organic compounds
2,2-Dichloro-N-(2,5-dichlorophenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The conformation of the N—H bond in the title compound, C8H5Cl4NO, is syn to the 2-chloro substituent and anti to the 5-chloro substituent in the aromatic ring. The bond parameters are similar to those in 2,2-dichloro-N-phenylacetamide and other acetanilides. In the the molecules are linked into chains through N—H⋯O hydrogen bonding.
Related literature
For related literature, see: Gowda et al. (2001, 2006, 2007a,b,c); Shilpa & Gowda (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC Version (Enraf–Nonius, 1996); cell CAD-4-PC Version; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807062095/bt2637sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062095/bt2637Isup2.hkl
The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
The H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. The NH atom was located in difference map and its coordinates were refined. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.
In the present work, the structure of N-(2,5-dichlorophenyl)-2,2- dichloroacetamide (25DCPDCA) has been determined to study the effect of substituents on the structures of N-aromatic
(Gowda et al., 2001, 2006; 2007a, b</i, c</i). The conformation of the N—H bond in 25DCPDCA is syn to the 2-chloro substituent and anti to the 5-chloro substituent in the aromatic ring (Fig. 1), in contrast to syn conformation observed with respect to both the 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-2,2-dichloroacetamide (23DCPDCA) (Gowda et al., 2007c), 2-chloro substituent in N-(2-chlorophenyl)-2,2-dichloroacetamide (2CPDCA)(Gowda et al., 2001), 3-chloro substituent in N-(3,4-dichlorophenyl)-2,2-dichloroacetamide (34DCPDCA)(Gowda et al., 2007b),and 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-acetamide (23DCPA)(Gowda et al., 2007a), and anti conformation observed with respect to the 3-chloro substituent in the N-(3-chlorophenyl)-2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006). The bond parameters in 25DCPDCA are similar to those in N-(phenyl)-2,2-dichloroacetamide, 2CPDCA, 3CPDCA, 23DCPDCA, 34DCPDCA, 23DCPA and other acetanilides (Gowda et al., 2001, 2006; 2007a, b</i, b</i). The molecules in 25DCPDCA are linked into chains through N—H···O hydrogen bonding (Table 1 and Fig.2).For related literature, see: Gowda et al. (2001, 2006, 2007a,b,c); Shilpa & Gowda (2007).
Data collection: CAD-4-PC Version (Enraf–Nonius, 1996); cell
CAD-4-PC Version (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C8H5Cl4NO | F(000) = 544 |
Mr = 272.93 | Dx = 1.693 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 4.6977 (4) Å | θ = 7.7–20.2° |
b = 11.509 (2) Å | µ = 9.77 mm−1 |
c = 19.888 (3) Å | T = 299 K |
β = 95.23 (1)° | Needle, colourless |
V = 1070.8 (3) Å3 | 0.60 × 0.08 × 0.05 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1420 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.116 |
Graphite monochromator | θmax = 67.0°, θmin = 4.4° |
ω/2θ scans | h = 0→5 |
Absorption correction: ψ scan (North et al., 1968 | k = −13→12 |
Tmin = 0.367, Tmax = 0.591 | l = −23→23 |
4168 measured reflections | 3 standard reflections every 120 min |
1917 independent reflections | intensity decay: 2.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.217 | w = 1/[σ2(Fo2) + (0.144P)2 + 0.518P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.033 |
1917 reflections | Δρmax = 0.80 e Å−3 |
131 parameters | Δρmin = −0.72 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0038 (10) |
C8H5Cl4NO | V = 1070.8 (3) Å3 |
Mr = 272.93 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 4.6977 (4) Å | µ = 9.77 mm−1 |
b = 11.509 (2) Å | T = 299 K |
c = 19.888 (3) Å | 0.60 × 0.08 × 0.05 mm |
β = 95.23 (1)° |
Enraf–Nonius CAD-4 diffractometer | 1420 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968 | Rint = 0.116 |
Tmin = 0.367, Tmax = 0.591 | 3 standard reflections every 120 min |
4168 measured reflections | intensity decay: 2.0% |
1917 independent reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.217 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.80 e Å−3 |
1917 reflections | Δρmin = −0.72 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3994 (8) | 0.7062 (3) | 0.43590 (17) | 0.0324 (8) | |
C2 | 0.2953 (8) | 0.8112 (3) | 0.45736 (19) | 0.0367 (8) | |
C3 | 0.3981 (10) | 0.8573 (3) | 0.5194 (2) | 0.0439 (10) | |
H3 | 0.3256 | 0.9273 | 0.5337 | 0.053* | |
C4 | 0.6063 (10) | 0.8001 (4) | 0.55998 (19) | 0.0440 (9) | |
H4 | 0.6764 | 0.8313 | 0.6014 | 0.053* | |
C5 | 0.7093 (9) | 0.6956 (4) | 0.53810 (19) | 0.0389 (9) | |
C6 | 0.6085 (8) | 0.6475 (3) | 0.47678 (18) | 0.0345 (8) | |
H6 | 0.6797 | 0.5768 | 0.4630 | 0.041* | |
C7 | 0.4478 (8) | 0.6066 (3) | 0.33005 (18) | 0.0344 (8) | |
C8 | 0.2734 (8) | 0.5542 (4) | 0.26817 (19) | 0.0411 (9) | |
H8 | 0.0932 | 0.5238 | 0.2822 | 0.049* | |
N1 | 0.2888 (7) | 0.6573 (3) | 0.37354 (16) | 0.0379 (7) | |
H1N | 0.080 (12) | 0.653 (4) | 0.365 (2) | 0.045* | |
O1 | 0.7058 (6) | 0.5995 (4) | 0.33605 (15) | 0.0578 (10) | |
Cl1 | 0.0411 (3) | 0.88522 (9) | 0.40600 (6) | 0.0526 (4) | |
Cl2 | 0.9670 (3) | 0.62104 (10) | 0.58918 (5) | 0.0529 (4) | |
Cl3 | 0.4607 (4) | 0.4414 (2) | 0.23486 (12) | 0.1290 (11) | |
Cl4 | 0.1977 (5) | 0.66320 (18) | 0.20858 (7) | 0.0964 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0219 (16) | 0.0374 (17) | 0.0371 (17) | −0.0020 (15) | −0.0014 (13) | −0.0001 (14) |
C2 | 0.0262 (18) | 0.0368 (18) | 0.047 (2) | 0.0029 (15) | 0.0014 (15) | 0.0014 (15) |
C3 | 0.043 (2) | 0.0387 (19) | 0.050 (2) | 0.0025 (19) | 0.0064 (19) | −0.0080 (17) |
C4 | 0.044 (2) | 0.049 (2) | 0.0380 (19) | −0.002 (2) | −0.0037 (17) | −0.0059 (16) |
C5 | 0.0312 (19) | 0.046 (2) | 0.0383 (18) | −0.0034 (17) | −0.0028 (15) | 0.0030 (15) |
C6 | 0.0234 (18) | 0.0380 (17) | 0.0415 (19) | 0.0014 (16) | 0.0002 (15) | −0.0038 (15) |
C7 | 0.0174 (17) | 0.0484 (19) | 0.0366 (18) | −0.0005 (15) | −0.0015 (14) | −0.0015 (15) |
C8 | 0.0202 (17) | 0.059 (2) | 0.0424 (19) | −0.0010 (18) | −0.0059 (15) | −0.0060 (18) |
N1 | 0.0157 (14) | 0.0525 (17) | 0.0442 (17) | 0.0034 (15) | −0.0044 (12) | −0.0095 (14) |
O1 | 0.0155 (14) | 0.104 (3) | 0.0529 (18) | 0.0009 (16) | −0.0025 (12) | −0.0211 (16) |
Cl1 | 0.0420 (7) | 0.0528 (6) | 0.0619 (7) | 0.0160 (5) | −0.0019 (5) | 0.0066 (4) |
Cl2 | 0.0484 (7) | 0.0613 (7) | 0.0456 (6) | 0.0052 (5) | −0.0138 (5) | 0.0056 (4) |
Cl3 | 0.0671 (10) | 0.1554 (19) | 0.1553 (17) | 0.0449 (12) | −0.0398 (11) | −0.1137 (16) |
Cl4 | 0.1098 (15) | 0.1129 (13) | 0.0588 (9) | −0.0326 (12) | −0.0344 (9) | 0.0310 (8) |
C1—C2 | 1.386 (5) | C5—Cl2 | 1.735 (4) |
C1—C6 | 1.392 (5) | C6—H6 | 0.9300 |
C1—N1 | 1.417 (5) | C7—O1 | 1.209 (5) |
C2—C3 | 1.389 (6) | C7—N1 | 1.328 (5) |
C2—Cl1 | 1.724 (4) | C7—C8 | 1.538 (5) |
C3—C4 | 1.377 (6) | C8—Cl3 | 1.734 (4) |
C3—H3 | 0.9300 | C8—Cl4 | 1.740 (4) |
C4—C5 | 1.381 (6) | C8—H8 | 0.9800 |
C4—H4 | 0.9300 | N1—H1N | 0.98 (6) |
C5—C6 | 1.383 (5) | ||
C2—C1—C6 | 119.6 (3) | C5—C6—C1 | 119.2 (3) |
C2—C1—N1 | 120.3 (3) | C5—C6—H6 | 120.4 |
C6—C1—N1 | 120.1 (3) | C1—C6—H6 | 120.4 |
C1—C2—C3 | 120.2 (4) | O1—C7—N1 | 125.7 (4) |
C1—C2—Cl1 | 119.6 (3) | O1—C7—C8 | 120.5 (4) |
C3—C2—Cl1 | 120.2 (3) | N1—C7—C8 | 113.8 (3) |
C4—C3—C2 | 120.6 (4) | C7—C8—Cl3 | 110.3 (3) |
C4—C3—H3 | 119.7 | C7—C8—Cl4 | 108.9 (3) |
C2—C3—H3 | 119.7 | Cl3—C8—Cl4 | 111.0 (2) |
C3—C4—C5 | 118.8 (4) | C7—C8—H8 | 108.9 |
C3—C4—H4 | 120.6 | Cl3—C8—H8 | 108.9 |
C5—C4—H4 | 120.6 | Cl4—C8—H8 | 108.9 |
C4—C5—C6 | 121.7 (4) | C7—N1—C1 | 124.1 (3) |
C4—C5—Cl2 | 119.5 (3) | C7—N1—H1N | 119 (3) |
C6—C5—Cl2 | 118.9 (3) | C1—N1—H1N | 117 (3) |
C6—C1—C2—C3 | −0.3 (6) | C2—C1—C6—C5 | −0.2 (6) |
N1—C1—C2—C3 | 178.1 (4) | N1—C1—C6—C5 | −178.7 (3) |
C6—C1—C2—Cl1 | 178.8 (3) | O1—C7—C8—Cl3 | 25.6 (5) |
N1—C1—C2—Cl1 | −2.8 (5) | N1—C7—C8—Cl3 | −154.3 (3) |
C1—C2—C3—C4 | 0.7 (6) | O1—C7—C8—Cl4 | −96.5 (4) |
Cl1—C2—C3—C4 | −178.3 (3) | N1—C7—C8—Cl4 | 83.6 (4) |
C2—C3—C4—C5 | −0.6 (7) | O1—C7—N1—C1 | −3.3 (7) |
C3—C4—C5—C6 | 0.0 (7) | C8—C7—N1—C1 | 176.5 (3) |
C3—C4—C5—Cl2 | −178.8 (3) | C2—C1—N1—C7 | 138.6 (4) |
C4—C5—C6—C1 | 0.4 (6) | C6—C1—N1—C7 | −43.0 (6) |
Cl2—C5—C6—C1 | 179.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.98 (6) | 1.90 (6) | 2.851 (4) | 162 (4) |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H5Cl4NO |
Mr | 272.93 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 4.6977 (4), 11.509 (2), 19.888 (3) |
β (°) | 95.23 (1) |
V (Å3) | 1070.8 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 9.77 |
Crystal size (mm) | 0.60 × 0.08 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968 |
Tmin, Tmax | 0.367, 0.591 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4168, 1917, 1420 |
Rint | 0.116 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.217, 1.03 |
No. of reflections | 1917 |
No. of parameters | 131 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.80, −0.72 |
Computer programs: CAD-4-PC Version (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.98 (6) | 1.90 (6) | 2.851 (4) | 162 (4) |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3875. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4708. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394. CAS Google Scholar
Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of N-(2,5-dichlorophenyl)-2,2- dichloroacetamide (25DCPDCA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2001, 2006; 2007a, b</i, c</i). The conformation of the N—H bond in 25DCPDCA is syn to the 2-chloro substituent and anti to the 5-chloro substituent in the aromatic ring (Fig. 1), in contrast to syn conformation observed with respect to both the 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-2,2-dichloroacetamide (23DCPDCA) (Gowda et al., 2007c), 2-chloro substituent in N-(2-chlorophenyl)-2,2-dichloroacetamide (2CPDCA)(Gowda et al., 2001), 3-chloro substituent in N-(3,4-dichlorophenyl)-2,2-dichloroacetamide (34DCPDCA)(Gowda et al., 2007b),and 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)-acetamide (23DCPA)(Gowda et al., 2007a), and anti conformation observed with respect to the 3-chloro substituent in the N-(3-chlorophenyl)-2,2-dichloroacetamide (3CPDCA)(Gowda et al., 2006). The bond parameters in 25DCPDCA are similar to those in N-(phenyl)-2,2-dichloroacetamide, 2CPDCA, 3CPDCA, 23DCPDCA, 34DCPDCA, 23DCPA and other acetanilides (Gowda et al., 2001, 2006; 2007a, b</i, b</i). The molecules in 25DCPDCA are linked into chains through N—H···O hydrogen bonding (Table 1 and Fig.2).