organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

The structure of the title compound, C14H13NO, resembles those of N-(2-chloro­phen­yl)benzamide, 2-chloro-N-phenyl­benzamide, N-(2,3-dichloro­phen­yl)benzamide, N-(3,4-dichloro­phen­yl)benzamide and 2-chloro-N-(2-chloro­phen­yl)benzamide with similar bond parameters. The benzene and methylphenyl rings have a dihedral angle of 63.41 (5)°, while the amide group makes a dihedral angle of 20.5 (1)° with the benzene ring. The mol­ecules are linked into chains in the b-axis direction by N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007a[Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.],b[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.],c[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Cryst. E63, o3365.]); Gowda, Foro et al. (2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Orthorhombic, P b c a

  • a = 9.1117 (3) Å

  • b = 9.8336 (2) Å

  • c = 26.0616 (10) Å

  • V = 2335.14 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.26 × 0.07 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 21626 measured reflections

  • 2276 independent reflections

  • 1060 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 0.82

  • 2276 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.826 (14) 2.117 (15) 2.9208 (14) 164.2 (15)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(4-methylphenyl)-benzamide (N4MPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003, 2007a, b, c, d). The structure of N4MPBA (Fig. 1) resembles those of N-(2-chlorophenyl)-benzamide (N2CPBA) (Gowda et al., 2007a), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003), N-(2,3-dichlorophenyl)benzamide (N23DCPBA) (Gowda et al., 2007b), N-(3,4-dichlorophenyl)-benzamide (N34DCPBA)(Gowda et al., 2007c) and 2-chloro-N- (2-chlorophenyl)benzamide (N2CP2CBA) (Gowda et al., 2007d), The bond parameters in N4MPBA are similar to those in N2CPBA, NP2CBA, N23DCPBA, N34DCPBA and N2CP2CBA. The molecules of N4MPBA are linked into chains in the direction of b axis through N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2003, 2007a,b,c); Gowda, Foro et al. (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and subsequently treated as riding with C–H distances of 0.93Å for Caromatic—H and Cmethyl—H = 0.96 Å. The amino H atom was visible in difference map. In the refinement the N–H distance was restrained to 0.86 (5) Å. The Uiso(H) values were set at 1.2 Ueq(C,N) of the parent atom (1.5 for methyl).

Structure description top

In the present work, the structure of N-(4-methylphenyl)-benzamide (N4MPBA) has been determined to explore the effect of substituents on the structure of N-aromatic amides (Gowda et al., 2003, 2007a, b, c, d). The structure of N4MPBA (Fig. 1) resembles those of N-(2-chlorophenyl)-benzamide (N2CPBA) (Gowda et al., 2007a), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003), N-(2,3-dichlorophenyl)benzamide (N23DCPBA) (Gowda et al., 2007b), N-(3,4-dichlorophenyl)-benzamide (N34DCPBA)(Gowda et al., 2007c) and 2-chloro-N- (2-chlorophenyl)benzamide (N2CP2CBA) (Gowda et al., 2007d), The bond parameters in N4MPBA are similar to those in N2CPBA, NP2CBA, N23DCPBA, N34DCPBA and N2CP2CBA. The molecules of N4MPBA are linked into chains in the direction of b axis through N—H···O hydrogen bonds (Table 1 and Fig. 2).

For related literature, see: Gowda et al. (2003, 2007a,b,c); Gowda, Foro et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing the hydrogen bonds as dashed lines. Symmetry code (i): -x + 1/2, y - 1/2, z.
N-(4-Methylphenyl)benzamide top
Crystal data top
C14H13NOF(000) = 896
Mr = 211.25Dx = 1.202 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4170 reflections
a = 9.1117 (3) Åθ = 3.1–29.4°
b = 9.8336 (2) ŵ = 0.08 mm1
c = 26.0616 (10) ÅT = 295 K
V = 2335.14 (13) Å3Prism, colourless
Z = 80.26 × 0.07 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 10.434 pixels mm-1θmax = 26.0°, θmin = 5.5°
ω scans with κ offsetsh = 1111
21626 measured reflectionsk = 1012
2276 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0449P)2]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max = 0.002
149 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.10 e Å3
Crystal data top
C14H13NOV = 2335.14 (13) Å3
Mr = 211.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1117 (3) ŵ = 0.08 mm1
b = 9.8336 (2) ÅT = 295 K
c = 26.0616 (10) Å0.26 × 0.07 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1060 reflections with I > 2σ(I)
21626 measured reflectionsRint = 0.078
2276 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.15 e Å3
2276 reflectionsΔρmin = 0.10 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17469 (16)0.53524 (13)0.35738 (6)0.0451 (4)
C20.04977 (15)0.47251 (12)0.32925 (5)0.0426 (4)
C30.02778 (18)0.55216 (14)0.29516 (6)0.0564 (4)
H30.00290.64330.29120.068*
C40.1411 (2)0.49840 (16)0.26710 (7)0.0677 (5)
H40.19160.55290.24390.081*
C50.1804 (2)0.36530 (16)0.27305 (7)0.0699 (5)
H50.25740.32940.2540.084*
C60.10609 (19)0.28486 (14)0.30715 (7)0.0637 (5)
H60.13360.19450.31160.076*
C70.00930 (17)0.33727 (13)0.33495 (6)0.0523 (4)
H70.06040.28180.35770.063*
C80.41205 (16)0.49206 (13)0.39957 (6)0.0468 (4)
C90.4191 (2)0.59367 (14)0.43600 (6)0.0568 (4)
H90.3340.63830.44630.068*
C100.5522 (2)0.62876 (16)0.45704 (6)0.0647 (5)
H100.55560.69850.48110.078*
C110.6797 (2)0.56452 (16)0.44375 (7)0.0637 (5)
C120.6706 (2)0.46213 (17)0.40767 (7)0.0746 (5)
H120.75540.41650.39780.089*
C130.53824 (19)0.42617 (15)0.38596 (7)0.0664 (5)
H130.53480.35650.36190.08*
C140.8256 (2)0.6010 (2)0.46760 (8)0.0961 (6)
H14A0.80930.64670.49970.144*
H14B0.87880.65990.44490.144*
H14C0.88140.51970.47340.144*
N10.27740 (14)0.45148 (11)0.37649 (5)0.0507 (4)
H1N0.2724 (17)0.3698 (15)0.3692 (5)0.061*
O10.18442 (12)0.65930 (9)0.36138 (5)0.0701 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (9)0.0321 (7)0.0587 (10)0.0027 (7)0.0071 (8)0.0021 (7)
C20.0402 (9)0.0368 (7)0.0507 (9)0.0018 (7)0.0047 (8)0.0009 (7)
C30.0597 (11)0.0416 (8)0.0680 (10)0.0038 (8)0.0024 (10)0.0023 (8)
C40.0723 (13)0.0580 (10)0.0728 (12)0.0102 (9)0.0188 (10)0.0002 (8)
C50.0637 (12)0.0671 (11)0.0790 (13)0.0011 (9)0.0185 (11)0.0146 (9)
C60.0634 (12)0.0464 (9)0.0812 (12)0.0078 (8)0.0085 (11)0.0025 (8)
C70.0505 (10)0.0421 (8)0.0643 (11)0.0002 (8)0.0041 (9)0.0030 (7)
C80.0461 (10)0.0365 (7)0.0577 (10)0.0016 (8)0.0048 (8)0.0016 (7)
C90.0591 (12)0.0516 (8)0.0596 (10)0.0054 (8)0.0017 (9)0.0043 (8)
C100.0702 (14)0.0606 (10)0.0633 (11)0.0037 (10)0.0105 (11)0.0100 (8)
C110.0572 (12)0.0660 (11)0.0680 (12)0.0118 (9)0.0075 (10)0.0018 (9)
C120.0497 (12)0.0822 (11)0.0918 (13)0.0039 (10)0.0009 (11)0.0187 (11)
C130.0523 (12)0.0645 (10)0.0824 (12)0.0044 (9)0.0031 (10)0.0238 (8)
C140.0670 (14)0.1123 (14)0.1092 (16)0.0196 (11)0.0240 (13)0.0088 (12)
N10.0502 (9)0.0308 (5)0.0710 (9)0.0014 (7)0.0082 (7)0.0033 (6)
O10.0606 (8)0.0331 (6)0.1165 (9)0.0002 (5)0.0177 (7)0.0001 (5)
Geometric parameters (Å, º) top
C1—O11.2276 (13)C8—C91.380 (2)
C1—N11.3425 (17)C8—N11.4235 (18)
C1—C21.4878 (19)C9—C101.375 (2)
C2—C31.3792 (19)C9—H90.93
C2—C71.3880 (18)C10—C111.367 (2)
C3—C41.371 (2)C10—H100.93
C3—H30.93C11—C121.380 (2)
C4—C51.366 (2)C11—C141.511 (2)
C4—H40.93C12—C131.378 (2)
C5—C61.369 (2)C12—H120.93
C5—H50.93C13—H130.93
C6—C71.377 (2)C14—H14A0.96
C6—H60.93C14—H14B0.96
C7—H70.93C14—H14C0.96
C8—C131.367 (2)N1—H1N0.826 (14)
O1—C1—N1121.86 (14)C10—C9—C8119.79 (16)
O1—C1—C2120.61 (13)C10—C9—H9120.1
N1—C1—C2117.50 (11)C8—C9—H9120.1
C3—C2—C7118.48 (13)C11—C10—C9122.19 (15)
C3—C2—C1118.29 (11)C11—C10—H10118.9
C7—C2—C1123.22 (13)C9—C10—H10118.9
C4—C3—C2120.69 (13)C10—C11—C12117.29 (16)
C4—C3—H3119.7C10—C11—C14122.26 (17)
C2—C3—H3119.7C12—C11—C14120.44 (17)
C5—C4—C3120.40 (15)C13—C12—C11121.31 (16)
C5—C4—H4119.8C13—C12—H12119.3
C3—C4—H4119.8C11—C12—H12119.3
C4—C5—C6119.87 (15)C8—C13—C12120.52 (15)
C4—C5—H5120.1C8—C13—H13119.7
C6—C5—H5120.1C12—C13—H13119.7
C5—C6—C7120.19 (14)C11—C14—H14A109.5
C5—C6—H6119.9C11—C14—H14B109.5
C7—C6—H6119.9H14A—C14—H14B109.5
C6—C7—C2120.34 (14)C11—C14—H14C109.5
C6—C7—H7119.8H14A—C14—H14C109.5
C2—C7—H7119.8H14B—C14—H14C109.5
C13—C8—C9118.87 (15)C1—N1—C8125.84 (11)
C13—C8—N1118.86 (13)C1—N1—H1N118.2 (11)
C9—C8—N1122.26 (14)C8—N1—H1N114.6 (11)
O1—C1—C2—C319.6 (2)N1—C8—C9—C10180.00 (13)
N1—C1—C2—C3158.31 (13)C8—C9—C10—C111.1 (2)
O1—C1—C2—C7161.61 (14)C9—C10—C11—C120.4 (2)
N1—C1—C2—C720.5 (2)C9—C10—C11—C14178.73 (15)
C7—C2—C3—C40.8 (2)C10—C11—C12—C130.0 (3)
C1—C2—C3—C4178.06 (14)C14—C11—C12—C13179.16 (17)
C2—C3—C4—C50.9 (2)C9—C8—C13—C121.0 (2)
C3—C4—C5—C60.1 (3)N1—C8—C13—C12179.66 (14)
C4—C5—C6—C70.9 (3)C11—C12—C13—C80.3 (3)
C5—C6—C7—C21.0 (2)O1—C1—N1—C85.0 (2)
C3—C2—C7—C60.2 (2)C2—C1—N1—C8172.86 (13)
C1—C2—C7—C6178.97 (14)C13—C8—N1—C1134.60 (15)
C13—C8—C9—C101.4 (2)C9—C8—N1—C146.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (1)2.12 (2)2.9208 (14)164 (2)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)9.1117 (3), 9.8336 (2), 26.0616 (10)
V3)2335.14 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.07 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21626, 2276, 1060
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 0.82
No. of reflections2276
No. of parameters149
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.10

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.826 (14)2.117 (15)2.9208 (14)164.2 (15)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Cryst. E63, o3365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds