (3) Å] agree well with the same distances in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The N(1)=C(7) and N(2)=C(13) bond lengths of 1.274 (5) and 1.277 (5) Å, respectively, conform to the value for a double bond, while the C(11)—N(1) and C(12)—N(2) bond lengths of 1.475 (5) and 1.468 (5) Å, respectively, conform to the value for a single bond and are comparable to the corresponding values observed in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The ligand adopts a Z,Z configuration in this structure.

For related literature, see: Amirnasr et al. (2006); Chowdhury et al. (2000); Dakin et al. (2000); Khalaji et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Diacetonitrile[N,N'-bis(3,4,5-trimethoxybenzylidene)ethylenediamine]copper(I) perchlorate top
Crystal data top
[Cu(C2H3N)2(C22H28N2O6)]ClO4Z = 2
Mr = 661.56F(000) = 688
Triclinic, P1Dx = 1.425 Mg m3
a = 9.869 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.903 (3) ÅCell parameters from 2161 reflections
c = 14.904 (3) Åθ = 2.3–22.6°
α = 80.537 (4)°µ = 0.85 mm1
β = 71.677 (4)°T = 294 K
γ = 68.285 (4)°Block, blue
V = 1541.9 (6) Å30.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5414 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.821, Tmax = 0.862k = 1414
8034 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0591P)2 + 1.2218P]
where P = (Fo2 + 2Fc2)/3
5414 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.62 e Å3
34 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C2H3N)2(C22H28N2O6)]ClO4γ = 68.285 (4)°
Mr = 661.56V = 1541.9 (6) Å3
Triclinic, P1Z = 2
a = 9.869 (2) ÅMo Kα radiation
b = 11.903 (3) ŵ = 0.85 mm1
c = 14.904 (3) ÅT = 294 K
α = 80.537 (4)°0.24 × 0.22 × 0.18 mm
β = 71.677 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5414 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3408 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.862Rint = 0.025
8034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05034 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.62 e Å3
5414 reflectionsΔρmin = 0.37 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.16626 (7)0.63549 (5)0.25396 (4)0.0508 (2)
O10.3716 (4)0.9169 (3)0.3552 (2)0.0588 (9)
O20.5608 (4)0.8412 (3)0.4633 (2)0.0591 (9)
O30.7220 (4)0.6058 (3)0.4854 (2)0.0602 (9)
O40.3452 (4)0.5705 (3)0.0206 (2)0.0612 (9)
O50.4326 (3)0.8102 (3)0.0469 (2)0.0612 (9)
O60.3194 (4)0.8895 (3)0.1522 (2)0.0575 (8)
N10.3752 (4)0.5043 (3)0.2585 (2)0.0410 (8)
N20.1072 (4)0.4906 (3)0.2395 (2)0.0419 (8)
N30.0368 (5)0.7333 (4)0.3633 (3)0.0572 (10)
N40.1843 (5)0.7587 (4)0.1488 (3)0.0563 (10)
C10.4243 (5)0.7104 (4)0.3181 (3)0.0429 (10)
H10.35720.73560.28090.051*
C20.4436 (5)0.7945 (4)0.3627 (3)0.0430 (10)
C30.5417 (5)0.7562 (4)0.4204 (3)0.0454 (11)
C40.6249 (5)0.6343 (4)0.4300 (3)0.0445 (11)
C50.6075 (5)0.5508 (4)0.3837 (3)0.0413 (10)
H50.66430.46920.38900.050*
C60.5055 (4)0.5889 (4)0.3293 (3)0.0390 (10)
C70.4868 (5)0.4930 (4)0.2891 (3)0.0414 (10)
H70.56270.41750.28560.050*
C80.2938 (6)0.9615 (4)0.2841 (4)0.0693 (15)
H8A0.36060.93020.22450.104*
H8B0.26111.04830.27920.104*
H8C0.20700.93590.30060.104*
C90.4800 (7)0.8526 (5)0.5606 (3)0.0781 (17)
H9A0.37370.87250.56780.117*
H9B0.49540.91560.58470.117*
H9C0.51620.77740.59520.117*
C100.8171 (5)0.4835 (5)0.4891 (4)0.0629 (14)
H10A0.75600.43300.51540.094*
H10B0.88220.47420.52800.094*
H10C0.87780.46010.42630.094*
C110.3764 (5)0.3933 (4)0.2262 (3)0.0454 (11)
H11A0.45200.32310.24620.054*
H11B0.40170.39720.15760.054*
C120.2208 (5)0.3823 (4)0.2684 (3)0.0484 (11)
H12A0.21860.31070.24660.058*
H12B0.19790.37440.33680.058*
C130.0175 (5)0.4718 (4)0.2024 (3)0.0438 (10)
H130.02890.39150.19860.053*
C140.1009 (5)0.5636 (4)0.1656 (3)0.0415 (10)
C150.1659 (5)0.5225 (4)0.1129 (3)0.0463 (11)
H150.13540.44010.10480.056*
C160.2752 (5)0.6037 (4)0.0728 (3)0.0459 (11)
C170.3221 (5)0.7267 (4)0.0850 (3)0.0472 (11)
C180.2617 (5)0.7676 (4)0.1413 (3)0.0439 (10)
C190.1508 (5)0.6868 (4)0.1807 (3)0.0437 (10)
H190.10960.71440.21720.052*
C200.3010 (6)0.4441 (5)0.0093 (4)0.0627 (14)
H20A0.19540.41370.02450.094*
H20B0.36030.43120.02550.094*
H20C0.31740.40240.07050.094*
C210.3830 (7)0.8362 (5)0.0515 (4)0.0844 (18)
H21A0.28350.84170.06720.127*
H21B0.45210.91180.06880.127*
H21C0.37970.77280.08540.127*
C220.2715 (6)0.9347 (4)0.2153 (4)0.0640 (14)
H22A0.29700.89690.27740.096*
H22B0.32151.02070.21790.096*
H22C0.16360.91680.19320.096*
C230.1908 (6)0.8331 (5)0.0939 (4)0.0683 (15)
C240.1990 (9)0.9299 (7)0.0201 (6)0.140 (3)
H24A0.14830.92670.02440.211*
H24B0.30340.91960.01210.211*
H24C0.15071.00690.04840.211*
C250.0322 (6)0.7962 (5)0.4216 (4)0.0623 (13)
C260.1195 (9)0.8770 (7)0.4981 (5)0.122 (3)
H26A0.05300.88310.53080.183*
H26B0.19410.84580.54150.183*
H26C0.16940.95580.47280.183*
Cl10.90012 (16)0.16995 (12)0.24864 (12)0.0791 (5)
O70.7647 (5)0.2159 (4)0.2193 (4)0.1252 (17)
O80.8825 (8)0.2455 (5)0.3203 (4)0.171 (2)
O90.9177 (5)0.0509 (3)0.2878 (4)0.1263 (18)
O101.0251 (6)0.1770 (5)0.1751 (4)0.181 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0576 (4)0.0406 (3)0.0556 (4)0.0112 (3)0.0229 (3)0.0059 (3)
O10.073 (2)0.0404 (18)0.062 (2)0.0110 (16)0.0250 (18)0.0062 (15)
O20.086 (2)0.061 (2)0.0467 (19)0.0406 (18)0.0180 (18)0.0074 (16)
O30.070 (2)0.061 (2)0.065 (2)0.0230 (18)0.0396 (19)0.0019 (17)
O40.060 (2)0.067 (2)0.069 (2)0.0138 (17)0.0355 (18)0.0186 (17)
O50.0487 (19)0.072 (2)0.053 (2)0.0032 (17)0.0211 (17)0.0051 (17)
O60.064 (2)0.0464 (19)0.062 (2)0.0118 (16)0.0244 (18)0.0060 (16)
N10.046 (2)0.041 (2)0.041 (2)0.0138 (16)0.0177 (17)0.0072 (16)
N20.046 (2)0.040 (2)0.045 (2)0.0157 (17)0.0179 (18)0.0002 (16)
N30.062 (3)0.053 (2)0.054 (3)0.012 (2)0.017 (2)0.009 (2)
N40.062 (3)0.051 (2)0.057 (3)0.019 (2)0.021 (2)0.001 (2)
C10.041 (2)0.047 (3)0.043 (3)0.016 (2)0.017 (2)0.000 (2)
C20.044 (2)0.039 (2)0.043 (3)0.014 (2)0.007 (2)0.0030 (19)
C30.059 (3)0.050 (3)0.035 (2)0.030 (2)0.011 (2)0.002 (2)
C40.048 (3)0.053 (3)0.039 (2)0.024 (2)0.015 (2)0.003 (2)
C50.040 (2)0.039 (2)0.046 (3)0.0119 (19)0.017 (2)0.0001 (19)
C60.037 (2)0.043 (2)0.036 (2)0.0124 (19)0.009 (2)0.0067 (19)
C70.040 (2)0.037 (2)0.045 (3)0.0072 (19)0.013 (2)0.0063 (19)
C80.078 (4)0.043 (3)0.079 (4)0.005 (3)0.034 (3)0.005 (3)
C90.112 (5)0.076 (4)0.052 (3)0.038 (4)0.016 (3)0.018 (3)
C100.050 (3)0.081 (4)0.057 (3)0.013 (3)0.024 (3)0.005 (3)
C110.047 (3)0.041 (2)0.051 (3)0.010 (2)0.020 (2)0.010 (2)
C120.059 (3)0.038 (2)0.056 (3)0.014 (2)0.031 (2)0.001 (2)
C130.047 (3)0.041 (2)0.049 (3)0.020 (2)0.015 (2)0.003 (2)
C140.039 (2)0.046 (3)0.042 (2)0.016 (2)0.012 (2)0.002 (2)
C150.042 (3)0.051 (3)0.050 (3)0.016 (2)0.014 (2)0.008 (2)
C160.040 (3)0.062 (3)0.039 (2)0.018 (2)0.011 (2)0.012 (2)
C170.040 (3)0.059 (3)0.038 (2)0.011 (2)0.010 (2)0.006 (2)
C180.042 (3)0.046 (3)0.040 (2)0.013 (2)0.006 (2)0.007 (2)
C190.046 (3)0.050 (3)0.040 (2)0.020 (2)0.011 (2)0.006 (2)
C200.066 (3)0.073 (4)0.063 (3)0.028 (3)0.026 (3)0.017 (3)
C210.091 (4)0.086 (4)0.054 (4)0.005 (3)0.024 (3)0.006 (3)
C220.079 (4)0.051 (3)0.067 (3)0.023 (3)0.020 (3)0.011 (3)
C230.058 (3)0.074 (4)0.072 (4)0.026 (3)0.020 (3)0.013 (3)
C240.127 (7)0.140 (7)0.138 (7)0.061 (6)0.040 (6)0.082 (6)
C250.064 (3)0.059 (3)0.061 (3)0.015 (3)0.018 (3)0.008 (3)
C260.122 (6)0.130 (6)0.088 (5)0.010 (5)0.003 (4)0.061 (5)
Cl10.0556 (8)0.0482 (8)0.1228 (13)0.0165 (6)0.0139 (9)0.0000 (8)
O70.096 (3)0.092 (3)0.170 (5)0.005 (3)0.056 (3)0.015 (3)
O80.241 (6)0.128 (4)0.180 (5)0.090 (4)0.064 (5)0.029 (4)
O90.115 (4)0.062 (3)0.216 (5)0.036 (3)0.077 (4)0.029 (3)
O100.120 (4)0.152 (5)0.209 (6)0.055 (4)0.053 (4)0.015 (4)
Geometric parameters (Å, º) top
Cu1—N31.964 (4)C10—H10B0.9600
Cu1—N41.975 (4)C10—H10C0.9600
Cu1—N22.076 (3)C11—C121.511 (6)
Cu1—N12.089 (3)C11—H11A0.9700
O1—C21.367 (5)C11—H11B0.9700
O1—C81.422 (5)C12—H12A0.9700
O2—C31.377 (5)C12—H12B0.9700
O2—C91.420 (6)C13—C141.456 (6)
O3—C41.372 (5)C13—H130.9300
O3—C101.414 (6)C14—C151.394 (6)
O4—C161.372 (5)C14—C191.395 (6)
O4—C201.425 (5)C15—C161.378 (6)
O5—C171.379 (5)C15—H150.9300
O5—C211.413 (6)C16—C171.386 (6)
O6—C181.366 (5)C17—C181.400 (6)
O6—C221.426 (5)C18—C191.382 (6)
N1—C71.274 (5)C19—H190.9300
N1—C111.475 (5)C20—H20A0.9600
N2—C131.277 (5)C20—H20B0.9600
N2—C121.468 (5)C20—H20C0.9600
N3—C251.115 (6)C21—H21A0.9600
N4—C231.108 (6)C21—H21B0.9600
C1—C61.382 (6)C21—H21C0.9600
C1—C21.385 (6)C22—H22A0.9600
C1—H10.9300C22—H22B0.9600
C2—C31.398 (6)C22—H22C0.9600
C3—C41.387 (6)C23—C241.463 (8)
C4—C51.385 (6)C24—H24A0.9600
C5—C61.390 (5)C24—H24B0.9600
C5—H50.9300C24—H24C0.9600
C6—C71.465 (5)C25—C261.449 (8)
C7—H70.9300C26—H26A0.9600
C8—H8A0.9600C26—H26B0.9600
C8—H8B0.9600C26—H26C0.9600
C8—H8C0.9600Cl1—O101.387 (4)
C9—H9A0.9600Cl1—O91.410 (4)
C9—H9B0.9600Cl1—O71.422 (4)
C9—H9C0.9600Cl1—O81.436 (4)
C10—H10A0.9600
N3—Cu1—N4103.04 (16)N2—C12—C11109.3 (3)
N3—Cu1—N2115.70 (15)N2—C12—H12A109.8
N4—Cu1—N2120.15 (14)C11—C12—H12A109.8
N3—Cu1—N1120.65 (14)N2—C12—H12B109.8
N4—Cu1—N1112.89 (15)C11—C12—H12B109.8
N2—Cu1—N184.97 (13)H12A—C12—H12B108.3
C2—O1—C8117.0 (3)N2—C13—C14126.6 (4)
C3—O2—C9114.4 (4)N2—C13—H13116.7
C4—O3—C10116.4 (3)C14—C13—H13116.7
C16—O4—C20116.7 (4)C15—C14—C19119.9 (4)
C17—O5—C21114.5 (4)C15—C14—C13116.3 (4)
C18—O6—C22117.5 (4)C19—C14—C13123.8 (4)
C7—N1—C11115.9 (3)C16—C15—C14120.1 (4)
C7—N1—Cu1137.8 (3)C16—C15—H15119.9
C11—N1—Cu1105.8 (2)C14—C15—H15119.9
C13—N2—C12116.2 (3)O4—C16—C15123.6 (4)
C13—N2—Cu1137.6 (3)O4—C16—C17115.9 (4)
C12—N2—Cu1105.3 (2)C15—C16—C17120.4 (4)
C25—N3—Cu1174.3 (4)O5—C17—C16121.9 (4)
C23—N4—Cu1175.7 (4)O5—C17—C18118.5 (4)
C6—C1—C2119.5 (4)C16—C17—C18119.5 (4)
C6—C1—H1120.2O6—C18—C19124.5 (4)
C2—C1—H1120.2O6—C18—C17115.2 (4)
O1—C2—C1124.6 (4)C19—C18—C17120.3 (4)
O1—C2—C3115.3 (4)C18—C19—C14119.7 (4)
C1—C2—C3120.1 (4)C18—C19—H19120.2
O2—C3—C4120.6 (4)C14—C19—H19120.2
O2—C3—C2119.3 (4)O4—C20—H20A109.5
C4—C3—C2120.0 (4)O4—C20—H20B109.5
O3—C4—C5124.6 (4)H20A—C20—H20B109.5
O3—C4—C3115.8 (4)O4—C20—H20C109.5
C5—C4—C3119.6 (4)H20A—C20—H20C109.5
C4—C5—C6120.2 (4)H20B—C20—H20C109.5
C4—C5—H5119.9O5—C21—H21A109.5
C6—C5—H5119.9O5—C21—H21B109.5
C1—C6—C5120.5 (4)H21A—C21—H21B109.5
C1—C6—C7123.4 (4)O5—C21—H21C109.5
C5—C6—C7116.0 (4)H21A—C21—H21C109.5
N1—C7—C6125.5 (4)H21B—C21—H21C109.5
N1—C7—H7117.2O6—C22—H22A109.5
C6—C7—H7117.2O6—C22—H22B109.5
O1—C8—H8A109.5H22A—C22—H22B109.5
O1—C8—H8B109.5O6—C22—H22C109.5
H8A—C8—H8B109.5H22A—C22—H22C109.5
O1—C8—H8C109.5H22B—C22—H22C109.5
H8A—C8—H8C109.5N4—C23—C24178.9 (7)
H8B—C8—H8C109.5C23—C24—H24A109.5
O2—C9—H9A109.5C23—C24—H24B109.5
O2—C9—H9B109.5H24A—C24—H24B109.5
H9A—C9—H9B109.5C23—C24—H24C109.5
O2—C9—H9C109.5H24A—C24—H24C109.5
H9A—C9—H9C109.5H24B—C24—H24C109.5
H9B—C9—H9C109.5N3—C25—C26178.9 (6)
O3—C10—H10A109.5C25—C26—H26A109.5
O3—C10—H10B109.5C25—C26—H26B109.5
H10A—C10—H10B109.5H26A—C26—H26B109.5
O3—C10—H10C109.5C25—C26—H26C109.5
H10A—C10—H10C109.5H26A—C26—H26C109.5
H10B—C10—H10C109.5H26B—C26—H26C109.5
N1—C11—C12108.6 (3)O10—Cl1—O9112.7 (3)
N1—C11—H11A110.0O10—Cl1—O7111.7 (4)
C12—C11—H11A110.0O9—Cl1—O7108.6 (3)
N1—C11—H11B110.0O10—Cl1—O8106.8 (4)
C12—C11—H11B110.0O9—Cl1—O8109.3 (3)
H11A—C11—H11B108.4O7—Cl1—O8107.5 (3)
N3—Cu1—N1—C740.7 (5)C4—C5—C6—C7175.5 (4)
N4—Cu1—N1—C781.7 (5)C11—N1—C7—C6176.6 (4)
N2—Cu1—N1—C7157.7 (4)Cu1—N1—C7—C66.1 (7)
N3—Cu1—N1—C11130.4 (3)C1—C6—C7—N116.5 (7)
N4—Cu1—N1—C11107.2 (3)C5—C6—C7—N1161.2 (4)
N2—Cu1—N1—C1113.5 (3)C7—N1—C11—C12133.0 (4)
N3—Cu1—N2—C1386.2 (5)Cu1—N1—C11—C1240.4 (4)
N4—Cu1—N2—C1338.5 (5)C13—N2—C12—C11128.1 (4)
N1—Cu1—N2—C13152.1 (5)Cu1—N2—C12—C1143.2 (4)
N3—Cu1—N2—C12105.5 (3)N1—C11—C12—N258.1 (4)
N4—Cu1—N2—C12129.8 (3)C12—N2—C13—C14177.9 (4)
N1—Cu1—N2—C1216.2 (3)Cu1—N2—C13—C1410.5 (7)
N4—Cu1—N3—C2527 (4)N2—C13—C14—C15168.6 (4)
N2—Cu1—N3—C25160 (4)N2—C13—C14—C1911.8 (7)
N1—Cu1—N3—C25100 (4)C19—C14—C15—C162.5 (6)
N3—Cu1—N4—C2313 (6)C13—C14—C15—C16177.9 (4)
N2—Cu1—N4—C23143 (6)C20—O4—C16—C150.7 (6)
N1—Cu1—N4—C23119 (6)C20—O4—C16—C17178.5 (4)
C8—O1—C2—C111.7 (6)C14—C15—C16—O4179.6 (4)
C8—O1—C2—C3168.5 (4)C14—C15—C16—C170.4 (7)
C6—C1—C2—O1178.7 (4)C21—O5—C17—C1676.3 (6)
C6—C1—C2—C31.6 (6)C21—O5—C17—C18106.9 (5)
C9—O2—C3—C481.4 (5)O4—C16—C17—O50.1 (6)
C9—O2—C3—C2102.2 (5)C15—C16—C17—O5179.1 (4)
O1—C2—C3—O21.0 (6)O4—C16—C17—C18176.9 (4)
C1—C2—C3—O2179.2 (4)C15—C16—C17—C182.4 (7)
O1—C2—C3—C4177.5 (4)C22—O6—C18—C195.9 (6)
C1—C2—C3—C42.8 (6)C22—O6—C18—C17174.7 (4)
C10—O3—C4—C54.6 (6)O5—C17—C18—O60.6 (6)
C10—O3—C4—C3174.6 (4)C16—C17—C18—O6177.4 (4)
O2—C3—C4—O31.4 (6)O5—C17—C18—C19180.0 (4)
C2—C3—C4—O3177.8 (4)C16—C17—C18—C193.2 (6)
O2—C3—C4—C5177.9 (4)O6—C18—C19—C14179.5 (4)
C2—C3—C4—C51.4 (6)C17—C18—C19—C141.1 (6)
O3—C4—C5—C6179.8 (4)C15—C14—C19—C181.7 (6)
C3—C4—C5—C61.1 (6)C13—C14—C19—C18178.7 (4)
C2—C1—C6—C50.9 (6)Cu1—N4—C23—C24151 (34)
C2—C1—C6—C7176.6 (4)Cu1—N3—C25—C2687 (36)
C4—C5—C6—C12.3 (6)

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)2(C22H28N2O6)]ClO4
Mr661.56
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.869 (2), 11.903 (3), 14.904 (3)
α, β, γ (°)80.537 (4), 71.677 (4), 68.285 (4)
V3)1541.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
8034, 5414, 3408
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.01
No. of reflections5414
No. of parameters387
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.37

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

 

References

First citationAmirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713–717.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, S., Patra, G. K., Drew, M. G. B., Chattopadhyay, N. & Datta, D. (2000). J. Chem. Soc. Dalton Trans. pp. 235–237.  Web of Science CSD CrossRef Google Scholar
First citationDakin, L. A., Ong, P. C., Panek, J. S., Staples, R. J. & Stavropoulos, P. (2000). Organometallics, 19, 2896–2908.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds