organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-N-(4-pyridinio)benzene­sulfonamidate

aSchool of Chemical and Environmental Engineering, Changsha University of Science & Technology, Changsha 410076, People's Republic of China, and bHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China
*Correspondence e-mail: jansenlee1103@yahoo.com.cn

(Received 20 November 2007; accepted 29 November 2007; online 6 December 2007)

The title compound, C11H9N3O4S, crystallizes with two mol­ecules in the asymmetric unit; each mol­ecule exists as a zwitterion in the solid state. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains. Weak C—H⋯O inter­actions further stabilize the crystal structure.

Related literature

For zwitterionic forms of N-aryl­benzene­sulfonamides, see: Yu et al. (2007[Yu, H.-J., Chen, J.-Z., Simpson, J., Li, J.-S. & Bai, G.-Y. (2007). Acta Cryst. E63, o3720.]); Amendola et al.(2005[Amendola, V., Boiocchi, M., Fabbrizzi, L. & Palchetti, A. (2005). Chem. Eur. J. 11, 120-127.]); Lindley et al. (1977[Lindley, P. F., Mahmoud, M. M., Dodd, C., Smith, C. H., Boyd, G. V. & Norris, T. (1977). Acta Cryst. B33, 2160-2164.]); Schaumann et al. (1975[Schaumann, E., Rohr, A., Sieveking, S. & Walter, W. (1975). Angew. Chem. Int. Ed. Engl. 14, 493.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O4S

  • Mr = 279.27

  • Triclinic, [P \overline 1]

  • a = 7.768 (3) Å

  • b = 12.570 (5) Å

  • c = 13.436 (5) Å

  • α = 75.534 (7)°

  • β = 85.400 (7)°

  • γ = 88.741 (6)°

  • V = 1266.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 294 (2) K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.948

  • 6351 measured reflections

  • 4357 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.174

  • S = 1.02

  • 4357 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.95 (4) 2.67 (4) 3.215 (4) 117 (3)
N4—H4A⋯N2i 0.95 (4) 2.08 (4) 2.969 (4) 155 (3)
N1—H1A⋯N5ii 0.88 (5) 2.02 (5) 2.898 (4) 172 (4)
C14—H14⋯O1i 0.93 2.54 3.140 (5) 122
C14—H14⋯O6iii 0.93 2.58 3.249 (5) 130
C16—H16⋯O1iv 0.93 2.54 3.265 (5) 135
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound crystallizes with two molecules in the asymmetric unit; each molecule displays a zwitterion structure with the pyridine N protonated and the amide N deprotonated (Figs. 1 and 2). The relatively short C1—N2 [1.382 (4) Å] and C12—N5 [1.374 (4) Å] distances indicate that the N2 and N5 lone-pair electrons weakly conjugate with pyridinium rings. The benzene ring forms an angle of 85.1 (2) and 89.3 (2)° with the pyridinium ring in the two molecules of the asymmetric unit. In the addition, the nitro group is inclined to the benzene ring with 73.3 (3)°, and 80.0 (4)°. In the crystal, intermolecular N—H···N and C—H···O hydrogen bonds (Table 1) link the molecules into chains.

Related literature top

For zwitterionic forms of N-arylbenzenesulfonamides, see: Yu et al. (2007); Amendola et al.(2005); Lindley et al. (1977); Schaumann et al. (1975).

Experimental top

A solution of 2-nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4-aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirring overnight. The yellow solid obtained was washed with warm water in a yield of 70.3%. Yellow blocks were grown from its formic solution.

Refinement top

The N-bound H atoms were located in a difference map and their coordinates were refined with Uiso(H) = 1.2 Ueq(N). The C-bound H atoms were positioned geometrically (C—H =0.93 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C).

Structure description top

The title compound crystallizes with two molecules in the asymmetric unit; each molecule displays a zwitterion structure with the pyridine N protonated and the amide N deprotonated (Figs. 1 and 2). The relatively short C1—N2 [1.382 (4) Å] and C12—N5 [1.374 (4) Å] distances indicate that the N2 and N5 lone-pair electrons weakly conjugate with pyridinium rings. The benzene ring forms an angle of 85.1 (2) and 89.3 (2)° with the pyridinium ring in the two molecules of the asymmetric unit. In the addition, the nitro group is inclined to the benzene ring with 73.3 (3)°, and 80.0 (4)°. In the crystal, intermolecular N—H···N and C—H···O hydrogen bonds (Table 1) link the molecules into chains.

For zwitterionic forms of N-arylbenzenesulfonamides, see: Yu et al. (2007); Amendola et al.(2005); Lindley et al. (1977); Schaumann et al. (1975).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Perspective view of one of the two molecules in the asymmetric unit with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view of the other molecule in the asymmetric unit with the atom-numbering scheme and 50% probability displacement ellipsoids.
2-Nitro-N-(4-pyridinio)benzenesulfonamidate top
Crystal data top
C11H9N3O4SZ = 4
Mr = 279.27F(000) = 576
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.768 (3) ÅCell parameters from 2204 reflections
b = 12.570 (5) Åθ = 3.0–24.8°
c = 13.436 (5) ŵ = 0.27 mm1
α = 75.534 (7)°T = 294 K
β = 85.400 (7)°Block, yellow
γ = 88.741 (6)°0.30 × 0.24 × 0.20 mm
V = 1266.3 (8) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4357 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.924, Tmax = 0.948k = 1411
6351 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.7778P]
where P = (Fo2 + 2Fc2)/3
4357 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H9N3O4Sγ = 88.741 (6)°
Mr = 279.27V = 1266.3 (8) Å3
Triclinic, P1Z = 4
a = 7.768 (3) ÅMo Kα radiation
b = 12.570 (5) ŵ = 0.27 mm1
c = 13.436 (5) ÅT = 294 K
α = 75.534 (7)°0.30 × 0.24 × 0.20 mm
β = 85.400 (7)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4357 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2918 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.948Rint = 0.026
6351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.40 e Å3
4357 reflectionsΔρmin = 0.26 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35624 (11)1.06378 (7)0.83977 (8)0.0438 (3)
S20.16866 (12)0.54595 (7)0.82807 (9)0.0484 (3)
O10.3338 (3)1.1734 (2)0.8574 (2)0.0530 (7)
O20.2218 (3)0.9840 (2)0.8878 (2)0.0605 (8)
O30.7821 (5)1.1047 (4)0.6529 (3)0.1145 (16)
O40.6473 (5)1.2478 (4)0.6875 (3)0.0885 (12)
O50.1958 (4)0.6616 (2)0.8216 (3)0.0646 (9)
O60.2869 (3)0.4682 (2)0.8871 (2)0.0619 (8)
O70.1188 (6)0.6900 (4)0.6559 (3)0.1066 (15)
O80.1034 (8)0.7942 (3)0.6026 (4)0.141 (2)
N10.7802 (4)0.7241 (3)0.8638 (3)0.0519 (9)
H1A0.828 (6)0.660 (4)0.864 (3)0.062*
N20.5495 (4)1.0267 (2)0.8668 (2)0.0408 (7)
N30.6518 (5)1.1607 (4)0.6602 (3)0.0714 (11)
N40.2797 (4)0.2206 (3)0.9043 (3)0.0471 (8)
H4A0.344 (5)0.154 (3)0.914 (3)0.056*
N50.0324 (4)0.5224 (2)0.8627 (3)0.0439 (8)
N60.0329 (7)0.7048 (4)0.6261 (4)0.0840 (13)
C10.6149 (4)0.9243 (3)0.8638 (3)0.0367 (8)
C20.7930 (5)0.9064 (3)0.8816 (3)0.0467 (10)
H20.85740.96250.89410.056*
C30.8711 (5)0.8074 (3)0.8804 (3)0.0498 (10)
H30.98780.79780.89100.060*
C40.6109 (5)0.7371 (3)0.8454 (3)0.0529 (11)
H40.55090.67900.83320.063*
C50.5256 (5)0.8354 (3)0.8445 (3)0.0469 (9)
H50.40970.84290.83110.056*
C60.3505 (5)1.0794 (3)0.7031 (3)0.0489 (10)
C70.2000 (6)1.0521 (4)0.6646 (5)0.0733 (14)
H70.10701.02240.71040.088*
C80.1865 (8)1.0684 (5)0.5589 (6)0.0930 (19)
H80.08341.05220.53520.112*
C90.3248 (9)1.1085 (5)0.4890 (5)0.0883 (19)
H90.31581.11620.41900.106*
C100.4776 (7)1.1375 (4)0.5235 (4)0.0729 (14)
H100.57091.16540.47730.088*
C110.4862 (5)1.1233 (3)0.6295 (3)0.0535 (11)
C120.1050 (5)0.4203 (3)0.8786 (3)0.0387 (8)
C130.2877 (4)0.4112 (3)0.8968 (3)0.0435 (9)
H130.35240.47310.90140.052*
C140.3706 (5)0.3136 (3)0.9076 (3)0.0445 (9)
H140.49050.31070.91740.053*
C150.1061 (5)0.2233 (3)0.8910 (3)0.0494 (10)
H150.04610.15860.89060.059*
C160.0145 (5)0.3191 (3)0.8780 (3)0.0452 (9)
H160.10540.31840.86890.054*
C170.1985 (5)0.5308 (3)0.6978 (3)0.0510 (10)
C180.2909 (6)0.4405 (4)0.6757 (4)0.0650 (12)
H180.33860.38910.72880.078*
C190.3118 (7)0.4269 (5)0.5753 (4)0.0785 (15)
H190.36840.36490.56310.094*
C200.2496 (7)0.5043 (5)0.4941 (5)0.0835 (16)
H200.26780.49600.42720.100*
C210.1591 (7)0.5951 (5)0.5133 (4)0.0792 (15)
H210.11460.64730.45960.095*
C220.1365 (6)0.6065 (4)0.6129 (4)0.0609 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0292 (5)0.0336 (5)0.0692 (7)0.0070 (4)0.0021 (4)0.0151 (4)
S20.0308 (5)0.0362 (5)0.0800 (8)0.0050 (4)0.0071 (5)0.0173 (5)
O10.0437 (15)0.0371 (14)0.080 (2)0.0118 (12)0.0007 (13)0.0210 (13)
O20.0355 (15)0.0474 (16)0.096 (2)0.0039 (12)0.0047 (14)0.0152 (14)
O30.042 (2)0.187 (5)0.107 (3)0.030 (3)0.0068 (19)0.025 (3)
O40.094 (3)0.098 (3)0.073 (2)0.037 (2)0.0075 (19)0.016 (2)
O50.0410 (16)0.0427 (16)0.114 (3)0.0023 (12)0.0067 (16)0.0272 (16)
O60.0389 (16)0.0580 (18)0.091 (2)0.0156 (13)0.0159 (14)0.0204 (15)
O70.102 (3)0.114 (3)0.088 (3)0.060 (3)0.004 (2)0.005 (2)
O80.167 (5)0.049 (2)0.198 (5)0.014 (3)0.043 (4)0.007 (3)
N10.047 (2)0.0334 (18)0.076 (3)0.0107 (15)0.0029 (17)0.0165 (16)
N20.0327 (16)0.0312 (16)0.061 (2)0.0069 (12)0.0074 (14)0.0149 (14)
N30.052 (3)0.106 (4)0.051 (2)0.006 (2)0.0016 (18)0.009 (2)
N40.0427 (19)0.0346 (17)0.064 (2)0.0025 (14)0.0061 (16)0.0116 (15)
N50.0337 (17)0.0295 (16)0.069 (2)0.0076 (13)0.0044 (14)0.0143 (14)
N60.090 (4)0.068 (3)0.083 (3)0.025 (3)0.012 (3)0.001 (2)
C10.0348 (19)0.0311 (18)0.043 (2)0.0036 (15)0.0001 (15)0.0084 (15)
C20.043 (2)0.038 (2)0.064 (3)0.0032 (17)0.0134 (19)0.0195 (18)
C30.040 (2)0.044 (2)0.067 (3)0.0144 (18)0.0130 (19)0.0144 (19)
C40.042 (2)0.033 (2)0.088 (3)0.0000 (17)0.003 (2)0.023 (2)
C50.033 (2)0.039 (2)0.070 (3)0.0034 (16)0.0053 (18)0.0173 (18)
C60.033 (2)0.033 (2)0.084 (3)0.0124 (16)0.016 (2)0.0191 (19)
C70.050 (3)0.073 (3)0.106 (4)0.008 (2)0.025 (3)0.033 (3)
C80.079 (4)0.104 (5)0.116 (5)0.022 (3)0.053 (4)0.053 (4)
C90.109 (5)0.093 (4)0.082 (4)0.051 (4)0.051 (4)0.049 (3)
C100.075 (3)0.079 (3)0.068 (3)0.034 (3)0.019 (3)0.024 (3)
C110.047 (2)0.057 (3)0.061 (3)0.017 (2)0.018 (2)0.022 (2)
C120.039 (2)0.0328 (19)0.046 (2)0.0066 (15)0.0058 (16)0.0128 (16)
C130.032 (2)0.037 (2)0.064 (3)0.0085 (15)0.0013 (17)0.0165 (17)
C140.034 (2)0.041 (2)0.059 (3)0.0043 (16)0.0023 (17)0.0135 (18)
C150.044 (2)0.031 (2)0.075 (3)0.0121 (17)0.0098 (19)0.0155 (18)
C160.0316 (19)0.033 (2)0.071 (3)0.0094 (15)0.0041 (17)0.0143 (18)
C170.033 (2)0.036 (2)0.079 (3)0.0037 (16)0.0024 (19)0.0073 (19)
C180.051 (3)0.061 (3)0.081 (4)0.011 (2)0.008 (2)0.018 (2)
C190.067 (3)0.079 (4)0.093 (4)0.006 (3)0.016 (3)0.034 (3)
C200.065 (3)0.106 (5)0.080 (4)0.015 (3)0.018 (3)0.029 (3)
C210.061 (3)0.077 (4)0.089 (4)0.003 (3)0.005 (3)0.004 (3)
C220.053 (3)0.049 (3)0.077 (3)0.003 (2)0.004 (2)0.014 (2)
Geometric parameters (Å, º) top
S1—O21.459 (3)C5—H50.9300
S1—O11.460 (3)C6—C71.399 (6)
S1—N21.605 (3)C6—C111.407 (6)
S1—C61.801 (5)C7—C81.395 (8)
S2—O51.453 (3)C7—H70.9300
S2—O61.455 (3)C8—C91.384 (9)
S2—N51.606 (3)C8—H80.9300
S2—C171.804 (5)C9—C101.396 (8)
O3—N31.232 (5)C9—H90.9300
O4—N31.237 (5)C10—C111.397 (6)
O7—N61.217 (6)C10—H100.9300
O8—N61.219 (6)C12—C131.423 (5)
N1—C31.348 (5)C12—C161.441 (5)
N1—C41.356 (5)C13—C141.368 (5)
N1—H1A0.88 (5)C13—H130.9300
N2—C11.382 (4)C14—H140.9300
N3—C111.501 (6)C15—C161.377 (5)
N4—C151.346 (5)C15—H150.9300
N4—C141.360 (5)C16—H160.9300
N4—H4A0.95 (4)C17—C221.402 (6)
N5—C121.374 (4)C17—C181.411 (6)
N6—C221.499 (6)C18—C191.397 (7)
C1—C51.416 (5)C18—H180.9300
C1—C21.427 (5)C19—C201.380 (8)
C2—C31.376 (5)C19—H190.9300
C2—H20.9300C20—C211.396 (7)
C3—H30.9300C20—H200.9300
C4—C51.387 (5)C21—C221.378 (7)
C4—H40.9300C21—H210.9300
O2—S1—O1116.20 (17)C6—C7—H7119.3
O2—S1—N2115.50 (16)C9—C8—C7120.7 (5)
O1—S1—N2106.12 (15)C9—C8—H8119.6
O2—S1—C6105.37 (18)C7—C8—H8119.6
O1—S1—C6106.63 (16)C8—C9—C10120.1 (5)
N2—S1—C6106.27 (16)C8—C9—H9120.0
O5—S2—O6116.83 (17)C10—C9—H9120.0
O5—S2—N5106.34 (16)C9—C10—C11118.1 (5)
O6—S2—N5114.96 (17)C9—C10—H10121.0
O5—S2—C17106.20 (18)C11—C10—H10121.0
O6—S2—C17106.00 (18)C10—C11—C6123.5 (4)
N5—S2—C17105.63 (17)C10—C11—N3114.9 (4)
C3—N1—C4120.7 (3)C6—C11—N3121.6 (4)
C3—N1—H1A122 (3)N5—C12—C13118.1 (3)
C4—N1—H1A117 (3)N5—C12—C16126.5 (3)
C1—N2—S1122.7 (2)C13—C12—C16115.4 (3)
O3—N3—O4125.2 (5)C14—C13—C12121.7 (3)
O3—N3—C11117.7 (5)C14—C13—H13119.2
O4—N3—C11117.1 (4)C12—C13—H13119.2
C15—N4—C14120.3 (3)N4—C14—C13120.7 (3)
C15—N4—H4A122 (2)N4—C14—H14119.6
C14—N4—H4A117 (2)C13—C14—H14119.6
C12—N5—S2122.8 (2)N4—C15—C16122.0 (3)
O7—N6—O8124.3 (5)N4—C15—H15119.0
O7—N6—C22117.2 (5)C16—C15—H15119.0
O8—N6—C22118.4 (5)C15—C16—C12119.9 (3)
N2—C1—C5127.5 (3)C15—C16—H16120.1
N2—C1—C2116.3 (3)C12—C16—H16120.1
C5—C1—C2116.3 (3)C22—C17—C18115.8 (4)
C3—C2—C1121.0 (3)C22—C17—S2123.5 (3)
C3—C2—H2119.5C18—C17—S2120.7 (3)
C1—C2—H2119.5C19—C18—C17121.1 (4)
N1—C3—C2120.7 (4)C19—C18—H18119.4
N1—C3—H3119.6C17—C18—H18119.4
C2—C3—H3119.6C20—C19—C18120.8 (5)
N1—C4—C5121.3 (3)C20—C19—H19119.6
N1—C4—H4119.4C18—C19—H19119.6
C5—C4—H4119.4C19—C20—C21119.4 (5)
C4—C5—C1120.0 (3)C19—C20—H20120.3
C4—C5—H5120.0C21—C20—H20120.3
C1—C5—H5120.0C22—C21—C20119.2 (5)
C7—C6—C11116.2 (4)C22—C21—H21120.4
C7—C6—S1119.4 (4)C20—C21—H21120.4
C11—C6—S1124.3 (3)C21—C22—C17123.6 (4)
C8—C7—C6121.4 (5)C21—C22—N6115.2 (4)
C8—C7—H7119.3C17—C22—N6121.2 (4)
O2—S1—N2—C146.5 (3)O4—N3—C11—C10105.2 (5)
O1—S1—N2—C1176.9 (3)O3—N3—C11—C6108.8 (5)
C6—S1—N2—C169.9 (3)O4—N3—C11—C673.6 (5)
O5—S2—N5—C12178.8 (3)S2—N5—C12—C13172.5 (3)
O6—S2—N5—C1247.9 (4)S2—N5—C12—C167.1 (5)
C17—S2—N5—C1268.6 (3)N5—C12—C13—C14176.4 (3)
S1—N2—C1—C54.5 (5)C16—C12—C13—C143.2 (5)
S1—N2—C1—C2175.0 (3)C15—N4—C14—C130.5 (6)
N2—C1—C2—C3180.0 (3)C12—C13—C14—N42.0 (6)
C5—C1—C2—C30.5 (6)C14—N4—C15—C161.5 (6)
C4—N1—C3—C21.7 (6)N4—C15—C16—C120.1 (6)
C1—C2—C3—N11.0 (6)N5—C12—C16—C15177.3 (4)
C3—N1—C4—C50.9 (6)C13—C12—C16—C152.2 (5)
N1—C4—C5—C10.6 (6)O5—S2—C17—C2240.9 (4)
N2—C1—C5—C4179.3 (4)O6—S2—C17—C22165.8 (3)
C2—C1—C5—C41.2 (5)N5—S2—C17—C2271.8 (4)
O2—S1—C6—C722.1 (4)O5—S2—C17—C18137.9 (3)
O1—S1—C6—C7101.9 (3)O6—S2—C17—C1813.0 (4)
N2—S1—C6—C7145.2 (3)N5—S2—C17—C18109.4 (3)
O2—S1—C6—C11161.2 (3)C22—C17—C18—C192.3 (6)
O1—S1—C6—C1174.7 (3)S2—C17—C18—C19178.8 (3)
N2—S1—C6—C1138.2 (3)C17—C18—C19—C203.1 (7)
C11—C6—C7—C80.4 (6)C18—C19—C20—C212.4 (8)
S1—C6—C7—C8176.5 (4)C19—C20—C21—C221.1 (8)
C6—C7—C8—C92.5 (8)C20—C21—C22—C170.6 (7)
C7—C8—C9—C102.7 (8)C20—C21—C22—N6178.2 (5)
C8—C9—C10—C110.8 (7)C18—C17—C22—C211.1 (6)
C9—C10—C11—C61.3 (6)S2—C17—C22—C21180.0 (4)
C9—C10—C11—N3177.5 (4)C18—C17—C22—N6178.6 (4)
C7—C6—C11—C101.5 (6)S2—C17—C22—N62.5 (6)
S1—C6—C11—C10178.3 (3)O7—N6—C22—C2198.9 (5)
C7—C6—C11—N3177.2 (4)O8—N6—C22—C2178.3 (6)
S1—C6—C11—N30.5 (6)O7—N6—C22—C1778.8 (6)
O3—N3—C11—C1072.4 (5)O8—N6—C22—C17104.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.95 (4)2.67 (4)3.215 (4)117 (3)
N4—H4A···N2i0.95 (4)2.08 (4)2.969 (4)155 (3)
N1—H1A···N5ii0.88 (5)2.02 (5)2.898 (4)172 (4)
C14—H14···O1i0.932.543.140 (5)122
C14—H14···O6iii0.932.583.249 (5)130
C16—H16···O1iv0.932.543.265 (5)135
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H9N3O4S
Mr279.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.768 (3), 12.570 (5), 13.436 (5)
α, β, γ (°)75.534 (7), 85.400 (7), 88.741 (6)
V3)1266.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6351, 4357, 2918
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.02
No. of reflections4357
No. of parameters349
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.95 (4)2.67 (4)3.215 (4)117 (3)
N4—H4A···N2i0.95 (4)2.08 (4)2.969 (4)155 (3)
N1—H1A···N5ii0.88 (5)2.02 (5)2.898 (4)172 (4)
C14—H14···O1i0.932.543.140 (5)122
C14—H14···O6iii0.932.583.249 (5)130
C16—H16···O1iv0.932.543.265 (5)135
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z.
 

References

First citationAmendola, V., Boiocchi, M., Fabbrizzi, L. & Palchetti, A. (2005). Chem. Eur. J. 11, 120–127.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLindley, P. F., Mahmoud, M. M., Dodd, C., Smith, C. H., Boyd, G. V. & Norris, T. (1977). Acta Cryst. B33, 2160–2164.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchaumann, E., Rohr, A., Sieveking, S. & Walter, W. (1975). Angew. Chem. Int. Ed. Engl. 14, 493.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYu, H.-J., Chen, J.-Z., Simpson, J., Li, J.-S. & Bai, G.-Y. (2007). Acta Cryst. E63, o3720.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds