organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′′-(4-Chloro­benzyl­­idene)-1′,1′′-di­methyl-3′-phenyl­acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-3′′-pyridine-2,4′′-dione

aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, India, bDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 14 November 2007; accepted 15 November 2007; online 6 December 2007)

In the title compound, C34H28Cl2N2O2, the five-membered pyrrolidine ring adopts an envelope conformation and the six-membered piperidinone ring is in a distorted half-chair conformation. The mol­ecular structure shows three intra­molecular C—H⋯O inter­actions and the crystal packing is stabilized through inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological importance of pyrrolidines, see: Babu & Raghunathan (2007[Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305-308.]); Boruah et al. (2007[Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535-4537.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Horri et al. (1986[Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038-1046.]); Karthikeyan et al. (2007[Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581-10586.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28Cl2N2O2

  • Mr = 567.48

  • Monoclinic, P 21 /c

  • a = 8.6561 (5) Å

  • b = 13.4732 (8) Å

  • c = 24.3962 (14) Å

  • β = 95.765 (12)°

  • V = 2830.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.22 × 0.19 × 0.15 mm

Data collection
  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.963, Tmax = 0.991

  • 5802 measured reflections

  • 4962 independent reflections

  • 3252 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.01

  • 4962 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.40 2.783 (3) 104
C14—H14⋯O1 0.98 2.44 2.818 (3) 102
C22—H22C⋯O2 0.96 2.56 3.101 (3) 116
C26—H26⋯O1i 0.93 2.38 3.307 (3) 176
C21—H21BCg1ii 0.97 2.73 3.559 (3) 144
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000[Bruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of pyrrolidines (Boruah et al., 2007), which are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes (Horri et al., 1986). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007). Synthesis of spiro compounds have drawn considerable attention of the chemists, in view of their very good antimycobacterial activity (Chande et al., 2005).

The envelope conformation of the five-membered ring in (I), is observed through the puckering analysis [q2 = 0.446 (2) Å and φ2 = 43.2 (3)°; Cremer & Pople, 1975] and the six-membered ring adopts distorted half-chair conformation [q2 = 0.289 (3) Å, φ2 = 117.1 (6)° and q3 = -0.454 (2) Å] (Fig. 1). The dihedral angle between the chlorophenyl rings are 86.1 (1)° and these rings are making angles of 35.6 (1) and 51.7 (1)° with the acenaphthene group.

The molecular structure of the title compound shows three intramolecular hydrogen bonds (Desiraju & Steiner, 1999). The crystal packing is stabilized through intermolecular C—H···O and C—H···π interactions (Fig. 2; Table 1). Atom H21B interacts with the centroid of the ring C1–C6.

Related literature top

For the biological importance of pyrrolidines, see: Babu & Raghunathan (2007); Boruah et al. (2007); Chande et al. (2005); Horri et al. (1986); Karthikeyan et al. (2007); Watson et al. (2001). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-4-chlorophenylmethylidene]tetrahydro-4(1H)-pyridinone 1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure 1-Methyl-4-(4-chlorophenyl)pyrrolo-(spiro[2.2'']-acenaphthene-1'')- spiro[3.3']-5'-(4-chlorophenyl-methylidene)-1'-methyltetrahydro-4'-(1H)- pyridinone as pale yellow solid.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) =1.2–1.5 Ueq (parent atom).

Structure description top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of pyrrolidines (Boruah et al., 2007), which are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes (Horri et al., 1986). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007). Synthesis of spiro compounds have drawn considerable attention of the chemists, in view of their very good antimycobacterial activity (Chande et al., 2005).

The envelope conformation of the five-membered ring in (I), is observed through the puckering analysis [q2 = 0.446 (2) Å and φ2 = 43.2 (3)°; Cremer & Pople, 1975] and the six-membered ring adopts distorted half-chair conformation [q2 = 0.289 (3) Å, φ2 = 117.1 (6)° and q3 = -0.454 (2) Å] (Fig. 1). The dihedral angle between the chlorophenyl rings are 86.1 (1)° and these rings are making angles of 35.6 (1) and 51.7 (1)° with the acenaphthene group.

The molecular structure of the title compound shows three intramolecular hydrogen bonds (Desiraju & Steiner, 1999). The crystal packing is stabilized through intermolecular C—H···O and C—H···π interactions (Fig. 2; Table 1). Atom H21B interacts with the centroid of the ring C1–C6.

For the biological importance of pyrrolidines, see: Babu & Raghunathan (2007); Boruah et al. (2007); Chande et al. (2005); Horri et al. (1986); Karthikeyan et al. (2007); Watson et al. (2001). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules, viewed down the a-axis.
5''-(4-Chlorobenzylidene)-1',1''-dimethyl-3'-phenylacenaphthene-1-spiro-2'- pyrrolidine-3'-spiro-3''-pyridine-2,4''-dione top
Crystal data top
C34H28Cl2N2O2F(000) = 1184
Mr = 567.48Dx = 1.332 Mg m3
Monoclinic, P21/cMelting point: 188 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6561 (5) ÅCell parameters from 25 reflections
b = 13.4732 (8) Åθ = 10.5–13.6°
c = 24.3962 (14) ŵ = 0.26 mm1
β = 95.765 (12)°T = 293 K
V = 2830.8 (3) Å3Block, yellow
Z = 40.22 × 0.19 × 0.15 mm
Data collection top
Nonius MACH3 sealed-tube
diffractometer
3252 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 116
Tmin = 0.963, Tmax = 0.991l = 2828
5802 measured reflections3 standard reflections every 60 min
4962 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.054P)2 + 1.3189P]
where P = (Fo2 + 2Fc2)/3
4962 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C34H28Cl2N2O2V = 2830.8 (3) Å3
Mr = 567.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6561 (5) ŵ = 0.26 mm1
b = 13.4732 (8) ÅT = 293 K
c = 24.3962 (14) Å0.22 × 0.19 × 0.15 mm
β = 95.765 (12)°
Data collection top
Nonius MACH3 sealed-tube
diffractometer
3252 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.963, Tmax = 0.9913 standard reflections every 60 min
5802 measured reflections intensity decay: none
4962 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
4962 reflectionsΔρmin = 0.38 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.79695 (10)0.00677 (7)1.03985 (4)0.0837 (3)
Cl10.16195 (12)0.09337 (8)0.47557 (3)0.0930 (3)
O10.59114 (19)0.19348 (15)0.77239 (7)0.0545 (5)
O20.01134 (19)0.30256 (13)0.83128 (7)0.0489 (4)
N10.1503 (2)0.11928 (13)0.79730 (7)0.0337 (4)
N20.3200 (2)0.40244 (14)0.83147 (8)0.0401 (5)
C110.3686 (2)0.22873 (16)0.82027 (8)0.0319 (5)
C120.4534 (3)0.17972 (17)0.77550 (9)0.0359 (5)
C230.2670 (2)0.32052 (16)0.79520 (9)0.0335 (5)
C340.1497 (3)0.31854 (16)0.70216 (9)0.0377 (5)
C140.4792 (3)0.27742 (17)0.86653 (9)0.0355 (5)
H140.56390.30750.84850.043*
C150.5539 (3)0.20976 (17)0.91073 (9)0.0381 (5)
C330.2867 (3)0.34333 (16)0.73527 (9)0.0363 (5)
C100.2658 (3)0.14841 (17)0.84174 (9)0.0347 (5)
H10A0.32830.09150.85430.042*
H10B0.21500.17370.87260.042*
C90.2157 (3)0.06607 (18)0.75306 (9)0.0397 (5)
H9A0.13780.06150.72170.048*
H9B0.24180.00090.76530.048*
C80.3586 (3)0.11524 (16)0.73517 (8)0.0347 (5)
C60.3385 (3)0.05882 (18)0.63499 (9)0.0404 (6)
C320.4090 (3)0.3797 (2)0.71080 (10)0.0494 (6)
H320.49940.39920.73180.059*
C250.0276 (3)0.29142 (17)0.73259 (9)0.0393 (5)
C280.0111 (4)0.2950 (2)0.61790 (11)0.0602 (8)
H280.02680.29460.57960.072*
C210.3811 (3)0.36211 (18)0.88423 (9)0.0417 (6)
H21A0.29870.33860.90510.050*
H21B0.44340.41060.90600.050*
C70.4055 (3)0.10997 (18)0.68459 (9)0.0403 (5)
H70.49620.14480.68030.048*
C10.2430 (3)0.02498 (18)0.63447 (10)0.0433 (6)
H10.21610.05030.66770.052*
C240.0865 (3)0.29821 (17)0.79197 (10)0.0383 (5)
C20.1876 (3)0.0710 (2)0.58587 (10)0.0495 (6)
H20.12370.12640.58630.059*
C300.2659 (4)0.3587 (2)0.62012 (11)0.0594 (7)
H300.26380.36220.58200.071*
C200.4931 (3)0.1922 (2)0.95991 (10)0.0581 (7)
H200.40020.22230.96660.070*
C50.3761 (3)0.0938 (2)0.58421 (10)0.0542 (7)
H50.43960.14930.58320.065*
C40.3216 (4)0.0480 (2)0.53541 (10)0.0632 (8)
H40.34790.07260.50200.076*
C270.1289 (4)0.2677 (2)0.64769 (12)0.0646 (8)
H270.22320.24900.62890.078*
C260.1144 (3)0.2666 (2)0.70582 (12)0.0541 (7)
H260.19770.24970.72520.065*
C130.0192 (3)0.0667 (2)0.81641 (10)0.0503 (6)
H13A0.05290.04930.78540.075*
H13B0.03140.10860.84090.075*
H13C0.05540.00750.83550.075*
C180.7050 (3)0.0867 (2)0.99047 (11)0.0529 (7)
C30.2282 (3)0.0340 (2)0.53678 (10)0.0556 (7)
C160.6941 (3)0.1650 (2)0.90364 (11)0.0581 (7)
H160.73970.17700.87130.070*
C170.7690 (3)0.1030 (2)0.94300 (11)0.0635 (8)
H170.86230.07280.93680.076*
C190.5681 (4)0.1303 (3)0.99969 (11)0.0674 (9)
H190.52480.11871.03250.081*
C290.1345 (3)0.32391 (18)0.64422 (10)0.0474 (6)
C220.2206 (3)0.48950 (19)0.83214 (12)0.0555 (7)
H22A0.18720.50910.79500.083*
H22B0.27750.54290.85080.083*
H22C0.13160.47400.85110.083*
C310.3962 (4)0.3872 (2)0.65256 (11)0.0622 (8)
H310.47960.41260.63580.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0812 (6)0.0873 (6)0.0762 (5)0.0048 (5)0.0242 (4)0.0362 (5)
Cl10.1263 (8)0.1056 (7)0.0430 (4)0.0021 (6)0.0113 (4)0.0216 (4)
O10.0353 (10)0.0801 (13)0.0498 (10)0.0078 (9)0.0125 (8)0.0128 (9)
O20.0444 (9)0.0534 (11)0.0518 (10)0.0026 (8)0.0182 (8)0.0063 (8)
N10.0334 (10)0.0378 (10)0.0308 (9)0.0055 (8)0.0082 (8)0.0027 (8)
N20.0466 (11)0.0340 (10)0.0388 (10)0.0000 (9)0.0001 (9)0.0031 (8)
C110.0319 (11)0.0348 (12)0.0294 (11)0.0015 (9)0.0054 (9)0.0003 (9)
C120.0343 (13)0.0387 (13)0.0356 (12)0.0006 (10)0.0079 (10)0.0025 (10)
C230.0321 (11)0.0345 (12)0.0342 (11)0.0031 (10)0.0043 (9)0.0030 (9)
C340.0417 (13)0.0314 (12)0.0396 (12)0.0022 (10)0.0025 (10)0.0010 (10)
C140.0334 (11)0.0405 (13)0.0325 (11)0.0049 (10)0.0032 (9)0.0018 (10)
C150.0361 (13)0.0419 (13)0.0355 (12)0.0056 (11)0.0003 (10)0.0029 (10)
C330.0395 (13)0.0322 (12)0.0374 (12)0.0018 (10)0.0044 (10)0.0021 (9)
C100.0369 (12)0.0361 (12)0.0317 (11)0.0014 (10)0.0069 (9)0.0006 (9)
C90.0399 (12)0.0415 (13)0.0381 (12)0.0048 (11)0.0057 (10)0.0084 (10)
C80.0353 (12)0.0364 (12)0.0330 (11)0.0057 (10)0.0069 (9)0.0020 (10)
C60.0455 (13)0.0423 (13)0.0344 (12)0.0088 (12)0.0087 (10)0.0021 (10)
C320.0511 (15)0.0525 (16)0.0451 (14)0.0128 (13)0.0083 (12)0.0064 (12)
C250.0360 (12)0.0378 (13)0.0430 (13)0.0032 (11)0.0012 (10)0.0001 (10)
C280.079 (2)0.0536 (17)0.0435 (15)0.0013 (15)0.0166 (14)0.0021 (13)
C210.0456 (14)0.0420 (13)0.0370 (12)0.0065 (11)0.0028 (10)0.0056 (10)
C70.0404 (13)0.0424 (13)0.0394 (13)0.0009 (11)0.0106 (10)0.0025 (11)
C10.0490 (14)0.0457 (14)0.0364 (12)0.0062 (12)0.0097 (11)0.0025 (11)
C240.0366 (12)0.0349 (13)0.0444 (13)0.0022 (10)0.0089 (11)0.0009 (10)
C20.0529 (15)0.0507 (15)0.0447 (14)0.0044 (13)0.0046 (12)0.0083 (12)
C300.084 (2)0.0600 (17)0.0349 (14)0.0036 (16)0.0117 (14)0.0073 (13)
C200.0528 (16)0.078 (2)0.0446 (15)0.0064 (15)0.0097 (12)0.0115 (14)
C50.0750 (19)0.0486 (15)0.0409 (14)0.0019 (14)0.0147 (13)0.0030 (12)
C40.097 (2)0.0628 (19)0.0303 (13)0.0078 (18)0.0092 (14)0.0061 (13)
C270.0573 (18)0.0663 (19)0.0642 (18)0.0066 (15)0.0237 (15)0.0011 (15)
C260.0410 (14)0.0542 (17)0.0654 (18)0.0037 (13)0.0036 (12)0.0035 (14)
C130.0458 (14)0.0588 (16)0.0479 (14)0.0162 (13)0.0131 (12)0.0055 (13)
C180.0520 (16)0.0557 (17)0.0472 (15)0.0054 (13)0.0130 (12)0.0098 (13)
C30.0690 (18)0.0595 (18)0.0367 (14)0.0136 (15)0.0026 (12)0.0080 (12)
C160.0562 (17)0.075 (2)0.0441 (15)0.0151 (15)0.0114 (13)0.0113 (14)
C170.0539 (16)0.080 (2)0.0558 (17)0.0180 (15)0.0009 (13)0.0116 (15)
C190.0661 (19)0.096 (2)0.0403 (15)0.0029 (18)0.0058 (13)0.0192 (16)
C290.0653 (17)0.0386 (14)0.0369 (13)0.0038 (12)0.0014 (12)0.0014 (11)
C220.0649 (17)0.0398 (14)0.0602 (17)0.0069 (13)0.0015 (14)0.0080 (12)
C310.075 (2)0.0643 (19)0.0504 (16)0.0144 (16)0.0210 (15)0.0113 (14)
Geometric parameters (Å, º) top
Cl2—C181.747 (3)C25—C261.374 (3)
Cl1—C31.740 (3)C25—C241.489 (3)
O1—C121.217 (3)C28—C271.361 (4)
O2—C241.213 (3)C28—C291.411 (4)
N1—C101.453 (3)C28—H280.9300
N1—C131.454 (3)C21—H21A0.9700
N1—C91.457 (3)C21—H21B0.9700
N2—C211.447 (3)C7—H70.9300
N2—C221.456 (3)C1—C21.381 (3)
N2—C231.459 (3)C1—H10.9300
C11—C121.526 (3)C2—C31.376 (4)
C11—C101.527 (3)C2—H20.9300
C11—C141.550 (3)C30—C311.366 (4)
C11—C231.603 (3)C30—C291.412 (4)
C12—C81.495 (3)C30—H300.9300
C23—C331.520 (3)C20—C191.390 (4)
C23—C241.586 (3)C20—H200.9300
C34—C251.399 (3)C5—C41.381 (4)
C34—C331.407 (3)C5—H50.9300
C34—C291.408 (3)C4—C31.371 (4)
C14—C151.507 (3)C4—H40.9300
C14—C211.511 (3)C27—C261.411 (4)
C14—H140.9800C27—H270.9300
C15—C201.378 (3)C26—H260.9300
C15—C161.381 (3)C13—H13A0.9600
C33—C321.358 (3)C13—H13B0.9600
C10—H10A0.9700C13—H13C0.9600
C10—H10B0.9700C18—C171.351 (4)
C9—C81.506 (3)C18—C191.361 (4)
C9—H9A0.9700C16—C171.384 (4)
C9—H9B0.9700C16—H160.9300
C8—C71.339 (3)C17—H170.9300
C6—C51.394 (3)C19—H190.9300
C6—C11.399 (3)C22—H22A0.9600
C6—C71.461 (3)C22—H22B0.9600
C32—C311.418 (4)C22—H22C0.9600
C32—H320.9300C31—H310.9300
C10—N1—C13113.15 (17)N2—C21—H21B111.5
C10—N1—C9113.37 (17)C14—C21—H21B111.5
C13—N1—C9111.81 (18)H21A—C21—H21B109.3
C21—N2—C22117.14 (19)C8—C7—C6131.0 (2)
C21—N2—C23108.65 (18)C8—C7—H7114.5
C22—N2—C23117.80 (18)C6—C7—H7114.5
C12—C11—C10106.12 (17)C2—C1—C6121.6 (2)
C12—C11—C14113.47 (18)C2—C1—H1119.2
C10—C11—C14112.87 (17)C6—C1—H1119.2
C12—C11—C23110.21 (16)O2—C24—C25127.9 (2)
C10—C11—C23111.17 (17)O2—C24—C23123.8 (2)
C14—C11—C23103.08 (17)C25—C24—C23107.40 (18)
O1—C12—C8121.6 (2)C3—C2—C1119.2 (3)
O1—C12—C11121.6 (2)C3—C2—H2120.4
C8—C12—C11116.82 (18)C1—C2—H2120.4
N2—C23—C33111.81 (18)C31—C30—C29120.3 (2)
N2—C23—C24114.92 (18)C31—C30—H30119.8
C33—C23—C24101.28 (17)C29—C30—H30119.8
N2—C23—C11103.02 (16)C15—C20—C19121.3 (3)
C33—C23—C11114.38 (17)C15—C20—H20119.4
C24—C23—C11111.90 (17)C19—C20—H20119.4
C25—C34—C33113.3 (2)C4—C5—C6121.7 (3)
C25—C34—C29123.1 (2)C4—C5—H5119.2
C33—C34—C29123.5 (2)C6—C5—H5119.2
C15—C14—C21117.74 (18)C3—C4—C5119.3 (2)
C15—C14—C11117.01 (19)C3—C4—H4120.3
C21—C14—C11101.79 (18)C5—C4—H4120.3
C15—C14—H14106.5C28—C27—C26122.9 (3)
C21—C14—H14106.5C28—C27—H27118.5
C11—C14—H14106.5C26—C27—H27118.5
C20—C15—C16116.8 (2)C25—C26—C27117.4 (3)
C20—C15—C14123.6 (2)C25—C26—H26121.3
C16—C15—C14119.6 (2)C27—C26—H26121.3
C32—C33—C34118.9 (2)N1—C13—H13A109.5
C32—C33—C23131.5 (2)N1—C13—H13B109.5
C34—C33—C23109.56 (19)H13A—C13—H13B109.5
N1—C10—C11108.45 (17)N1—C13—H13C109.5
N1—C10—H10A110.0H13A—C13—H13C109.5
C11—C10—H10A110.0H13B—C13—H13C109.5
N1—C10—H10B110.0C17—C18—C19120.7 (2)
C11—C10—H10B110.0C17—C18—Cl2119.5 (2)
H10A—C10—H10B108.4C19—C18—Cl2119.7 (2)
N1—C9—C8112.94 (18)C4—C3—C2121.1 (2)
N1—C9—H9A109.0C4—C3—Cl1119.6 (2)
C8—C9—H9A109.0C2—C3—Cl1119.3 (2)
N1—C9—H9B109.0C15—C16—C17122.2 (2)
C8—C9—H9B109.0C15—C16—H16118.9
H9A—C9—H9B107.8C17—C16—H16118.9
C7—C8—C12116.1 (2)C18—C17—C16119.2 (3)
C7—C8—C9125.3 (2)C18—C17—H17120.4
C12—C8—C9118.53 (18)C16—C17—H17120.4
C5—C6—C1117.1 (2)C18—C19—C20119.8 (3)
C5—C6—C7117.9 (2)C18—C19—H19120.1
C1—C6—C7125.0 (2)C20—C19—H19120.1
C33—C32—C31118.7 (2)C34—C29—C28115.6 (2)
C33—C32—H32120.6C34—C29—C30115.9 (2)
C31—C32—H32120.6C28—C29—C30128.5 (2)
C26—C25—C34119.9 (2)N2—C22—H22A109.5
C26—C25—C24132.8 (2)N2—C22—H22B109.5
C34—C25—C24107.30 (19)H22A—C22—H22B109.5
C27—C28—C29121.0 (3)N2—C22—H22C109.5
C27—C28—H28119.5H22A—C22—H22C109.5
C29—C28—H28119.5H22B—C22—H22C109.5
N2—C21—C14101.25 (18)C30—C31—C32122.5 (3)
N2—C21—H21A111.5C30—C31—H31118.7
C14—C21—H21A111.5C32—C31—H31118.7
C10—C11—C12—O1136.4 (2)C33—C34—C25—C26179.1 (2)
C14—C11—C12—O111.9 (3)C29—C34—C25—C261.3 (4)
C23—C11—C12—O1103.1 (2)C33—C34—C25—C240.0 (3)
C10—C11—C12—C844.5 (2)C29—C34—C25—C24177.8 (2)
C14—C11—C12—C8168.98 (18)C22—N2—C21—C14178.3 (2)
C23—C11—C12—C876.0 (2)C23—N2—C21—C1445.1 (2)
C21—N2—C23—C33148.01 (19)C15—C14—C21—N2174.89 (19)
C22—N2—C23—C3375.8 (3)C11—C14—C21—N245.6 (2)
C21—N2—C23—C2497.3 (2)C12—C8—C7—C6177.0 (2)
C22—N2—C23—C2439.0 (3)C9—C8—C7—C60.2 (4)
C21—N2—C23—C1124.7 (2)C5—C6—C7—C8156.9 (3)
C22—N2—C23—C11160.95 (19)C1—C6—C7—C825.3 (4)
C12—C11—C23—N2126.14 (18)C5—C6—C1—C20.3 (4)
C10—C11—C23—N2116.48 (18)C7—C6—C1—C2178.1 (2)
C14—C11—C23—N24.7 (2)C26—C25—C24—O216.8 (4)
C12—C11—C23—C334.6 (2)C34—C25—C24—O2162.2 (2)
C10—C11—C23—C33121.96 (19)C26—C25—C24—C23174.4 (3)
C14—C11—C23—C33116.85 (19)C34—C25—C24—C236.7 (2)
C12—C11—C23—C24109.9 (2)N2—C23—C24—O238.6 (3)
C10—C11—C23—C247.5 (2)C33—C23—C24—O2159.3 (2)
C14—C11—C23—C24128.71 (18)C11—C23—C24—O278.5 (3)
C12—C11—C14—C1580.6 (2)N2—C23—C24—C25130.85 (19)
C10—C11—C14—C1540.2 (3)C33—C23—C24—C2510.2 (2)
C23—C11—C14—C15160.19 (18)C11—C23—C24—C25112.1 (2)
C12—C11—C14—C21149.59 (19)C6—C1—C2—C30.4 (4)
C10—C11—C14—C2189.6 (2)C16—C15—C20—C191.6 (4)
C23—C11—C14—C2130.4 (2)C14—C15—C20—C19179.0 (3)
C21—C14—C15—C2028.1 (3)C1—C6—C5—C40.1 (4)
C11—C14—C15—C2093.8 (3)C7—C6—C5—C4178.1 (3)
C21—C14—C15—C16149.2 (2)C6—C5—C4—C30.1 (4)
C11—C14—C15—C1689.0 (3)C29—C28—C27—C260.1 (5)
C25—C34—C33—C32174.0 (2)C34—C25—C26—C271.4 (4)
C29—C34—C33—C323.8 (4)C24—C25—C26—C27179.8 (3)
C25—C34—C33—C237.1 (3)C28—C27—C26—C252.1 (4)
C29—C34—C33—C23175.1 (2)C5—C4—C3—C20.3 (4)
N2—C23—C33—C3248.1 (3)C5—C4—C3—Cl1178.8 (2)
C24—C23—C33—C32171.0 (3)C1—C2—C3—C40.4 (4)
C11—C23—C33—C3268.5 (3)C1—C2—C3—Cl1178.66 (19)
N2—C23—C33—C34133.19 (19)C20—C15—C16—C171.9 (4)
C24—C23—C33—C3410.3 (2)C14—C15—C16—C17179.4 (3)
C11—C23—C33—C34110.2 (2)C19—C18—C17—C160.3 (5)
C13—N1—C10—C11162.47 (19)Cl2—C18—C17—C16178.8 (2)
C9—N1—C10—C1168.8 (2)C15—C16—C17—C181.3 (5)
C12—C11—C10—N164.3 (2)C17—C18—C19—C200.0 (5)
C14—C11—C10—N1170.79 (17)Cl2—C18—C19—C20178.6 (2)
C23—C11—C10—N155.5 (2)C15—C20—C19—C180.7 (5)
C10—N1—C9—C846.6 (3)C25—C34—C29—C283.1 (4)
C13—N1—C9—C8175.97 (19)C33—C34—C29—C28179.3 (2)
O1—C12—C8—C728.8 (3)C25—C34—C29—C30176.0 (2)
C11—C12—C8—C7150.3 (2)C33—C34—C29—C301.5 (4)
O1—C12—C8—C9154.2 (2)C27—C28—C29—C342.4 (4)
C11—C12—C8—C926.7 (3)C27—C28—C29—C30176.6 (3)
N1—C9—C8—C7151.4 (2)C31—C30—C29—C341.7 (4)
N1—C9—C8—C1225.3 (3)C31—C30—C29—C28177.4 (3)
C34—C33—C32—C312.7 (4)C29—C30—C31—C322.7 (5)
C23—C33—C32—C31175.9 (2)C33—C32—C31—C300.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.402.783 (3)104
C14—H14···O10.982.442.818 (3)102
C22—H22C···O20.962.563.101 (3)116
C26—H26···O1i0.932.383.307 (3)176
C21—H21B···Cg1ii0.972.733.559 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H28Cl2N2O2
Mr567.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6561 (5), 13.4732 (8), 24.3962 (14)
β (°) 95.765 (12)
V3)2830.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.19 × 0.15
Data collection
DiffractometerNonius MACH3 sealed-tube
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5802, 4962, 3252
Rint0.031
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.01
No. of reflections4962
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.402.783 (3)104
C14—H14···O10.982.442.818 (3)102
C22—H22C···O20.962.563.101 (3)116
C26—H26···O1i0.932.383.307 (3)176
C21—H21B···Cg1ii0.972.733.559 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

SA sincerely thanks the Vice-Chancellor and Management of the Kalasalingam University, Anand Nagar and Krishnan Koil, for their support and encouragement. SPR and BRK thank the Principal and Management of Devanga Arts College, Aruppukottai.

References

First citationBabu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305–308.  CAS Google Scholar
First citationBoruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535–4537.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHorri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem. 29, 1038–1046.  PubMed Web of Science Google Scholar
First citationKarthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds