organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-4-methyl­benzene­sulfonamide

aDepartamento de Química-Universidade Federal de Mato Grosso–UFMT, 78060-900 Cuiabá, MT, Brazil, and bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany
*Correspondence e-mail: foro@tu-darmstadt.de

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C18H19N3O3S, the phenyl ring and the pyrazole ring are twisted with respect to each other by an angle of 49.11 (7)°. The C—N—S—C torsion angle is −122.5 (2)°. The methyl group bonded to the N atom of the pyrazole ring has a large deviation from the mean ring plane of 0.603 (3) Å. One inter­molecular N—H⋯O and two non-classical inter­molecular C—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature, see: Xue et al. (2000[Xue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montalti, M. & Zaccheroni, N. (2000). Tetrahedron, 58, 4809-4815.]); Alves & Duarte (2002[Alves, D. P. & Duarte, I. D. G. (2002). Eur. J. Pharmacol. 444, 47-52.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O3S

  • Mr = 357.42

  • Triclinic, [P \overline 1]

  • a = 9.202 (1) Å

  • b = 9.892 (1) Å

  • c = 10.067 (1) Å

  • α = 103.688 (9)°

  • β = 90.360 (9)°

  • γ = 104.300 (9)°

  • V = 860.71 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 299 (2) K

  • 0.50 × 0.20 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.902, Tmax = 0.967

  • 10096 measured reflections

  • 3519 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.07

  • 3519 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (2) 1.97 (2) 2.826 (2) 167.1 (18)
C2—H2⋯O1ii 0.92 (2) 2.54 (2) 3.270 (2) 136.4 (16)
C12—H12⋯O2iii 0.97 (2) 2.43 (2) 3.245 (2) 141.9 (17)
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+2, -z+1; (iii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

Pyrazolone derivatives, as dypirone, known as a non-steroidal anti-inflammatory drug show analgesic property and have been widely used in Europa and Latin America (Alves & Duarte, 2002). The crystal elucidation of the title compound is a strategy to find new 4-aminoantypirine derivatives with biological significance.

The pyrazole moiety forms a C8—N1—S1—C1 torsion angle with the toluene ring of -122.5 (2)° and a dihedral angle between the mean planes of 49.11 (7)° with the phenyl ring showing the nonplanarity of the system. The methyl group with C18 bounded to the nitrogen atom N2 of the pyrazole ring has a high deviation from the mean plane of -0.603 (3) Å. The NH group has an intermolecular hydrogen bond to the oxygen atom O3 [N—H···O = 1.97 (2) Å]. Both sulfonamide oxygen atoms O1 and O2 are involved in non-classical intermolecular hydrogen bonds with C2 and C12 [C—H···O = 2.54 (2) Å, C—H···O = 2.43 (2) Å, respectively] (Table 1).

Related literature top

For related literature, see: Xue et al. (2000); Alves & Duarte (2002).

Experimental top

The ligand was obtained according to the procedure previously described (Xue et al., 2000). Single crystals of (I) suitable for X-ray data collection appeared after a few days from methanol-dichloromethane (1:1).

Refinement top

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.87 (2) %A and C—H = 0.92 (2)–0.97 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Pyrazolone derivatives, as dypirone, known as a non-steroidal anti-inflammatory drug show analgesic property and have been widely used in Europa and Latin America (Alves & Duarte, 2002). The crystal elucidation of the title compound is a strategy to find new 4-aminoantypirine derivatives with biological significance.

The pyrazole moiety forms a C8—N1—S1—C1 torsion angle with the toluene ring of -122.5 (2)° and a dihedral angle between the mean planes of 49.11 (7)° with the phenyl ring showing the nonplanarity of the system. The methyl group with C18 bounded to the nitrogen atom N2 of the pyrazole ring has a high deviation from the mean plane of -0.603 (3) Å. The NH group has an intermolecular hydrogen bond to the oxygen atom O3 [N—H···O = 1.97 (2) Å]. Both sulfonamide oxygen atoms O1 and O2 are involved in non-classical intermolecular hydrogen bonds with C2 and C12 [C—H···O = 2.54 (2) Å, C—H···O = 2.43 (2) Å, respectively] (Table 1).

For related literature, see: Xue et al. (2000); Alves & Duarte (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)-4-methylbenzenesulfonamide top
Crystal data top
C18H19N3O3SZ = 2
Mr = 357.42F(000) = 376
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.202 (1) ÅCell parameters from 4280 reflections
b = 9.892 (1) Åθ = 2.0–25.6°
c = 10.067 (1) ŵ = 0.21 mm1
α = 103.688 (9)°T = 299 K
β = 90.360 (9)°Rod, colorless
γ = 104.300 (9)°0.50 × 0.20 × 0.16 mm
V = 860.71 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
3519 independent reflections
Radiation source: fine-focus sealed tube2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1111
Tmin = 0.902, Tmax = 0.967k = 1212
10096 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
3519 reflections(Δ/σ)max = 0.041
259 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H19N3O3Sγ = 104.300 (9)°
Mr = 357.42V = 860.71 (15) Å3
Triclinic, P1Z = 2
a = 9.202 (1) ÅMo Kα radiation
b = 9.892 (1) ŵ = 0.21 mm1
c = 10.067 (1) ÅT = 299 K
α = 103.688 (9)°0.50 × 0.20 × 0.16 mm
β = 90.360 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
3519 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2600 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.967Rint = 0.028
10096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
3519 reflectionsΔρmin = 0.35 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15033 (19)0.83574 (19)0.62802 (18)0.0331 (4)
C20.0708 (2)0.8120 (2)0.50358 (19)0.0381 (4)
H20.015 (2)0.875 (2)0.491 (2)0.046*
C30.0712 (2)0.6926 (2)0.4009 (2)0.0416 (5)
H30.016 (2)0.677 (2)0.319 (2)0.050*
C40.1508 (2)0.5953 (2)0.4180 (2)0.0429 (5)
C50.2301 (3)0.6212 (2)0.5424 (2)0.0478 (5)
H50.280 (3)0.554 (3)0.562 (2)0.057*
C60.2306 (2)0.7402 (2)0.6482 (2)0.0429 (5)
H60.285 (2)0.756 (2)0.731 (2)0.051*
C70.1510 (3)0.4657 (2)0.3046 (2)0.0620 (6)
H7A0.23060.49040.24660.074*
H7B0.05630.43400.25170.074*
H7C0.16630.38980.34300.074*
C80.12615 (19)1.02665 (19)0.81942 (17)0.0330 (4)
C90.2574 (2)0.9894 (2)0.74125 (17)0.0347 (4)
C100.11502 (19)1.16193 (19)0.91546 (17)0.0327 (4)
C110.3116 (2)1.2945 (2)0.98271 (17)0.0343 (4)
C120.4544 (2)1.2434 (2)1.0227 (2)0.0416 (5)
H120.510 (2)1.144 (2)0.988 (2)0.050*
C130.5179 (3)1.3360 (3)1.1144 (2)0.0525 (6)
H130.617 (3)1.300 (3)1.140 (2)0.063*
C140.4392 (3)1.4765 (3)1.1678 (2)0.0583 (6)
H140.482 (3)1.542 (3)1.228 (2)0.070*
C150.2969 (3)1.5266 (3)1.1285 (2)0.0559 (6)
H150.247 (3)1.622 (3)1.159 (2)0.067*
C160.2324 (2)1.4360 (2)1.0346 (2)0.0446 (5)
H160.136 (3)1.466 (2)1.005 (2)0.054*
C170.3153 (2)0.8652 (2)0.6214 (2)0.0472 (5)
H17A0.25890.79500.61830.057*
H17B0.30510.89800.53860.057*
H17C0.41940.82260.62990.057*
C180.4369 (2)1.1268 (2)0.6960 (2)0.0441 (5)
H18A0.50811.04120.64560.053*
H18B0.37861.17360.63320.053*
H18C0.48961.19080.74980.053*
N10.02275 (17)0.94195 (17)0.81689 (15)0.0349 (4)
H1N0.024 (2)0.889 (2)0.875 (2)0.042*
N20.33766 (17)1.08873 (17)0.78608 (15)0.0374 (4)
N30.24404 (16)1.20148 (16)0.88633 (15)0.0361 (4)
O10.15031 (16)1.10496 (14)0.70246 (14)0.0467 (4)
O20.25442 (14)0.99605 (15)0.86636 (13)0.0478 (4)
O30.01857 (14)1.23296 (14)1.00850 (13)0.0403 (3)
S10.14404 (5)0.98554 (5)0.76144 (4)0.03506 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (9)0.0337 (9)0.0365 (9)0.0078 (7)0.0056 (7)0.0112 (8)
C20.0388 (10)0.0400 (11)0.0389 (10)0.0138 (9)0.0014 (8)0.0126 (8)
C30.0436 (11)0.0444 (11)0.0353 (10)0.0083 (9)0.0031 (9)0.0100 (9)
C40.0466 (11)0.0370 (11)0.0441 (11)0.0076 (9)0.0160 (9)0.0110 (9)
C50.0524 (13)0.0464 (12)0.0541 (12)0.0253 (10)0.0102 (10)0.0171 (10)
C60.0415 (11)0.0518 (12)0.0402 (10)0.0182 (10)0.0015 (9)0.0139 (9)
C70.0764 (17)0.0471 (13)0.0580 (14)0.0161 (12)0.0197 (12)0.0034 (11)
C80.0306 (9)0.0390 (10)0.0305 (9)0.0090 (8)0.0037 (7)0.0105 (8)
C90.0341 (9)0.0394 (10)0.0303 (9)0.0078 (8)0.0037 (7)0.0094 (8)
C100.0293 (9)0.0380 (10)0.0321 (9)0.0077 (8)0.0026 (7)0.0118 (8)
C110.0326 (9)0.0393 (10)0.0333 (9)0.0133 (8)0.0000 (7)0.0093 (8)
C120.0395 (11)0.0431 (11)0.0424 (10)0.0106 (9)0.0030 (8)0.0107 (9)
C130.0460 (13)0.0643 (15)0.0523 (13)0.0217 (11)0.0136 (10)0.0162 (11)
C140.0621 (15)0.0639 (15)0.0524 (13)0.0344 (13)0.0064 (11)0.0016 (11)
C150.0616 (15)0.0409 (12)0.0602 (14)0.0169 (11)0.0104 (12)0.0006 (11)
C160.0380 (11)0.0426 (11)0.0515 (12)0.0084 (9)0.0009 (9)0.0098 (9)
C170.0458 (12)0.0487 (12)0.0410 (11)0.0091 (10)0.0031 (9)0.0026 (9)
C180.0345 (10)0.0566 (13)0.0415 (10)0.0104 (9)0.0033 (8)0.0142 (9)
N10.0347 (8)0.0386 (9)0.0365 (8)0.0131 (7)0.0057 (7)0.0147 (7)
N20.0317 (8)0.0445 (9)0.0344 (8)0.0105 (7)0.0045 (6)0.0057 (7)
N30.0307 (8)0.0409 (9)0.0345 (8)0.0099 (7)0.0013 (6)0.0043 (7)
O10.0529 (9)0.0362 (7)0.0511 (8)0.0088 (6)0.0111 (7)0.0138 (6)
O20.0348 (7)0.0570 (9)0.0443 (8)0.0050 (6)0.0057 (6)0.0059 (7)
O30.0348 (7)0.0408 (7)0.0412 (7)0.0064 (6)0.0068 (6)0.0058 (6)
S10.0318 (3)0.0350 (3)0.0358 (2)0.00564 (18)0.00188 (18)0.00684 (18)
Geometric parameters (Å, º) top
C1—C61.384 (3)C11—C121.386 (3)
C1—C21.387 (3)C11—N31.429 (2)
C1—S11.7620 (18)C12—C131.380 (3)
C2—C31.375 (3)C12—H120.97 (2)
C2—H20.92 (2)C13—C141.375 (3)
C3—C41.385 (3)C13—H130.96 (2)
C3—H30.93 (2)C14—C151.377 (3)
C4—C51.382 (3)C14—H140.94 (2)
C4—C71.502 (3)C15—C161.384 (3)
C5—C61.387 (3)C15—H150.92 (3)
C5—H50.95 (2)C16—H160.94 (2)
C6—H60.92 (2)C17—H17A0.9600
C7—H7A0.9600C17—H17B0.9600
C7—H7B0.9600C17—H17C0.9600
C7—H7C0.9600C18—N21.456 (2)
C8—C91.358 (2)C18—H18A0.9600
C8—N11.411 (2)C18—H18B0.9600
C8—C101.433 (2)C18—H18C0.9600
C9—N21.367 (2)N1—S11.6281 (16)
C9—C171.488 (3)N1—H1N0.87 (2)
C10—O31.236 (2)N2—N31.409 (2)
C10—N31.389 (2)O1—S11.4318 (14)
C11—C161.381 (3)O2—S11.4284 (14)
C6—C1—C2120.13 (18)C14—C13—C12120.4 (2)
C6—C1—S1120.34 (14)C14—C13—H13121.2 (14)
C2—C1—S1119.51 (14)C12—C13—H13118.3 (14)
C3—C2—C1119.68 (19)C13—C14—C15120.1 (2)
C3—C2—H2120.0 (13)C13—C14—H14121.8 (16)
C1—C2—H2120.3 (13)C15—C14—H14118.0 (16)
C2—C3—C4121.46 (19)C14—C15—C16120.3 (2)
C2—C3—H3118.7 (13)C14—C15—H15120.4 (16)
C4—C3—H3119.8 (13)C16—C15—H15119.2 (16)
C5—C4—C3118.02 (18)C11—C16—C15119.2 (2)
C5—C4—C7121.1 (2)C11—C16—H16117.9 (13)
C3—C4—C7120.87 (19)C15—C16—H16122.8 (14)
C4—C5—C6121.73 (19)C9—C17—H17A109.5
C4—C5—H5121.0 (14)C9—C17—H17B109.5
C6—C5—H5117.0 (14)H17A—C17—H17B109.5
C1—C6—C5118.98 (19)C9—C17—H17C109.5
C1—C6—H6120.6 (14)H17A—C17—H17C109.5
C5—C6—H6120.4 (14)H17B—C17—H17C109.5
C4—C7—H7A109.5N2—C18—H18A109.5
C4—C7—H7B109.5N2—C18—H18B109.5
H7A—C7—H7B109.5H18A—C18—H18B109.5
C4—C7—H7C109.5N2—C18—H18C109.5
H7A—C7—H7C109.5H18A—C18—H18C109.5
H7B—C7—H7C109.5H18B—C18—H18C109.5
C9—C8—N1126.38 (17)C8—N1—S1122.21 (13)
C9—C8—C10108.83 (16)C8—N1—H1N121.7 (13)
N1—C8—C10124.56 (16)S1—N1—H1N110.7 (13)
C8—C9—N2109.58 (16)C9—N2—N3106.85 (14)
C8—C9—C17129.48 (18)C9—N2—C18123.39 (15)
N2—C9—C17120.92 (17)N3—N2—C18117.59 (15)
O3—C10—N3124.10 (17)C10—N3—N2109.26 (14)
O3—C10—C8130.98 (17)C10—N3—C11124.48 (14)
N3—C10—C8104.90 (15)N2—N3—C11118.75 (14)
C16—C11—C12120.73 (18)O2—S1—O1119.94 (9)
C16—C11—N3118.91 (17)O2—S1—N1109.23 (8)
C12—C11—N3120.36 (17)O1—S1—N1107.43 (8)
C13—C12—C11119.2 (2)O2—S1—C1106.91 (9)
C13—C12—H12119.7 (13)O1—S1—C1107.94 (8)
C11—C12—H12121.1 (13)N1—S1—C1104.32 (8)
C6—C1—C2—C30.5 (3)C10—C8—N1—S173.9 (2)
S1—C1—C2—C3177.76 (14)C8—C9—N2—N36.99 (19)
C1—C2—C3—C40.7 (3)C17—C9—N2—N3171.68 (15)
C2—C3—C4—C50.3 (3)C8—C9—N2—C18148.18 (17)
C2—C3—C4—C7179.63 (18)C17—C9—N2—C1830.5 (3)
C3—C4—C5—C60.3 (3)O3—C10—N3—N2172.84 (16)
C7—C4—C5—C6179.82 (19)C8—C10—N3—N25.62 (18)
C2—C1—C6—C50.0 (3)O3—C10—N3—C1123.8 (3)
S1—C1—C6—C5178.27 (15)C8—C10—N3—C11154.70 (16)
C4—C5—C6—C10.4 (3)C9—N2—N3—C107.89 (19)
N1—C8—C9—N2171.06 (16)C18—N2—N3—C10151.70 (15)
C10—C8—C9—N23.6 (2)C9—N2—N3—C11159.01 (15)
N1—C8—C9—C1710.4 (3)C18—N2—N3—C1157.2 (2)
C10—C8—C9—C17174.95 (17)C16—C11—N3—C1064.2 (2)
C9—C8—C10—O3176.98 (18)C12—C11—N3—C10116.1 (2)
N1—C8—C10—O32.2 (3)C16—C11—N3—N2149.34 (17)
C9—C8—C10—N31.34 (18)C12—C11—N3—N230.4 (2)
N1—C8—C10—N3176.10 (15)C8—N1—S1—O2123.46 (15)
C16—C11—C12—C130.6 (3)C8—N1—S1—O18.10 (16)
N3—C11—C12—C13179.08 (17)C8—N1—S1—C1122.52 (15)
C11—C12—C13—C141.3 (3)C6—C1—S1—O211.34 (18)
C12—C13—C14—C150.9 (4)C2—C1—S1—O2170.41 (14)
C13—C14—C15—C160.3 (4)C6—C1—S1—O1141.64 (16)
C12—C11—C16—C150.6 (3)C2—C1—S1—O140.11 (17)
N3—C11—C16—C15179.73 (18)C6—C1—S1—N1104.31 (16)
C14—C15—C16—C111.0 (3)C2—C1—S1—N173.94 (16)
C9—C8—N1—S1112.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.97 (2)2.826 (2)167.1 (18)
C2—H2···O1ii0.92 (2)2.54 (2)3.270 (2)136.4 (16)
C12—H12···O2iii0.97 (2)2.43 (2)3.245 (2)141.9 (17)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O3S
Mr357.42
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)9.202 (1), 9.892 (1), 10.067 (1)
α, β, γ (°)103.688 (9), 90.360 (9), 104.300 (9)
V3)860.71 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.20 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.902, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10096, 3519, 2600
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.07
No. of reflections3519
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.97 (2)2.826 (2)167.1 (18)
C2—H2···O1ii0.92 (2)2.54 (2)3.270 (2)136.4 (16)
C12—H12···O2iii0.97 (2)2.43 (2)3.245 (2)141.9 (17)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+2, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors thank Professor Dr. Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

First citationAlves, D. P. & Duarte, I. D. G. (2002). Eur. J. Pharmacol. 444, 47–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, G., Bradshaw, J. S., Dalley, N. K., Savage, P. B., Izatt, R. M., Prodi, L., Montalti, M. & Zaccheroni, N. (2000). Tetrahedron, 58, 4809–4815.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds