organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Meth­oxy­eth­oxy)-4-nitro­benzene

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, C9H11NO4, is an inter­mediate for dyes and drugs. The O—C—C—O chain adopts a synclinal conformation. The crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Guo et al. (2006[Guo, D.-S., Zhang, X.-Y., Liu, Z.-P. & Ma, J.-P. (2006). Acta Cryst. E62, o3655-o3656.]); Higson (1992[Higson, F. K. (1992). Adv. Appl. Microbiol. 37, 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO4

  • Mr = 197.19

  • Orthorhombic, P n a 21

  • a = 11.280 (3) Å

  • b = 20.430 (5) Å

  • c = 4.1079 (10) Å

  • V = 946.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 (2) K

  • 0.49 × 0.43 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.6), SAINT (Version 5.A06) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.959

  • 4034 measured reflections

  • 1023 independent reflections

  • 982 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.05

  • 1023 reflections

  • 130 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 2 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.65 3.419 (3) 140
C3—H3⋯O3ii 0.93 2.50 3.317 (2) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+1]; (ii) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.6), SAINT (Version 5.A06) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.6), SAINT (Version 5.A06) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitroaromatic compounds are widely used as pesticides, explosives, and precursors for dyes and many pharmaceutical agents (Higson, 1992). Recently, we described the structure of a nitrobenzene derivative containing a polyether linkage which can be used as an asymmetric alkylating agent (Guo et al., 2006). Herein, we report the structure of another nitrobenzene derivative, in which an asymmetric ethylene glycol ether strand is appended to the para position of nitro group.

The title compound consists of an ethylene glycol monomethyl ether unit and a nitro-substituted benzene ring (Fig. 1). In the crystal structure the nitro group is coplanar with the benzene ring. Interestingly, there are two intermolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Guo et al. (2006); Higson (1992).

Experimental top

To a mixture of 2-methoxyethanol (0.190 ml, 2.40 mmol) and potassium hydroxide (0.120 g, 3.00 mmol) in DMSO (5 ml), was added a solution of 1-chloro-4-nitrobenzene (0.315 g, 2.00 mmol) in DMSO (5 ml). The resulting mixture was stirred for 20 h at 333 K and cooled to room temperature. The reaction mixture was poured into HCl 5% solution. The precipitate was filtered off and washed with water. After drying in vacuum, the title compound was obtained as a yellow solid in 90% yield. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of anhydrous ethanol at 273 K.

Refinement top

In the absence of anomalous scatterers Friedel pairs had been merged and the absolute configuration was arbitrarily assigned. All H atoms were included in calculated positions refined as riding model with Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97Å and Caromatic—H = 0.93Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Nitroaromatic compounds are widely used as pesticides, explosives, and precursors for dyes and many pharmaceutical agents (Higson, 1992). Recently, we described the structure of a nitrobenzene derivative containing a polyether linkage which can be used as an asymmetric alkylating agent (Guo et al., 2006). Herein, we report the structure of another nitrobenzene derivative, in which an asymmetric ethylene glycol ether strand is appended to the para position of nitro group.

The title compound consists of an ethylene glycol monomethyl ether unit and a nitro-substituted benzene ring (Fig. 1). In the crystal structure the nitro group is coplanar with the benzene ring. Interestingly, there are two intermolecular hydrogen bonds (Table 1).

For related literature, see: Guo et al. (2006); Higson (1992).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
1-(2-Methoxyethoxy)-4-nitrobenzene top
Crystal data top
C9H11NO4Dx = 1.384 Mg m3
Mr = 197.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2528 reflections
a = 11.280 (3) Åθ = 2.7–27.8°
b = 20.430 (5) ŵ = 0.11 mm1
c = 4.1079 (10) ÅT = 100 K
V = 946.7 (4) Å3Block, colourless
Z = 40.49 × 0.43 × 0.38 mm
F(000) = 416
Data collection top
Bruker SMART CCD area-detector
diffractometer
1023 independent reflections
Radiation source: fine-focus sealed tube982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1213
Tmin = 0.948, Tmax = 0.959k = 1524
4034 measured reflectionsl = 44
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.1764P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.13 e Å3
1023 reflectionsΔρmin = 0.12 e Å3
130 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.032 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 2 (1)
Crystal data top
C9H11NO4V = 946.7 (4) Å3
Mr = 197.19Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.280 (3) ŵ = 0.11 mm1
b = 20.430 (5) ÅT = 100 K
c = 4.1079 (10) Å0.49 × 0.43 × 0.38 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
982 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.959Rint = 0.030
4034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.12 e Å3
1023 reflectionsAbsolute structure: Flack (1983)
130 parametersAbsolute structure parameter: 2 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05088 (16)0.68859 (9)0.1216 (7)0.0407 (5)
C20.08278 (16)0.62314 (9)0.1160 (6)0.0373 (5)
H20.15220.60900.21600.045*
C30.00976 (16)0.57971 (9)0.0401 (6)0.0341 (5)
H30.03030.53570.04900.041*
C40.09501 (15)0.60085 (8)0.1858 (6)0.0310 (5)
C50.12605 (16)0.66669 (9)0.1780 (6)0.0382 (5)
H50.19560.68110.27620.046*
C60.05189 (18)0.71044 (9)0.0221 (7)0.0446 (6)
H60.07150.75460.01430.054*
C70.27095 (16)0.57084 (10)0.4767 (6)0.0363 (5)
H7A0.25880.60540.63540.044*
H7B0.32590.58660.31270.044*
C80.31983 (17)0.51107 (10)0.6395 (6)0.0411 (5)
H8A0.38880.52280.76770.049*
H8B0.26080.49280.78510.049*
C90.3945 (2)0.40593 (11)0.5514 (9)0.0536 (7)
H9A0.45920.41640.69390.080*
H9B0.42120.37620.38580.080*
H9C0.33190.38580.67440.080*
N10.12710 (18)0.73499 (9)0.2931 (7)0.0580 (6)
O10.21750 (15)0.71456 (9)0.4228 (6)0.0687 (6)
O20.09783 (16)0.79250 (8)0.3004 (9)0.0948 (10)
O30.16033 (10)0.55315 (6)0.3289 (4)0.0354 (4)
O40.35171 (11)0.46405 (7)0.4039 (4)0.0414 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (10)0.0363 (10)0.0479 (14)0.0084 (8)0.0100 (11)0.0041 (11)
C20.0314 (8)0.0389 (10)0.0418 (12)0.0007 (7)0.0028 (10)0.0049 (11)
C30.0333 (9)0.0295 (8)0.0396 (11)0.0048 (7)0.0042 (9)0.0033 (10)
C40.0296 (9)0.0298 (9)0.0336 (11)0.0002 (7)0.0077 (8)0.0041 (9)
C50.0335 (9)0.0320 (9)0.0490 (14)0.0071 (7)0.0042 (10)0.0042 (11)
C60.0444 (11)0.0268 (9)0.0626 (16)0.0005 (8)0.0092 (12)0.0013 (11)
C70.0317 (9)0.0415 (10)0.0357 (13)0.0061 (8)0.0023 (9)0.0074 (9)
C80.0382 (10)0.0512 (12)0.0338 (12)0.0022 (9)0.0032 (10)0.0010 (11)
C90.0465 (11)0.0506 (12)0.0637 (17)0.0076 (9)0.0042 (13)0.0163 (14)
N10.0531 (11)0.0456 (11)0.0752 (18)0.0149 (9)0.0053 (12)0.0099 (13)
O10.0553 (10)0.0677 (11)0.0830 (15)0.0171 (8)0.0121 (12)0.0117 (13)
O20.0856 (13)0.0423 (9)0.157 (3)0.0116 (8)0.0187 (18)0.0259 (15)
O30.0298 (6)0.0289 (6)0.0474 (10)0.0041 (5)0.0013 (7)0.0000 (7)
O40.0450 (7)0.0415 (7)0.0376 (8)0.0067 (6)0.0007 (8)0.0043 (7)
Geometric parameters (Å, º) top
C1—C61.375 (3)C7—C81.497 (3)
C1—C21.385 (3)C7—H7A0.9700
C1—N11.461 (3)C7—H7B0.9700
C2—C31.370 (3)C8—O41.410 (3)
C2—H20.9300C8—H8A0.9700
C3—C41.393 (3)C8—H8B0.9700
C3—H30.9300C9—O41.418 (3)
C4—O31.356 (2)C9—H9A0.9600
C4—C51.390 (2)C9—H9B0.9600
C5—C61.382 (3)C9—H9C0.9600
C5—H50.9300N1—O21.221 (2)
C6—H60.9300N1—O11.224 (3)
C7—O31.434 (2)
C6—C1—C2121.69 (19)O3—C7—H7B110.2
C6—C1—N1119.50 (18)C8—C7—H7B110.2
C2—C1—N1118.8 (2)H7A—C7—H7B108.5
C3—C2—C1118.48 (19)O4—C8—C7110.1 (2)
C3—C2—H2120.8O4—C8—H8A109.6
C1—C2—H2120.8C7—C8—H8A109.6
C2—C3—C4120.68 (17)O4—C8—H8B109.6
C2—C3—H3119.7C7—C8—H8B109.6
C4—C3—H3119.7H8A—C8—H8B108.2
O3—C4—C5124.65 (18)O4—C9—H9A109.5
O3—C4—C3115.11 (15)O4—C9—H9B109.5
C5—C4—C3120.25 (19)H9A—C9—H9B109.5
C6—C5—C4118.95 (19)O4—C9—H9C109.5
C6—C5—H5120.5H9A—C9—H9C109.5
C4—C5—H5120.5H9B—C9—H9C109.5
C1—C6—C5119.96 (18)O2—N1—O1122.9 (2)
C1—C6—H6120.0O2—N1—C1118.5 (2)
C5—C6—H6120.0O1—N1—C1118.61 (18)
O3—C7—C8107.69 (15)C4—O3—C7118.38 (14)
O3—C7—H7A110.2C8—O4—C9111.3 (2)
C8—C7—H7A110.2
C6—C1—C2—C30.6 (4)O3—C7—C8—O467.3 (2)
N1—C1—C2—C3178.8 (2)C6—C1—N1—O20.9 (4)
C1—C2—C3—C40.9 (3)C2—C1—N1—O2179.2 (3)
C2—C3—C4—O3179.2 (2)C6—C1—N1—O1179.2 (3)
C2—C3—C4—C50.8 (3)C2—C1—N1—O10.9 (4)
O3—C4—C5—C6179.6 (2)C5—C4—O3—C71.6 (3)
C3—C4—C5—C60.4 (3)C3—C4—O3—C7178.42 (19)
C2—C1—C6—C50.2 (4)C8—C7—O3—C4175.33 (18)
N1—C1—C6—C5178.4 (2)C7—C8—O4—C9177.94 (16)
C4—C5—C6—C10.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.653.419 (3)140
C3—H3···O3ii0.932.503.317 (2)147
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO4
Mr197.19
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)11.280 (3), 20.430 (5), 4.1079 (10)
V3)946.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.43 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.948, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
4034, 1023, 982
Rint0.030
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.05
No. of reflections1023
No. of parameters130
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12
Absolute structureFlack (1983)
Absolute structure parameter2 (1)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.653.419 (3)140.1
C3—H3···O3ii0.932.503.317 (2)146.5
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2.
 

Acknowledgements

Financial support by the National Natural Science Found­ation of China (No. 20572064) and Shandong Province Natural Science Foundation (Y2006B30) is gratefully acknowledged.

References

First citationBruker (1999). SMART (Version 5.6), SAINT (Version 5.A06) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, D.-S., Zhang, X.-Y., Liu, Z.-P. & Ma, J.-P. (2006). Acta Cryst. E62, o3655–o3656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigson, F. K. (1992). Adv. Appl. Microbiol. 37, 1–19.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds