organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iso­propyl-4-tosyl­piperazin-1-ium tri­fluoro­acetate

aSchool of Chemical and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China
*Correspondence e-mail: jansenlee1103@yahoo.com.cn

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C14H23N2O2S+·C2F3O2, the piperazine ring adopts a chair conformation. The crystal packing is stabilized by C—H⋯O and N—H⋯O hydrogen bonds between the cation and anion. The F atoms are disordered over two positions; the site occupancy factors are 0.55 (2) and 0.45 (2).

Related literature

For related literature on benzene­sulfonamides, see: Yu et al. (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3766.]); Xing et al. (2006[Xing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, o79-o80.], 2005[Xing, J.-D. & Zeng, T. (2005). Acta Cryst. E61, o4318-o4319.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23N2O2S+·C2F3O2

  • Mr = 396.42

  • Monoclinic, P 21 /n

  • a = 11.659 (2) Å

  • b = 8.4274 (17) Å

  • c = 19.404 (4) Å

  • β = 105.87 (3)°

  • V = 1833.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 (2) K

  • 0.10 × 0.08 × 0.02 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.977, Tmax = 0.995

  • 10902 measured reflections

  • 3226 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.124

  • S = 1.03

  • 3226 reflections

  • 270 parameters

  • 43 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.902 (11) 1.828 (12) 2.724 (3) 172 (3)
C9—H9A⋯O2ii 0.97 2.52 3.405 (4) 151
C10—H10A⋯O4ii 0.97 2.45 3.357 (4) 155
C2—H2⋯O3iii 0.93 2.58 3.225 (4) 127
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) x+1, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

In the title compound (Fig. 1) both N atoms have a pyramidal arrangement, but the pyramid of the amide is somewhat shallower than that of the protonated N. The protonated piperazin ring adopts a chair conformation.

The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonds (Table 1) between the cation and anion. Weak intermolecular C—H···O hydrogen bonds involving an S=O group as acceptor play an important role in the moleclular packing.

Related literature top

For benzenesulfonamides see: Yu et al. (2007); Xing et al. (2006); Xing et al. (2005).

Experimental top

A solution of 4-methylbenzenesulfonyl chloride (3.28 g, 17 mmol) in CH2Cl2 was added dropwise to a mixture of 1-isopropylpiperazine (2.23 g, 82%, 0.14 mmol) and sodium biscarbonate (3.36 g, 40 mmol) in CH2Cl2 (30 ml) at room temperature with stirring. After stirring for 4 h followed by filtration, the organic filtrate was rotoevaporated under vacuum. The resulting solid, in a yield of 53.8%, was purified by recrystallization from methanol. Crystals in the form of colourless blocks were grown by evaporation of a trifluoroacetic solution.

Refinement top

The N-bound H atoms were refined freely with the restraint of 0.90 (1) Å, while the other H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The three F atoms are disordered over two site occupancy of 0.55 (2): 0.45 (2). The C—F distances were restrained to 1.36 (1) Å and their displacement parameters were restrained to be isotropic by means of the instruction ISOR (tolerance 0.01) in SHELXL.

Structure description top

In the title compound (Fig. 1) both N atoms have a pyramidal arrangement, but the pyramid of the amide is somewhat shallower than that of the protonated N. The protonated piperazin ring adopts a chair conformation.

The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonds (Table 1) between the cation and anion. Weak intermolecular C—H···O hydrogen bonds involving an S=O group as acceptor play an important role in the moleclular packing.

For benzenesulfonamides see: Yu et al. (2007); Xing et al. (2006); Xing et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 30% probability displacement ellipsoids. Only one component of the disordered CF3 group is shown.
1-Isopropyl-4-tosylpiperazin-1-ium trifluoroacetate top
Crystal data top
C14H23N2O2S+·C2F3O2F(000) = 832
Mr = 396.42Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3880 reflections
a = 11.659 (2) Åθ = 2.2–27.9°
b = 8.4274 (17) ŵ = 0.23 mm1
c = 19.404 (4) ÅT = 113 K
β = 105.87 (3)°Block, colorless
V = 1833.8 (6) Å30.10 × 0.08 × 0.02 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3226 independent reflections
Radiation source: rotating anode2517 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.072
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 139
Tmin = 0.977, Tmax = 0.995k = 910
10902 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.9104P]
where P = (Fo2 + 2Fc2)/3
3226 reflections(Δ/σ)max = 0.003
270 parametersΔρmax = 0.40 e Å3
43 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H23N2O2S+·C2F3O2V = 1833.8 (6) Å3
Mr = 396.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.659 (2) ŵ = 0.23 mm1
b = 8.4274 (17) ÅT = 113 K
c = 19.404 (4) Å0.10 × 0.08 × 0.02 mm
β = 105.87 (3)°
Data collection top
Rigaku Saturn
diffractometer
3226 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2517 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.995Rint = 0.072
10902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05443 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
3226 reflectionsΔρmin = 0.28 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.63629 (6)0.19035 (8)0.09809 (4)0.0214 (2)
F10.0952 (9)0.0965 (13)0.2419 (6)0.078 (3)0.55 (2)
F20.1367 (11)0.3388 (12)0.2544 (5)0.077 (3)0.55 (2)
F30.2151 (6)0.1905 (18)0.1909 (5)0.070 (3)0.55 (2)
F1'0.0745 (9)0.175 (2)0.2595 (5)0.083 (4)0.45 (2)
F2'0.1771 (11)0.3557 (10)0.2275 (9)0.077 (4)0.45 (2)
F3'0.1949 (11)0.1212 (15)0.2000 (6)0.066 (4)0.45 (2)
O10.63011 (18)0.3355 (2)0.05863 (10)0.0265 (5)
O20.53262 (17)0.1320 (2)0.11580 (10)0.0275 (5)
O30.0548 (2)0.3661 (3)0.14312 (12)0.0410 (6)
O40.00768 (17)0.1625 (2)0.08810 (10)0.0277 (5)
N10.6753 (2)0.0517 (3)0.04892 (11)0.0197 (5)
N20.7924 (2)0.1936 (3)0.01082 (12)0.0183 (5)
C10.7539 (2)0.2013 (3)0.17719 (14)0.0195 (6)
C20.8553 (3)0.2897 (3)0.17916 (14)0.0211 (6)
H20.85880.35170.14020.025*
C30.9508 (3)0.2842 (4)0.23978 (15)0.0254 (7)
H31.01860.34400.24150.030*
C40.9472 (3)0.1907 (3)0.29824 (14)0.0248 (7)
C50.8443 (3)0.1060 (4)0.29589 (15)0.0281 (7)
H50.84060.04470.33510.034*
C60.7468 (3)0.1113 (3)0.23611 (15)0.0258 (7)
H60.67760.05560.23530.031*
C71.0535 (3)0.1813 (4)0.36274 (16)0.0373 (8)
H7A1.07360.28580.38200.056*
H7B1.03480.11500.39840.056*
H7C1.11990.13710.34900.056*
C80.6947 (3)0.1074 (3)0.08214 (14)0.0222 (6)
H8A0.76900.10810.12000.027*
H8B0.63050.13210.10330.027*
C90.6995 (3)0.2314 (3)0.02688 (14)0.0215 (7)
H9A0.62210.23830.00800.026*
H9B0.71690.33390.05010.026*
C100.7722 (2)0.0296 (3)0.04174 (14)0.0201 (6)
H10A0.83500.00330.06390.024*
H10B0.69670.02610.07850.024*
C110.7712 (3)0.0907 (3)0.01589 (14)0.0213 (6)
H11A0.75850.19620.00490.026*
H11B0.84740.08980.05200.026*
C120.7963 (3)0.3177 (3)0.06701 (14)0.0221 (6)
H120.71910.31890.10330.026*
C130.8190 (3)0.4804 (3)0.03294 (16)0.0271 (7)
H13A0.88960.47720.00660.041*
H13B0.75220.51120.01610.041*
H13C0.82960.55580.06770.041*
C140.8927 (3)0.2765 (4)0.10319 (17)0.0337 (8)
H14A0.89960.36060.13520.051*
H14B0.87200.17970.12980.051*
H14C0.96750.26310.06750.051*
C150.0119 (3)0.2552 (3)0.13959 (15)0.0241 (7)
C160.1144 (3)0.2243 (4)0.20678 (16)0.0313 (8)
H2A0.8653 (14)0.193 (4)0.0208 (13)0.031 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0190 (4)0.0236 (4)0.0199 (4)0.0031 (3)0.0026 (3)0.0009 (3)
F10.079 (5)0.074 (5)0.064 (4)0.015 (3)0.010 (3)0.047 (4)
F20.086 (5)0.073 (5)0.046 (4)0.026 (4)0.027 (3)0.032 (3)
F30.028 (3)0.129 (7)0.050 (3)0.014 (4)0.005 (2)0.008 (5)
F1'0.077 (5)0.139 (9)0.036 (4)0.013 (6)0.019 (3)0.036 (5)
F2'0.063 (5)0.046 (4)0.085 (7)0.023 (3)0.040 (4)0.008 (4)
F3'0.062 (6)0.063 (6)0.052 (5)0.044 (4)0.021 (4)0.016 (4)
O10.0317 (13)0.0237 (11)0.0212 (10)0.0075 (9)0.0025 (9)0.0013 (8)
O20.0180 (12)0.0362 (13)0.0290 (11)0.0000 (9)0.0075 (9)0.0045 (9)
O30.0448 (15)0.0332 (13)0.0382 (13)0.0159 (11)0.0001 (11)0.0083 (11)
O40.0216 (12)0.0312 (12)0.0270 (11)0.0039 (9)0.0012 (9)0.0056 (9)
N10.0213 (14)0.0194 (13)0.0194 (12)0.0001 (10)0.0074 (10)0.0004 (10)
N20.0172 (13)0.0179 (12)0.0191 (12)0.0001 (10)0.0037 (10)0.0019 (10)
C10.0223 (16)0.0160 (14)0.0187 (14)0.0008 (11)0.0031 (12)0.0019 (11)
C20.0250 (17)0.0199 (15)0.0186 (14)0.0006 (12)0.0064 (12)0.0019 (12)
C30.0217 (17)0.0302 (17)0.0258 (15)0.0025 (13)0.0091 (13)0.0056 (13)
C40.0262 (18)0.0242 (16)0.0214 (15)0.0057 (13)0.0021 (13)0.0049 (12)
C50.037 (2)0.0244 (17)0.0201 (15)0.0035 (13)0.0032 (14)0.0000 (12)
C60.0265 (18)0.0259 (17)0.0254 (15)0.0063 (13)0.0081 (13)0.0006 (13)
C70.031 (2)0.046 (2)0.0276 (17)0.0068 (15)0.0032 (14)0.0033 (15)
C80.0233 (17)0.0218 (15)0.0235 (15)0.0015 (12)0.0098 (13)0.0025 (12)
C90.0202 (17)0.0208 (15)0.0249 (15)0.0036 (12)0.0085 (12)0.0041 (12)
C100.0204 (16)0.0182 (15)0.0215 (14)0.0006 (11)0.0054 (12)0.0039 (12)
C110.0231 (16)0.0179 (15)0.0220 (14)0.0020 (11)0.0046 (12)0.0017 (12)
C120.0234 (16)0.0193 (15)0.0221 (15)0.0009 (12)0.0038 (12)0.0056 (12)
C130.0293 (18)0.0233 (16)0.0295 (16)0.0040 (13)0.0096 (13)0.0055 (13)
C140.042 (2)0.0283 (18)0.0380 (18)0.0016 (14)0.0228 (16)0.0014 (14)
C150.0239 (18)0.0234 (16)0.0246 (15)0.0028 (12)0.0058 (13)0.0007 (13)
C160.032 (2)0.0311 (19)0.0285 (17)0.0004 (14)0.0039 (15)0.0037 (14)
Geometric parameters (Å, º) top
S1—O21.431 (2)C5—C61.385 (4)
S1—O11.435 (2)C5—H50.9300
S1—N11.649 (2)C6—H60.9300
S1—C11.758 (3)C7—H7A0.9600
F1—C161.326 (6)C7—H7B0.9600
F2—C161.311 (6)C7—H7C0.9600
F3—C161.323 (7)C8—C91.509 (4)
F1'—C161.302 (7)C8—H8A0.9700
F2'—C161.327 (7)C8—H8B0.9700
F3'—C161.312 (7)C9—H9A0.9700
O3—C151.230 (4)C9—H9B0.9700
O4—C151.259 (3)C10—C111.512 (4)
N1—C111.470 (4)C10—H10A0.9700
N1—C81.478 (3)C10—H10B0.9700
N2—C91.498 (3)C11—H11A0.9700
N2—C101.499 (3)C11—H11B0.9700
N2—C121.521 (3)C12—C131.514 (4)
N2—H2A0.902 (11)C12—C141.519 (4)
C1—C21.389 (4)C12—H120.9800
C1—C61.393 (4)C13—H13A0.9600
C2—C31.382 (4)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.391 (4)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.386 (4)C14—H14C0.9600
C4—C71.503 (4)C15—C161.531 (4)
O2—S1—O1119.92 (12)C11—C10—H10A109.5
O2—S1—N1106.25 (12)N2—C10—H10B109.5
O1—S1—N1106.09 (11)C11—C10—H10B109.5
O2—S1—C1108.45 (13)H10A—C10—H10B108.1
O1—S1—C1109.53 (12)N1—C11—C10109.5 (2)
N1—S1—C1105.65 (12)N1—C11—H11A109.8
C11—N1—C8110.4 (2)C10—C11—H11A109.8
C11—N1—S1117.15 (18)N1—C11—H11B109.8
C8—N1—S1115.10 (17)C10—C11—H11B109.8
C9—N2—C10109.7 (2)H11A—C11—H11B108.2
C9—N2—C12111.8 (2)C13—C12—C14110.2 (2)
C10—N2—C12112.3 (2)C13—C12—N2110.2 (2)
C9—N2—H2A109.9 (19)C14—C12—N2110.2 (2)
C10—N2—H2A107 (2)C13—C12—H12108.7
C12—N2—H2A106 (2)C14—C12—H12108.7
C2—C1—C6120.7 (3)N2—C12—H12108.7
C2—C1—S1120.4 (2)C12—C13—H13A109.5
C6—C1—S1118.7 (2)C12—C13—H13B109.5
C3—C2—C1119.2 (3)H13A—C13—H13B109.5
C3—C2—H2120.4C12—C13—H13C109.5
C1—C2—H2120.4H13A—C13—H13C109.5
C2—C3—C4121.0 (3)H13B—C13—H13C109.5
C2—C3—H3119.5C12—C14—H14A109.5
C4—C3—H3119.5C12—C14—H14B109.5
C5—C4—C3118.9 (3)H14A—C14—H14B109.5
C5—C4—C7120.6 (3)C12—C14—H14C109.5
C3—C4—C7120.5 (3)H14A—C14—H14C109.5
C6—C5—C4121.0 (3)H14B—C14—H14C109.5
C6—C5—H5119.5O3—C15—O4128.9 (3)
C4—C5—H5119.5O3—C15—C16116.1 (3)
C5—C6—C1119.1 (3)O4—C15—C16115.0 (3)
C5—C6—H6120.5F1'—C16—F274.1 (6)
C1—C6—H6120.5F1'—C16—F3'106.7 (6)
C4—C7—H7A109.5F2—C16—F3'123.3 (6)
C4—C7—H7B109.5F1'—C16—F3130.1 (6)
H7A—C7—H7B109.5F2—C16—F3107.7 (6)
C4—C7—H7C109.5F3'—C16—F329.5 (5)
H7A—C7—H7C109.5F1'—C16—F135.9 (5)
H7B—C7—H7C109.5F2—C16—F1105.3 (5)
N1—C8—C9110.5 (2)F3'—C16—F175.0 (6)
N1—C8—H8A109.6F3—C16—F1103.4 (5)
C9—C8—H8A109.6F1'—C16—F2'108.3 (6)
N1—C8—H8B109.6F2—C16—F2'35.5 (5)
C9—C8—H8B109.6F3'—C16—F2'103.5 (7)
H8A—C8—H8B108.1F3—C16—F2'78.5 (6)
N2—C9—C8111.8 (2)F1—C16—F2'132.7 (6)
N2—C9—H9A109.3F1'—C16—C15111.1 (5)
C8—C9—H9A109.3F2—C16—C15115.6 (4)
N2—C9—H9B109.3F3'—C16—C15116.1 (5)
C8—C9—H9B109.3F3—C16—C15112.0 (5)
H9A—C9—H9B107.9F1—C16—C15112.0 (4)
N2—C10—C11110.8 (2)F2'—C16—C15110.6 (5)
N2—C10—H10A109.5
O2—S1—N1—C11172.47 (19)C10—N2—C9—C854.2 (3)
O1—S1—N1—C1143.8 (2)C12—N2—C9—C8179.4 (2)
C1—S1—N1—C1172.4 (2)N1—C8—C9—N255.7 (3)
O2—S1—N1—C855.2 (2)C9—N2—C10—C1156.1 (3)
O1—S1—N1—C8176.13 (19)C12—N2—C10—C11178.9 (2)
C1—S1—N1—C859.9 (2)C8—N1—C11—C1060.6 (3)
O2—S1—C1—C2163.9 (2)S1—N1—C11—C10164.97 (18)
O1—S1—C1—C231.4 (3)N2—C10—C11—N159.7 (3)
N1—S1—C1—C282.5 (2)C9—N2—C12—C1357.2 (3)
O2—S1—C1—C620.4 (3)C10—N2—C12—C13179.0 (2)
O1—S1—C1—C6152.9 (2)C9—N2—C12—C14179.1 (2)
N1—S1—C1—C693.2 (2)C10—N2—C12—C1457.1 (3)
C6—C1—C2—C31.7 (4)O3—C15—C16—F1'67.0 (11)
S1—C1—C2—C3173.9 (2)O4—C15—C16—F1'112.9 (10)
C1—C2—C3—C40.6 (4)O3—C15—C16—F214.9 (9)
C2—C3—C4—C52.0 (4)O4—C15—C16—F2165.2 (9)
C2—C3—C4—C7177.8 (3)O3—C15—C16—F3'170.9 (9)
C3—C4—C5—C61.1 (4)O4—C15—C16—F3'9.3 (10)
C7—C4—C5—C6178.7 (3)O3—C15—C16—F3138.8 (8)
C4—C5—C6—C11.1 (4)O4—C15—C16—F341.4 (8)
C2—C1—C6—C52.5 (4)O3—C15—C16—F1105.7 (9)
S1—C1—C6—C5173.2 (2)O4—C15—C16—F174.2 (9)
C11—N1—C8—C958.7 (3)O3—C15—C16—F2'53.3 (11)
S1—N1—C8—C9165.91 (18)O4—C15—C16—F2'126.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.90 (1)1.83 (1)2.724 (3)172 (3)
C9—H9A···O2ii0.972.523.405 (4)151
C10—H10A···O4ii0.972.453.357 (4)155
C2—H2···O3iii0.932.583.225 (4)127
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H23N2O2S+·C2F3O2
Mr396.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)11.659 (2), 8.4274 (17), 19.404 (4)
β (°) 105.87 (3)
V3)1833.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.10 × 0.08 × 0.02
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.977, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
10902, 3226, 2517
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.03
No. of reflections3226
No. of parameters270
No. of restraints43
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.902 (11)1.828 (12)2.724 (3)172 (3)
C9—H9A···O2ii0.972.523.405 (4)151
C10—H10A···O4ii0.972.453.357 (4)155
C2—H2···O3iii0.932.583.225 (4)127
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y1, z.
 

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, o79–o80.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, J.-D. & Zeng, T. (2005). Acta Cryst. E61, o4318–o4319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3766.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds