organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(5-tert-Butyl-2-hy­droxy­anilino)methyl­ene]cyclo­hexa-2,4-dienone

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

(Received 20 November 2007; accepted 20 November 2007; online 6 December 2007)

In the title compound, C17H19NO2, the dihedral angle between the two aromatic rings is 26.02 (5)°. One phenol O atom is deprotonated and the N atom of the azomethine unit carries the H atom, forming an intra­molecular hydrogen bond. The packing is stabilized by an O—H⋯O hydrogen bond.

Related literature

Aromatic Schiff bases with ortho-hydr­oxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956[Freeman, D. C. & White, C. E. (1956). J. Am. Chem. Soc. 78, 2678-2682.]; Calligaris & Randaccio, 1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 715-738. Oxford: Pergamon Press.]; Pettinari et al., 2001[Pettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103-114.]; Hernández-Molina & Mederos, 2004[Hernández-Molina, R. & Mederos, A. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by J. A. McCleverty & T. J. Meyer, pp. 411-446. Amsterdam: Elsevier.]). For related literature, see: Böhme & Günther (2006[Böhme, U. & Günther, B. (2006). Acta Cryst. E62, m1711-m1712.], 2007[Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482-484.]); Böhme, Wiesner & Günther (2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]); Dubs et al. (2000[Dubs, M., Krieg, R., Görls, H. & Schönecker, B. (2000). Steroids, 65, 305-318.]); Hopfl et al. (1998[Hopfl, H., Sanchez, M., Barba, V., Farfan, N., Rojas, S. & Santillan, R. (1998). Inorg. Chem. 37, 1679-1692.]); Nazir et al. (2000[Nazir, H., Yildiz, M., Yilmaz, H., Tahir, M. & Ülkü, D. (2000). J. Mol. Struct. 524, 241-250.]); Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO2

  • Mr = 269.33

  • Monoclinic, P 21 /c

  • a = 10.3600 (4) Å

  • b = 9.5756 (3) Å

  • c = 14.7335 (6) Å

  • β = 99.664 (2)°

  • V = 1440.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 (2) K

  • 0.5 × 0.37 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 14317 measured reflections

  • 3478 independent reflections

  • 2819 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.08

  • 3478 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3⋯O1 0.939 (16) 1.83 (2) 2.601 (1) 137.8 (13)
O2—H2⋯O1i 0.84 1.75 2.583 (1) 174 (1)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we are working on silicon and titanium complexes with tridentate O,N,O-ligands (Böhme & Günther, 2006; Böhme, Wiesner & Günther, 2006; Böhme & Günther, 2007). The title compound, C17H19NO2, was prepared in order to extend the series of available ligands. The preparation of the title compound was performed according to methods described in the literature for the parent compound salicyclidene-o-aminophenol ("salopH2") (Freeman and White, 1956; Pettinari et al., 2001) by reaction of salicyclaldehyde and 2-amino-4-tert-butylphenol in ethanol. The molecule is non-planar with a dihedral angle between the two aromatic rings of 26.02 (5)°. The atom H3 forms an intramolecular hydrogen bond between the phenolic oxygen atom O1 and N1 of the azomethine unit. The hydrogen atom H3 is localized at a distance of 0.94 (2) Å from N1. This hints to the presence of the keto-amine form. The presence of a quinoidal structure is further supported by the shortening of the bond O1—C3 to 1.296 (1) Å and the lengthening of the adjacent C—C bonds in the phenyl ring [C2—C3 1.437 (2), C3—C4 1.426 (2) Å] (Nazir et al., 2000). There are few structure reports of Schiff-bases with oxygen in ortho-position where the intramolecular bridging hydrogen atom is localized at the nitrogen atom (e.g. Pradeep, 2005; Dubs et al., 2000; Hopfl et al., 1998). The crystal packing is stabilized by a hydrogen bond O2—H2···O1 forming a helix along the crystallographic 21 axis.

Related literature top

Aromatic Schiff-bases with ortho-hydroxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956; Calligaris & Randaccio, 1987; Pettinari et al., 2001; Hernández-Molina & Mederos, 2004;).

For related literature, see: Böhme & Günther (2006, 2007); Böhme, Wiesner & Günther (2006); Dubs et al. (2000); Hopfl et al. (1998); Nazir et al. (2000); Pradeep (2005).

Experimental top

2-Amino-4-tert-butylphenol (3.07 g, 18.6 mmol) was dissolved in ethanol (100 ml). This solution was heated slowly to 313 K and after a few minutes salicylaldehyde (2.27 g, 1.96 ml, 18.6 mmol) was added with a syringe. The reaction mixture was boiled at reflux temperature for 1.5 h. After that time a red solution was formed. The solution was concentrated in a vacuum to a small volume (30 ml) until a red crystalline precipitate deposited. The precipitate was filtered off and washed with ethanol. After drying, the product was purified by recrystallization with ethanol. Red prisms (4.38 g, 87.6%, m.p. 415 K). NMR (CDCl3, 300 K, TMS): 1H: δ=12,37 (s, OH), 8.64 (s, CH—N), 7.41–6.92 (m, CHaromatic), 1.33 (s, C(CH3)3); 13C: 163.5 (C1), 160.5 (C3), 147.4 (C9), 144.0 (C12), 135.0, 133.4, 132.5, 125.6, 119.4, 119.3, 117.2, 115.4, 115.4 (9 signals for aromatic C), 34.3 (C14), 31.5 (C15—C17).

Refinement top

Hydrogen atoms bonded to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2 and 0.98 for methyl. Uiso(H) = xUeq(C), where x = 1.2 for Csp2 and 1.5 for methyl. The amino H atom was located by difference Fourier synthesis and freely refined.

Structure description top

Recently, we are working on silicon and titanium complexes with tridentate O,N,O-ligands (Böhme & Günther, 2006; Böhme, Wiesner & Günther, 2006; Böhme & Günther, 2007). The title compound, C17H19NO2, was prepared in order to extend the series of available ligands. The preparation of the title compound was performed according to methods described in the literature for the parent compound salicyclidene-o-aminophenol ("salopH2") (Freeman and White, 1956; Pettinari et al., 2001) by reaction of salicyclaldehyde and 2-amino-4-tert-butylphenol in ethanol. The molecule is non-planar with a dihedral angle between the two aromatic rings of 26.02 (5)°. The atom H3 forms an intramolecular hydrogen bond between the phenolic oxygen atom O1 and N1 of the azomethine unit. The hydrogen atom H3 is localized at a distance of 0.94 (2) Å from N1. This hints to the presence of the keto-amine form. The presence of a quinoidal structure is further supported by the shortening of the bond O1—C3 to 1.296 (1) Å and the lengthening of the adjacent C—C bonds in the phenyl ring [C2—C3 1.437 (2), C3—C4 1.426 (2) Å] (Nazir et al., 2000). There are few structure reports of Schiff-bases with oxygen in ortho-position where the intramolecular bridging hydrogen atom is localized at the nitrogen atom (e.g. Pradeep, 2005; Dubs et al., 2000; Hopfl et al., 1998). The crystal packing is stabilized by a hydrogen bond O2—H2···O1 forming a helix along the crystallographic 21 axis.

Aromatic Schiff-bases with ortho-hydroxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956; Calligaris & Randaccio, 1987; Pettinari et al., 2001; Hernández-Molina & Mederos, 2004;).

For related literature, see: Böhme & Günther (2006, 2007); Böhme, Wiesner & Günther (2006); Dubs et al. (2000); Hopfl et al. (1998); Nazir et al. (2000); Pradeep (2005).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 50% probability displacement ellipsoids.
6-[(5-tert-Butyl-2-hydroxyanilino)methylene]cyclohexa-2,4-dienone top
Crystal data top
C17H19NO2F(000) = 576
Mr = 269.33Dx = 1.242 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5301 reflections
a = 10.3600 (4) Åθ = 2.8–30.5°
b = 9.5756 (3) ŵ = 0.08 mm1
c = 14.7335 (6) ÅT = 153 K
β = 99.664 (2)°Block, orange
V = 1440.87 (9) Å30.5 × 0.37 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2819 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.0°, θmin = 2.6°
phi and ω scansh = 1313
14317 measured reflectionsk = 912
3478 independent reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO2V = 1440.87 (9) Å3
Mr = 269.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3600 (4) ŵ = 0.08 mm1
b = 9.5756 (3) ÅT = 153 K
c = 14.7335 (6) Å0.5 × 0.37 × 0.25 mm
β = 99.664 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2819 reflections with I > 2σ(I)
14317 measured reflectionsRint = 0.025
3478 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
3478 reflectionsΔρmin = 0.22 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59234 (8)0.06870 (8)1.16198 (5)0.0251 (2)
O20.43203 (9)0.39390 (9)1.20845 (6)0.0278 (2)
H20.41950.44711.25140.042*
N10.47127 (9)0.26094 (9)1.05548 (6)0.0194 (2)
H30.4953 (14)0.2185 (16)1.1133 (11)0.039 (4)*
C10.53484 (11)0.21410 (11)0.99239 (8)0.0199 (2)
H10.5173 (12)0.2582 (14)0.9312 (9)0.022 (3)*
C20.62986 (11)0.10555 (11)1.00874 (8)0.0198 (2)
C30.65831 (11)0.03867 (11)1.09717 (8)0.0207 (2)
C40.76261 (12)0.06030 (12)1.10942 (9)0.0269 (3)
H40.78600.10561.16720.032*
C50.82989 (12)0.09136 (13)1.03933 (10)0.0308 (3)
H50.89990.15661.05010.037*
C60.79790 (13)0.02904 (13)0.95184 (10)0.0313 (3)
H60.84410.05350.90360.038*
C70.69883 (12)0.06762 (12)0.93748 (8)0.0252 (3)
H70.67620.10980.87860.030*
C80.37998 (10)0.37285 (11)1.04619 (7)0.0187 (2)
C90.36246 (11)0.44028 (11)1.12805 (8)0.0203 (2)
C100.27440 (11)0.55129 (12)1.12145 (8)0.0227 (2)
H100.26260.60061.17540.027*
C110.20359 (11)0.59050 (11)1.03643 (8)0.0213 (2)
H110.14350.66591.03390.026*
C120.21797 (10)0.52265 (11)0.95479 (7)0.0187 (2)
C130.30923 (11)0.41376 (11)0.96159 (8)0.0195 (2)
H130.32320.36680.90730.023*
C140.13591 (11)0.56085 (11)0.86144 (8)0.0211 (2)
C150.06649 (12)0.42959 (12)0.81692 (9)0.0273 (3)
H15A0.00970.45530.75930.041*
H15B0.01350.38790.85910.041*
H15C0.13200.36190.80400.041*
C160.22489 (13)0.61849 (14)0.79661 (9)0.0313 (3)
H16A0.26790.70390.82300.047*
H16B0.17210.63960.73660.047*
H16C0.29140.54870.78890.047*
C170.03131 (12)0.67090 (13)0.87157 (9)0.0296 (3)
H17A0.07410.75740.89620.044*
H17B0.02500.63610.91380.044*
H17C0.02180.68940.81120.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (4)0.0266 (4)0.0172 (4)0.0025 (3)0.0029 (3)0.0025 (3)
O20.0329 (5)0.0336 (5)0.0152 (4)0.0096 (4)0.0004 (3)0.0037 (3)
N10.0224 (5)0.0196 (4)0.0155 (5)0.0022 (3)0.0013 (4)0.0000 (3)
C10.0222 (5)0.0197 (5)0.0175 (5)0.0008 (4)0.0031 (4)0.0008 (4)
C20.0208 (5)0.0184 (5)0.0202 (6)0.0012 (4)0.0034 (4)0.0004 (4)
C30.0226 (5)0.0180 (5)0.0206 (6)0.0027 (4)0.0006 (4)0.0005 (4)
C40.0282 (6)0.0210 (5)0.0289 (6)0.0014 (4)0.0021 (5)0.0034 (4)
C50.0265 (6)0.0232 (6)0.0423 (8)0.0058 (5)0.0051 (5)0.0021 (5)
C60.0324 (7)0.0272 (6)0.0379 (7)0.0041 (5)0.0164 (6)0.0002 (5)
C70.0285 (6)0.0243 (5)0.0244 (6)0.0009 (4)0.0086 (5)0.0016 (5)
C80.0191 (5)0.0186 (5)0.0184 (5)0.0005 (4)0.0035 (4)0.0010 (4)
C90.0208 (5)0.0232 (5)0.0165 (5)0.0007 (4)0.0019 (4)0.0012 (4)
C100.0255 (6)0.0241 (5)0.0187 (6)0.0016 (4)0.0045 (4)0.0045 (4)
C110.0219 (5)0.0198 (5)0.0227 (6)0.0019 (4)0.0046 (4)0.0007 (4)
C120.0195 (5)0.0183 (5)0.0181 (5)0.0023 (4)0.0024 (4)0.0018 (4)
C130.0228 (5)0.0199 (5)0.0160 (5)0.0011 (4)0.0033 (4)0.0022 (4)
C140.0231 (5)0.0198 (5)0.0191 (6)0.0005 (4)0.0004 (4)0.0014 (4)
C150.0278 (6)0.0233 (5)0.0277 (6)0.0006 (5)0.0045 (5)0.0011 (5)
C160.0345 (7)0.0371 (7)0.0216 (6)0.0056 (5)0.0026 (5)0.0061 (5)
C170.0339 (6)0.0242 (6)0.0281 (7)0.0071 (5)0.0022 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—C31.296 (1)C9—C101.3935 (15)
O2—C91.354 (1)C10—C111.3928 (16)
O2—H20.8400C10—H100.9500
N1—C11.3055 (14)C11—C121.3969 (16)
N1—C81.4206 (13)C11—H110.9500
N1—H30.94 (2)C12—C131.3998 (15)
C1—C21.4240 (15)C12—C141.5348 (15)
C1—H10.985 (13)C13—H130.9500
C2—C71.4131 (16)C14—C171.5367 (16)
C2—C31.437 (2)C14—C161.5369 (17)
C3—C41.426 (2)C14—C151.5392 (15)
C4—C51.3720 (19)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.4087 (19)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.3718 (17)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—H70.9500C17—H17A0.9800
C8—C131.3920 (15)C17—H17B0.9800
C8—C91.4065 (15)C17—H17C0.9800
C9—O2—H2109.5C10—C11—C12122.20 (10)
C1—N1—C8126.71 (10)C10—C11—H11118.9
C1—N1—H3114.1 (9)C12—C11—H11118.9
C8—N1—H3119.0 (9)C11—C12—C13116.95 (10)
N1—C1—C2123.19 (10)C11—C12—C14122.52 (10)
N1—C1—H1117.9 (7)C13—C12—C14120.50 (10)
C2—C1—H1118.9 (7)C8—C13—C12121.43 (10)
C7—C2—C1118.90 (10)C8—C13—H13119.3
C7—C2—C3120.45 (10)C12—C13—H13119.3
C1—C2—C3120.62 (10)C12—C14—C17111.72 (9)
O1—C3—C4122.43 (10)C12—C14—C16110.04 (9)
O1—C3—C2121.04 (10)C17—C14—C16108.69 (10)
C4—C3—C2116.53 (11)C12—C14—C15109.64 (9)
C5—C4—C3121.25 (11)C17—C14—C15108.35 (9)
C5—C4—H4119.4C16—C14—C15108.33 (10)
C3—C4—H4119.4C14—C15—H15A109.5
C4—C5—C6121.72 (11)C14—C15—H15B109.5
C4—C5—H5119.1H15A—C15—H15B109.5
C6—C5—H5119.1C14—C15—H15C109.5
C7—C6—C5118.81 (12)H15A—C15—H15C109.5
C7—C6—H6120.6H15B—C15—H15C109.5
C5—C6—H6120.6C14—C16—H16A109.5
C6—C7—C2121.16 (11)C14—C16—H16B109.5
C6—C7—H7119.4H16A—C16—H16B109.5
C2—C7—H7119.4C14—C16—H16C109.5
C13—C8—C9120.95 (10)H16A—C16—H16C109.5
C13—C8—N1122.72 (10)H16B—C16—H16C109.5
C9—C8—N1116.32 (9)C14—C17—H17A109.5
O2—C9—C10123.87 (10)C14—C17—H17B109.5
O2—C9—C8118.25 (10)H17A—C17—H17B109.5
C10—C9—C8117.88 (10)C14—C17—H17C109.5
C11—C10—C9120.55 (10)H17A—C17—H17C109.5
C11—C10—H10119.7H17B—C17—H17C109.5
C9—C10—H10119.7
C8—N1—C1—C2176.77 (10)C13—C8—C9—C101.48 (16)
N1—C1—C2—C7176.40 (11)N1—C8—C9—C10179.50 (10)
N1—C1—C2—C31.59 (17)O2—C9—C10—C11178.18 (11)
C7—C2—C3—O1177.34 (10)C8—C9—C10—C111.92 (17)
C1—C2—C3—O14.69 (16)C9—C10—C11—C120.65 (18)
C7—C2—C3—C43.18 (16)C10—C11—C12—C131.09 (16)
C1—C2—C3—C4174.79 (10)C10—C11—C12—C14177.18 (10)
O1—C3—C4—C5179.24 (11)C9—C8—C13—C120.27 (16)
C2—C3—C4—C51.29 (16)N1—C8—C13—C12178.69 (10)
C3—C4—C5—C61.08 (19)C11—C12—C13—C81.54 (16)
C4—C5—C6—C71.58 (19)C14—C12—C13—C8176.77 (10)
C5—C6—C7—C20.38 (18)C11—C12—C14—C174.95 (15)
C1—C2—C7—C6175.20 (11)C13—C12—C14—C17173.26 (10)
C3—C2—C7—C62.80 (17)C11—C12—C14—C16115.87 (12)
C1—N1—C8—C1325.00 (17)C13—C12—C14—C1665.91 (13)
C1—N1—C8—C9156.00 (11)C11—C12—C14—C15125.08 (11)
C13—C8—C9—O2178.62 (10)C13—C12—C14—C1553.14 (14)
N1—C8—C9—O20.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O10.939 (16)1.83 (2)2.601 (1)137.8 (13)
O2—H2···O1i0.841.752.583 (1)174 (1)
Symmetry code: (i) x+1, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC17H19NO2
Mr269.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)10.3600 (4), 9.5756 (3), 14.7335 (6)
β (°) 99.664 (2)
V3)1440.87 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.37 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14317, 3478, 2819
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.08
No. of reflections3478
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.22

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O10.939 (16)1.83 (2)2.601 (1)137.8 (13)
O2—H2···O1i0.8401.7502.583 (1)173.8 (13)
Symmetry code: (i) x+1, y+1/2, z+5/2.
 

References

First citationBöhme, U. & Günther, B. (2006). Acta Cryst. E62, m1711–m1712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482–484.  Google Scholar
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.  Google Scholar
First citationBruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 715–738. Oxford: Pergamon Press.  Google Scholar
First citationDubs, M., Krieg, R., Görls, H. & Schönecker, B. (2000). Steroids, 65, 305–318.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreeman, D. C. & White, C. E. (1956). J. Am. Chem. Soc. 78, 2678–2682.  CrossRef CAS Web of Science Google Scholar
First citationHernández-Molina, R. & Mederos, A. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by J. A. McCleverty & T. J. Meyer, pp. 411–446. Amsterdam: Elsevier.  Google Scholar
First citationHopfl, H., Sanchez, M., Barba, V., Farfan, N., Rojas, S. & Santillan, R. (1998). Inorg. Chem. 37, 1679–1692.  Web of Science CSD CrossRef Google Scholar
First citationNazir, H., Yildiz, M., Yilmaz, H., Tahir, M. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationPettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds