organic compounds
Hydrogen-bonding patterns in the cocrystal 2-amino-4,6-dimethoxypyrimidine–anthranilic acid (1/1)
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India, and bFaculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England.
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title cocrystal, C6H9N3O2·C7H7NO2, the contains two crystallographically independent 2-amino-4,6-dimethoxy pyrimidine-anthranilic acid adducts. The 2-amino-4,6-dimethoxy pyrimidine molecules interact with the carboxylic group of the respective anthranilic acid molecules through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8). The pyrimidine molecules also form base pairs via a pair of N—H⋯N hydrogen bonds, forming another R22(8) motif. The typical intramolecular N—H⋯O hydrogen bond is observed in the anthranilic acid molecules. Furthermore, the is stabilized by C—H⋯O hydrogen bonds.
Related literature
For related literature, see: Baker & Santi (1965); Balasubramani et al. (2005, 2006); Bernstein et al. (1995); Boone et al. (1977); Chinnakali et al. (1999); Desiraju (1989); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Stanley et al. (2005); Takazawa et al. (1986); Thanigaimani et al. (2006, 2007a,b).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536807063271/bt2644sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063271/bt2644Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) and anthranilic acid (34 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colourless plate-like crystals were obtained.
The hydrogen atoms of the N4A (H4A1, H4A2) were located in difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically and were refined using a riding model. The C—H and O—H bond lengths are 0.93–0.96 and 0.82Å respectively [Uiso(H)= 1.2Ueq (C, O)].
Aminopyrimidine-Carboxylate interactions are of fundamental importantance since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). The adducts of
with 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/ carboxylates systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystals (Chinnakali et al., 1999) have been reported. The of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structures of 2-amino-4,6-dimethoxy pyrimidine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxy pyrimidine phthalic acid (1/1) (Thanigaimani et al., 2007a), 2-amino-4,6-dimethyl pyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005) and 2-amino-4,6-dimethyl pyrimidine 4-hydroxybenzoic acid (1/1) (Balasubramani et al., 2006), have been recently reported from our laboratory. The of anthranilic acid (Boone et al., 1977; Takazawa et al., 1986) is known. In the present study, the hydrogen-bonding patterns in the 2-amino-4,6-dimethoxypyrimidine anthranilic acid (1/1) cocrystal, (I), are investigated.The π-π stacking interactions between the aromatic ring are also observed. The pyrimidine ring of 2-amino-4,6-diemthoxy pyrimidine (molecule A) forms stacking interactions with the aryl rings of the anthranilic acid (molecule A), with interplanar and centroid-centroid distance of 3.430 Å and 3.5436 (11) Å, respectively, and a slip angle (angle between the centroid vector and the normal to the plane) is 13.85°. A similar type of stacking is also observed between two 2-amino-4,6-dimethoxy pyrimidine (molecule B) related by an inversion centre. The centroid-centroid distance and interplanar distance are 3.5411 (10) Å and 3.380 Å, respectively, the slip angle being 17.33°. These are typical aromatic stacking values (Hunter, 1994).
(Fig. 1) contains pair of molecules of 2-amino-4,6-dimethoxypyrimidine (A&B) and anthranilic acid (A&B). The carboxyl group of each anthranilic acid interacts with the corresponding 2-amino-4,6-dimethoxy pyrimidine molecule via a pair of N—H···O and O—H···N hydrogen bonds generating R22(8) ring motif. (Etter, 1990; Bernstein et al., 1995). In both the types (A & B) inversion related bases are paired via (2) N—H···N(3) hydrogen bonds forming another type of R22(8) motif. This type of has been reported in the crystal structures of 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah et al., 2006) and 2-amino-4,6-dimethoxypyrimidinium 4-hydroxybenzoate (Thanigaimani et al., 2007b). The carboxyl oxygen atom (O3A) of anthranilic acid (Molecule A) is linked to 4-amino group (N4B) of anthranilic acid (Molecule B) via N—H···O hydrogen bonds. In each of the anthranilic acid molecule, there is a typical intramolecular hydrogen bond between the amino NH2 group and the carboxylic group, (graph-set notation S6). There is also a C—H···O hydrogen bond involving atom C8B of the pyrimidine moiety and O4B of the anthranilic acid molecule. TheFor related literature, see: Baker & Santi (1965); Balasubramani et al. (2005, 2006); Bernstein et al. (1995); Boone et al. (1977); Chinnakali et al. (1999); Desiraju (1989); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Stanley et al. (2005); Takazawa et al. (1986); Thanigaimani et al. (2006, 2007a,b).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON(Spek, 2003).Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. | |
Fig. 2. The crystal structure of (I). Dashed lines indicate hydrogen bonds [symmetry code: (i) -x + 2, -y + 1, -z; (ii) -x + 3, -y + 1, -z + 1; (iv) -x + 2, -y + 2, -z + 1. |
C6H9N3O2·C7H7NO2 | Z = 4 |
Mr = 292.30 | F(000) = 616 |
Triclinic, P1 | Dx = 1.424 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2802 (3) Å | Cell parameters from 25 reflections |
b = 7.4095 (2) Å | θ = 3.0–27.6° |
c = 25.8035 (9) Å | µ = 0.11 mm−1 |
α = 83.636 (2)° | T = 120 K |
β = 83.162 (1)° | Plate-like, colourless |
γ = 82.373 (2)° | 0.24 × 0.19 × 0.08 mm |
V = 1363.38 (8) Å3 |
Bruker–Nonius CCD diffractometer | 4140 reflections with I > 2σ(I) |
Radiation source: Bruker-Nonius FR591 rotating anode | Rint = 0.064 |
Graphite monochromator | θmax = 27.6°, θmin = 3.0° |
Detector resolution: 9.091 pixels mm-1 | h = −9→9 |
φ and ω scans | k = −9→9 |
24443 measured reflections | l = −33→33 |
6286 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0585P)2 + 0.223P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
6286 reflections | Δρmax = 0.29 e Å−3 |
390 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Extinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.022 (3) |
C6H9N3O2·C7H7NO2 | γ = 82.373 (2)° |
Mr = 292.30 | V = 1363.38 (8) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.2802 (3) Å | Mo Kα radiation |
b = 7.4095 (2) Å | µ = 0.11 mm−1 |
c = 25.8035 (9) Å | T = 120 K |
α = 83.636 (2)° | 0.24 × 0.19 × 0.08 mm |
β = 83.162 (1)° |
Bruker–Nonius CCD diffractometer | 4140 reflections with I > 2σ(I) |
24443 measured reflections | Rint = 0.064 |
6286 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.29 e Å−3 |
6286 reflections | Δρmin = −0.31 e Å−3 |
390 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 1.21498 (19) | 0.13688 (17) | 0.11198 (5) | 0.0321 (4) | |
O2A | 0.9788 (2) | 0.62312 (17) | 0.21411 (5) | 0.0325 (4) | |
N1A | 0.9714 (2) | 0.65251 (19) | 0.12796 (6) | 0.0245 (5) | |
N2A | 0.9553 (2) | 0.6942 (2) | 0.03985 (6) | 0.0299 (5) | |
N3A | 1.0875 (2) | 0.41201 (19) | 0.07324 (6) | 0.0242 (5) | |
C2A | 1.0060 (2) | 0.5827 (2) | 0.08148 (7) | 0.0240 (6) | |
C4A | 1.1324 (2) | 0.3082 (2) | 0.11596 (7) | 0.0251 (6) | |
C5A | 1.0999 (3) | 0.3628 (2) | 0.16628 (7) | 0.0282 (6) | |
C6A | 1.0193 (3) | 0.5400 (2) | 0.16970 (7) | 0.0258 (6) | |
C7A | 1.2546 (3) | 0.0744 (3) | 0.06061 (8) | 0.0364 (7) | |
C8A | 1.0194 (3) | 0.5193 (3) | 0.26230 (7) | 0.0425 (8) | |
O1B | 1.23977 (18) | 0.52942 (18) | 0.36928 (5) | 0.0318 (4) | |
O2B | 0.76374 (17) | 0.84403 (18) | 0.47739 (5) | 0.0303 (4) | |
N1B | 1.0400 (2) | 0.7436 (2) | 0.50440 (6) | 0.0250 (5) | |
N2B | 1.3186 (2) | 0.6512 (2) | 0.53585 (6) | 0.0290 (5) | |
N3B | 1.2895 (2) | 0.5829 (2) | 0.45247 (5) | 0.0244 (5) | |
C2B | 1.2140 (3) | 0.6598 (2) | 0.49642 (7) | 0.0244 (6) | |
C4B | 1.1779 (3) | 0.5992 (2) | 0.41485 (7) | 0.0243 (6) | |
C5B | 0.9958 (3) | 0.6842 (2) | 0.41835 (7) | 0.0268 (6) | |
C6B | 0.9336 (3) | 0.7556 (2) | 0.46478 (7) | 0.0251 (6) | |
C7B | 1.4261 (3) | 0.4377 (3) | 0.36371 (8) | 0.0355 (7) | |
C8B | 0.6364 (3) | 0.8702 (3) | 0.43854 (7) | 0.0309 (6) | |
O3A | 0.79403 (19) | 0.97701 (17) | 0.15298 (5) | 0.0306 (4) | |
O4A | 0.7717 (2) | 1.03505 (17) | 0.06735 (5) | 0.0372 (4) | |
N4A | 0.6470 (2) | 1.3700 (3) | 0.02930 (6) | 0.0298 (5) | |
C9A | 0.6511 (2) | 1.2676 (2) | 0.12255 (7) | 0.0240 (5) | |
C10A | 0.6112 (2) | 1.4017 (2) | 0.08103 (7) | 0.0251 (6) | |
C11A | 0.5288 (3) | 1.5756 (3) | 0.09344 (7) | 0.0290 (6) | |
C12A | 0.4867 (3) | 1.6146 (3) | 0.14425 (7) | 0.0315 (6) | |
C13A | 0.5262 (3) | 1.4836 (3) | 0.18544 (8) | 0.0321 (6) | |
C14A | 0.6066 (3) | 1.3120 (3) | 0.17417 (7) | 0.0279 (6) | |
C15A | 0.7426 (3) | 1.0846 (2) | 0.11184 (7) | 0.0259 (6) | |
O3B | 1.10809 (18) | 0.82786 (17) | 0.63163 (5) | 0.0302 (4) | |
O4B | 0.85924 (18) | 0.8829 (2) | 0.58677 (5) | 0.0333 (5) | |
N4B | 1.0645 (2) | 0.9650 (2) | 0.72764 (6) | 0.0355 (6) | |
C9B | 0.8187 (3) | 0.9691 (2) | 0.67164 (7) | 0.0243 (5) | |
C10B | 0.8820 (3) | 0.9998 (2) | 0.71877 (7) | 0.0251 (6) | |
C11B | 0.7504 (3) | 1.0696 (3) | 0.75827 (7) | 0.0293 (6) | |
C12B | 0.5670 (3) | 1.1126 (3) | 0.75049 (8) | 0.0313 (6) | |
C13B | 0.5050 (3) | 1.0903 (3) | 0.70327 (8) | 0.0315 (6) | |
C14B | 0.6303 (3) | 1.0186 (3) | 0.66481 (7) | 0.0300 (6) | |
C15B | 0.9429 (3) | 0.8870 (2) | 0.62876 (7) | 0.0258 (6) | |
H2A1 | 0.90370 | 0.80380 | 0.04380 | 0.0360* | |
H2A2 | 0.97430 | 0.65630 | 0.00910 | 0.0360* | |
H7A1 | 1.31410 | −0.04940 | 0.06330 | 0.0550* | |
H7A2 | 1.33590 | 0.15120 | 0.03920 | 0.0550* | |
H7A3 | 1.14050 | 0.07980 | 0.04500 | 0.0550* | |
H5A | 1.13060 | 0.28490 | 0.19560 | 0.0340* | |
H8A1 | 0.98330 | 0.59430 | 0.29070 | 0.0640* | |
H8A2 | 1.15070 | 0.47900 | 0.26080 | 0.0640* | |
H8A3 | 0.95170 | 0.41500 | 0.26780 | 0.0640* | |
H5B | 0.92150 | 0.69200 | 0.39110 | 0.0320* | |
H2B1 | 1.27320 | 0.69810 | 0.56440 | 0.0350* | |
H2B2 | 1.43160 | 0.59880 | 0.53280 | 0.0350* | |
H8B1 | 0.52000 | 0.93280 | 0.45240 | 0.0460* | |
H8B2 | 0.61650 | 0.75350 | 0.42880 | 0.0460* | |
H8B3 | 0.68700 | 0.94200 | 0.40820 | 0.0460* | |
H7B1 | 1.45250 | 0.39360 | 0.32970 | 0.0530* | |
H7B2 | 1.43830 | 0.33640 | 0.39020 | 0.0530* | |
H7B3 | 1.51240 | 0.52150 | 0.36750 | 0.0530* | |
H3A | 0.84810 | 0.88000 | 0.14350 | 0.0460* | |
H7 | 0.722 (3) | 1.265 (3) | 0.0224 (9) | 0.057 (7)* | |
H11A | 0.50220 | 1.66620 | 0.06650 | 0.0350* | |
H12A | 0.43080 | 1.73080 | 0.15140 | 0.0380* | |
H13A | 0.49890 | 1.51140 | 0.22000 | 0.0390* | |
H14A | 0.63210 | 1.22300 | 0.20160 | 0.0330* | |
H16 | 0.653 (3) | 1.465 (3) | 0.0067 (9) | 0.046 (7)* | |
H4B | 0.93260 | 0.83400 | 0.56440 | 0.0500* | |
H11B | 0.78900 | 1.08660 | 0.79030 | 0.0350* | |
H12B | 0.48240 | 1.15760 | 0.77730 | 0.0380* | |
H13B | 0.38060 | 1.12330 | 0.69780 | 0.0380* | |
H14B | 0.58890 | 1.00230 | 0.63310 | 0.0360* | |
H4B1 | 1.14640 | 0.92230 | 0.70380 | 0.0430* | |
H4B2 | 1.09790 | 0.98560 | 0.75710 | 0.0430* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0400 (8) | 0.0249 (7) | 0.0303 (7) | 0.0042 (6) | −0.0089 (6) | −0.0023 (6) |
O2A | 0.0483 (9) | 0.0293 (7) | 0.0203 (7) | −0.0006 (6) | −0.0080 (6) | −0.0041 (5) |
N1A | 0.0279 (8) | 0.0238 (8) | 0.0213 (8) | −0.0010 (6) | −0.0036 (6) | −0.0018 (6) |
N2A | 0.0427 (10) | 0.0238 (8) | 0.0205 (8) | 0.0073 (7) | −0.0042 (7) | −0.0035 (6) |
N3A | 0.0249 (8) | 0.0212 (8) | 0.0255 (8) | 0.0018 (6) | −0.0041 (6) | −0.0016 (6) |
C2A | 0.0226 (10) | 0.0262 (10) | 0.0230 (9) | −0.0018 (8) | −0.0023 (7) | −0.0027 (7) |
C4A | 0.0241 (10) | 0.0220 (9) | 0.0292 (10) | −0.0020 (8) | −0.0055 (8) | −0.0005 (8) |
C5A | 0.0337 (11) | 0.0274 (10) | 0.0234 (10) | −0.0018 (8) | −0.0092 (8) | 0.0024 (8) |
C6A | 0.0273 (10) | 0.0277 (10) | 0.0238 (10) | −0.0052 (8) | −0.0055 (8) | −0.0037 (8) |
C7A | 0.0461 (13) | 0.0269 (10) | 0.0337 (11) | 0.0092 (9) | −0.0060 (9) | −0.0063 (8) |
C8A | 0.0650 (16) | 0.0404 (13) | 0.0218 (10) | −0.0009 (11) | −0.0123 (10) | 0.0003 (9) |
O1B | 0.0296 (7) | 0.0409 (8) | 0.0255 (7) | 0.0022 (6) | −0.0056 (6) | −0.0106 (6) |
O2B | 0.0225 (7) | 0.0416 (8) | 0.0264 (7) | 0.0017 (6) | −0.0062 (5) | −0.0037 (6) |
N1B | 0.0224 (8) | 0.0311 (9) | 0.0214 (8) | −0.0019 (7) | −0.0042 (6) | −0.0022 (6) |
N2B | 0.0230 (8) | 0.0428 (10) | 0.0212 (8) | 0.0038 (7) | −0.0053 (6) | −0.0088 (7) |
N3B | 0.0252 (8) | 0.0281 (8) | 0.0202 (8) | −0.0037 (6) | −0.0026 (6) | −0.0028 (6) |
C2B | 0.0236 (10) | 0.0272 (10) | 0.0224 (9) | −0.0053 (8) | −0.0017 (7) | −0.0008 (7) |
C4B | 0.0282 (10) | 0.0265 (10) | 0.0194 (9) | −0.0078 (8) | −0.0020 (7) | −0.0030 (7) |
C5B | 0.0256 (10) | 0.0333 (11) | 0.0226 (9) | −0.0037 (8) | −0.0062 (7) | −0.0037 (8) |
C6B | 0.0228 (10) | 0.0278 (10) | 0.0243 (10) | −0.0032 (8) | −0.0036 (7) | 0.0011 (8) |
C7B | 0.0308 (11) | 0.0460 (12) | 0.0298 (11) | 0.0033 (9) | −0.0038 (8) | −0.0136 (9) |
C8B | 0.0242 (10) | 0.0394 (11) | 0.0296 (10) | −0.0029 (9) | −0.0080 (8) | −0.0007 (8) |
O3A | 0.0376 (8) | 0.0260 (7) | 0.0255 (7) | 0.0048 (6) | −0.0033 (6) | −0.0013 (5) |
O4A | 0.0541 (9) | 0.0290 (7) | 0.0252 (7) | 0.0094 (7) | −0.0050 (6) | −0.0049 (6) |
N4A | 0.0387 (10) | 0.0255 (9) | 0.0225 (9) | 0.0059 (8) | −0.0037 (7) | −0.0023 (7) |
C9A | 0.0210 (9) | 0.0260 (9) | 0.0248 (9) | −0.0010 (8) | −0.0025 (7) | −0.0040 (7) |
C10A | 0.0217 (10) | 0.0297 (10) | 0.0241 (10) | 0.0003 (8) | −0.0034 (7) | −0.0064 (8) |
C11A | 0.0292 (11) | 0.0270 (10) | 0.0299 (10) | 0.0039 (8) | −0.0072 (8) | −0.0029 (8) |
C12A | 0.0324 (11) | 0.0279 (10) | 0.0336 (11) | 0.0043 (8) | −0.0047 (9) | −0.0085 (8) |
C13A | 0.0332 (11) | 0.0363 (11) | 0.0263 (10) | 0.0013 (9) | −0.0014 (8) | −0.0092 (8) |
C14A | 0.0266 (10) | 0.0301 (10) | 0.0260 (10) | −0.0017 (8) | −0.0016 (8) | −0.0016 (8) |
C15A | 0.0254 (10) | 0.0278 (10) | 0.0240 (10) | −0.0017 (8) | −0.0029 (8) | −0.0019 (8) |
O3B | 0.0248 (7) | 0.0375 (8) | 0.0274 (7) | −0.0005 (6) | −0.0022 (5) | −0.0034 (6) |
O4B | 0.0282 (8) | 0.0494 (9) | 0.0217 (7) | 0.0018 (6) | −0.0026 (6) | −0.0090 (6) |
N4B | 0.0276 (9) | 0.0528 (11) | 0.0283 (9) | −0.0019 (8) | −0.0064 (7) | −0.0134 (8) |
C9B | 0.0260 (10) | 0.0242 (9) | 0.0216 (9) | −0.0034 (8) | −0.0003 (7) | 0.0004 (7) |
C10B | 0.0257 (10) | 0.0244 (9) | 0.0251 (10) | −0.0044 (8) | −0.0022 (8) | −0.0006 (7) |
C11B | 0.0323 (11) | 0.0319 (10) | 0.0241 (10) | −0.0029 (8) | −0.0014 (8) | −0.0069 (8) |
C12B | 0.0318 (11) | 0.0295 (10) | 0.0316 (11) | −0.0041 (9) | 0.0054 (8) | −0.0070 (8) |
C13B | 0.0241 (10) | 0.0343 (11) | 0.0355 (11) | −0.0009 (8) | −0.0003 (8) | −0.0066 (9) |
C14B | 0.0267 (10) | 0.0347 (11) | 0.0287 (10) | −0.0010 (8) | −0.0045 (8) | −0.0049 (8) |
C15B | 0.0257 (10) | 0.0293 (10) | 0.0218 (9) | −0.0038 (8) | −0.0021 (8) | 0.0002 (7) |
O1A—C4A | 1.340 (2) | C7A—H7A2 | 0.9598 |
O1A—C7A | 1.437 (2) | C7A—H7A1 | 0.9599 |
O2A—C6A | 1.344 (2) | C7A—H7A3 | 0.9598 |
O2A—C8A | 1.428 (2) | C8A—H8A2 | 0.9604 |
O1B—C4B | 1.342 (2) | C8A—H8A1 | 0.9595 |
O1B—C7B | 1.433 (3) | C8A—H8A3 | 0.9594 |
O2B—C6B | 1.342 (2) | C4B—C5B | 1.387 (3) |
O2B—C8B | 1.426 (2) | C5B—C6B | 1.367 (2) |
O3A—C15A | 1.315 (2) | C5B—H5B | 0.9293 |
O4A—C15A | 1.230 (2) | C7B—H7B1 | 0.9595 |
O3A—H3A | 0.8200 | C7B—H7B3 | 0.9599 |
O3B—C15B | 1.232 (3) | C7B—H7B2 | 0.9600 |
O4B—C15B | 1.310 (2) | C8B—H8B3 | 0.9605 |
O4B—H4B | 0.8193 | C8B—H8B2 | 0.9602 |
N1A—C2A | 1.342 (2) | C8B—H8B1 | 0.9599 |
N1A—C6A | 1.338 (2) | C9A—C15A | 1.469 (2) |
N2A—C2A | 1.338 (2) | C9A—C10A | 1.407 (2) |
N3A—C4A | 1.321 (2) | C9A—C14A | 1.398 (3) |
N3A—C2A | 1.352 (2) | C10A—C11A | 1.401 (3) |
N2A—H2A2 | 0.8605 | C11A—C12A | 1.364 (3) |
N2A—H2A1 | 0.8598 | C12A—C13A | 1.387 (3) |
N1B—C6B | 1.343 (2) | C13A—C14A | 1.374 (3) |
N1B—C2B | 1.338 (3) | C11A—H11A | 0.9303 |
N2B—C2B | 1.333 (2) | C12A—H12A | 0.9302 |
N3B—C4B | 1.324 (2) | C13A—H13A | 0.9300 |
N3B—C2B | 1.351 (2) | C14A—H14A | 0.9304 |
N2B—H2B1 | 0.8608 | C9B—C15B | 1.475 (3) |
N2B—H2B2 | 0.8604 | C9B—C10B | 1.402 (3) |
N4A—C10A | 1.369 (2) | C9B—C14B | 1.399 (3) |
N4A—H7 | 0.91 (2) | C10B—C11B | 1.406 (3) |
N4A—H16 | 0.87 (2) | C11B—C12B | 1.364 (3) |
N4B—C10B | 1.361 (3) | C12B—C13B | 1.382 (3) |
N4B—H4B2 | 0.8602 | C13B—C14B | 1.368 (3) |
N4B—H4B1 | 0.8601 | C11B—H11B | 0.9304 |
C4A—C5A | 1.387 (2) | C12B—H12B | 0.9297 |
C5A—C6A | 1.373 (2) | C13B—H13B | 0.9295 |
C5A—H5A | 0.9299 | C14B—H14B | 0.9302 |
O1B···C8A | 3.366 (2) | C7B···H2B2viii | 2.9499 |
O2A···O3A | 3.1345 (18) | C8A···H5A | 2.5674 |
O2A···C11Bi | 3.386 (3) | C8B···H5B | 2.5643 |
O2B···O4B | 3.0386 (18) | C8B···H14Biii | 2.6313 |
O3A···O2A | 3.1345 (18) | C10B···H5Aii | 2.8828 |
O3A···N1A | 2.6808 (19) | C11A···H7A1xv | 3.0702 |
O3B···C8Bi | 3.339 (2) | C11B···H5Aii | 2.8311 |
O3B···N4B | 2.749 (2) | C11B···H12Axiii | 2.9790 |
O3B···N2B | 3.075 (2) | C12A···H12Bxiii | 2.8221 |
O4A···N4A | 2.650 (2) | C12B···H13Axiii | 2.9326 |
O4A···N2A | 2.818 (2) | C12B···H12Axiii | 2.9020 |
O4B···C7Bii | 3.405 (3) | C13A···H12Bxiii | 2.9162 |
O4B···O2B | 3.0386 (18) | C13B···H4B1xiv | 3.0357 |
O4B···C6Bi | 3.320 (2) | C15A···H2A1 | 2.9083 |
O4B···C6B | 3.348 (2) | C15A···H7 | 2.55 (2) |
O4B···N1B | 2.603 (2) | C15B···H4B1 | 2.6288 |
O1A···H11Bii | 2.8584 | C15B···H2B1 | 3.0282 |
O1B···H8A1 | 2.8768 | H2A1···C7Avi | 3.0537 |
O2A···H3A | 2.6478 | H2A1···C15A | 2.9083 |
O2A···H11Bi | 2.8917 | H2A1···H7A3vi | 2.4003 |
O2B···H4B | 2.6746 | H2A1···O4A | 1.9706 |
O3A···H4B2i | 2.5912 | H2A2···H7A3vi | 2.3895 |
O3A···H12Biii | 2.7485 | H2A2···H2A2vi | 2.3863 |
O3A···H14A | 2.4228 | H2A2···C7Avi | 3.0049 |
O3B···H8B3i | 2.4721 | H2A2···H7vii | 2.3871 |
O3B···H2B1 | 2.2238 | H2A2···N4Avii | 2.8055 |
O3B···H4B1 | 2.1213 | H2A2···N3Avi | 2.3451 |
O4A···H7 | 1.97 (2) | H2A2···C2Avi | 3.0643 |
O4A···H7A3iv | 2.7343 | H7A1···C11Axvi | 3.0702 |
O4A···H2A1 | 1.9706 | H7A1···H11Axvi | 2.3548 |
O4B···H7B2ii | 2.8459 | H3A···C6A | 2.7105 |
O4B···H14B | 2.3016 | H3A···C2A | 2.8994 |
N1A···C15A | 3.413 (2) | H3A···N1A | 1.8629 |
N1A···O3A | 2.6808 (19) | H3A···O2A | 2.6478 |
N1B···O4B | 2.603 (2) | H7A2···N3A | 2.6166 |
N2A···C11Av | 3.429 (3) | H7A2···N4Axii | 2.9272 |
N2A···O4A | 2.818 (2) | H4B···C2B | 2.8079 |
N2A···N3Avi | 3.166 (2) | H4B···N1B | 1.8054 |
N2A···N4Avii | 3.223 (2) | H4B···C6B | 2.6964 |
N2A···C7Avi | 3.355 (3) | H4B···O2B | 2.6746 |
N2B···O3B | 3.075 (2) | H4B···H2B1 | 2.5495 |
N2B···C7Bviii | 3.324 (3) | H7A3···H2A2vi | 2.3895 |
N2B···N3Bviii | 3.165 (2) | H7A3···H2A1vi | 2.4003 |
N3A···N2Avi | 3.166 (2) | H7A3···O4Av | 2.7343 |
N3B···N2Bviii | 3.165 (2) | H7A3···N2Avi | 2.7065 |
N4A···N4Aix | 3.100 (3) | H7A3···N3A | 2.6110 |
N4A···O4A | 2.650 (2) | H5A···C11Bii | 2.8311 |
N4A···N2Avii | 3.223 (2) | H5A···H8A2 | 2.3603 |
N4B···C13Bx | 3.424 (3) | H5A···C10Bii | 2.8828 |
N4B···O3B | 2.749 (2) | H5A···N4Bii | 2.9299 |
N1A···H3A | 1.8629 | H5A···C8A | 2.5674 |
N1B···H4B | 1.8054 | H5A···H8A3 | 2.3629 |
N2A···H7vii | 2.72 (2) | H5B···H8B3 | 2.3881 |
N2A···H7A3vi | 2.7065 | H5B···C8B | 2.5643 |
N2B···H7B2viii | 2.7691 | H5B···H8B2 | 2.3237 |
N3A···H16vii | 2.79 (2) | H8A1···O1B | 2.8768 |
N3A···H7A3 | 2.6110 | H7···H2A2vii | 2.3871 |
N3A···H2A2vi | 2.3450 | H7···O4A | 1.97 (2) |
N3A···H7A2 | 2.6166 | H7···N2Avii | 2.72 (2) |
N3B···H8B2x | 2.8142 | H7···C15A | 2.55 (2) |
N3B···H7B3 | 2.6125 | H8A2···C5A | 2.7552 |
N3B···H7B2 | 2.6081 | H8A2···H5A | 2.3603 |
N3B···H2B2viii | 2.3290 | H8A3···H5A | 2.3629 |
N4A···H7A2xi | 2.9272 | H8A3···N4Bii | 2.8226 |
N4A···H16ix | 2.58 (2) | H8A3···C5A | 2.7598 |
N4A···H11Aix | 2.8681 | H2B1···H4B | 2.5495 |
N4A···H2A2vii | 2.8055 | H2B1···C7Bviii | 3.0355 |
N4B···H5Aii | 2.9299 | H2B1···H7B2viii | 2.4952 |
N4B···H8A3ii | 2.8226 | H2B1···C15B | 3.0282 |
N4B···H13Bx | 2.7127 | H2B1···O3B | 2.2238 |
C2A···C10Av | 3.331 (2) | H2B2···N3Bviii | 2.3290 |
C2A···C11Av | 3.458 (3) | H2B2···C2Bviii | 3.0727 |
C2B···C5Bii | 3.558 (2) | H2B2···C7Bviii | 2.9499 |
C2B···C6Bii | 3.401 (2) | H2B2···H2B2viii | 2.4004 |
C4A···C9Av | 3.539 (2) | H2B2···H7B2viii | 2.4198 |
C4A···C15Av | 3.488 (3) | H8B1···H14Biii | 2.4098 |
C5A···C12Axii | 3.537 (3) | H11A···H16 | 2.3411 |
C5A···C13Axii | 3.447 (3) | H11A···H7A1xv | 2.3548 |
C5B···C15Bi | 3.341 (2) | H11A···N4Aix | 2.8681 |
C5B···C2Bii | 3.558 (2) | H11B···H4B2 | 2.3639 |
C5B···C9Bi | 3.559 (2) | H11B···H12Axiii | 2.4408 |
C6A···C12Axii | 3.493 (3) | H11B···O1Aii | 2.8584 |
C6B···O4B | 3.348 (2) | H11B···O2Ai | 2.8917 |
C6B···O4Bi | 3.320 (2) | H8B2···H5B | 2.3237 |
C6B···C2Bii | 3.401 (2) | H8B2···N3Bxiv | 2.8142 |
C6B···C15Bi | 3.514 (2) | H8B2···C5B | 2.7274 |
C7A···N2Avi | 3.355 (3) | H12A···C12Bxiii | 2.9019 |
C7B···O4Bii | 3.405 (3) | H12A···C11Bxiii | 2.9790 |
C7B···N2Bviii | 3.324 (3) | H12A···H11Bxiii | 2.4408 |
C8A···O1B | 3.366 (2) | H12A···H12Bxiii | 2.2849 |
C8B···O3Bi | 3.339 (2) | H12B···O3Aiii | 2.7485 |
C8B···C14Biii | 3.447 (3) | H12B···C12Axiii | 2.8220 |
C9A···C4Aiv | 3.539 (2) | H12B···C13Axiii | 2.9162 |
C9B···C5Bi | 3.559 (2) | H12B···H12Axiii | 2.2849 |
C10A···C2Aiv | 3.331 (2) | H12B···H13Axiii | 2.4834 |
C11A···N2Aiv | 3.429 (3) | H8B3···H5B | 2.3881 |
C11A···C2Aiv | 3.458 (3) | H8B3···O3Bi | 2.4721 |
C11B···O2Ai | 3.386 (3) | H8B3···C5B | 2.7678 |
C12A···C5Axi | 3.537 (3) | H8B3···H14Biii | 2.3522 |
C12A···C6Axi | 3.493 (3) | H13A···H12Bxiii | 2.4834 |
C12A···C12Bxiii | 3.517 (3) | H13A···C12Bxiii | 2.9326 |
C12B···C13Axiii | 3.526 (3) | H13B···N4Bxiv | 2.7127 |
C12B···C12Axiii | 3.517 (3) | H13B···H4B1xiv | 2.3894 |
C13A···C5Axi | 3.447 (3) | H14A···H4B2i | 2.5915 |
C13A···C12Bxiii | 3.526 (3) | H14A···O3A | 2.4228 |
C13B···N4Bxiv | 3.424 (3) | H14B···C8Biii | 2.6313 |
C14B···C8Biii | 3.447 (3) | H14B···O4B | 2.3016 |
C15A···N1A | 3.413 (2) | H14B···H8B1iii | 2.4098 |
C15A···C4Aiv | 3.488 (3) | H14B···H8B3iii | 2.3522 |
C15B···C5Bi | 3.341 (2) | H7B2···N2Bviii | 2.7691 |
C15B···C6Bi | 3.514 (2) | H7B2···O4Bii | 2.8459 |
C2A···H3A | 2.8994 | H7B2···H2B1viii | 2.4952 |
C2A···H2A2vi | 3.0643 | H7B2···H2B2viii | 2.4198 |
C2B···H2B2viii | 3.0727 | H7B2···N3B | 2.6081 |
C2B···H4B | 2.8079 | H16···H16ix | 2.28 (3) |
C5A···H8A3 | 2.7598 | H16···H11A | 2.3411 |
C5A···H8A2 | 2.7552 | H16···N4Aix | 2.58 (2) |
C5B···H8B3 | 2.7678 | H16···N3Avii | 2.79 (2) |
C5B···H8B2 | 2.7274 | H7B3···N3B | 2.6125 |
C6A···H3A | 2.7105 | H4B1···O3B | 2.1213 |
C6B···H4B | 2.6964 | H4B1···C13Bx | 3.0357 |
C7A···H2A2vi | 3.0049 | H4B1···C15B | 2.6288 |
C7A···H2A1vi | 3.0537 | H4B1···H13Bx | 2.3894 |
C7B···H2B1viii | 3.0355 | H4B2···H11B | 2.3639 |
C4A—O1A—C7A | 118.05 (15) | C4B—C5B—H5B | 122.42 |
C6A—O2A—C8A | 118.02 (14) | C6B—C5B—H5B | 122.43 |
C4B—O1B—C7B | 117.81 (15) | O1B—C7B—H7B2 | 109.47 |
C6B—O2B—C8B | 117.41 (15) | O1B—C7B—H7B3 | 109.50 |
C15A—O3A—H3A | 109.45 | O1B—C7B—H7B1 | 109.50 |
C15B—O4B—H4B | 109.42 | H7B2—C7B—H7B3 | 109.50 |
C2A—N1A—C6A | 116.21 (14) | H7B1—C7B—H7B2 | 109.40 |
C2A—N3A—C4A | 114.84 (15) | H7B1—C7B—H7B3 | 109.45 |
C2A—N2A—H2A1 | 120.01 | H8B1—C8B—H8B2 | 109.51 |
C2A—N2A—H2A2 | 120.03 | O2B—C8B—H8B3 | 109.49 |
H2A1—N2A—H2A2 | 119.95 | O2B—C8B—H8B2 | 109.50 |
C2B—N1B—C6B | 116.94 (16) | O2B—C8B—H8B1 | 109.46 |
C2B—N3B—C4B | 114.73 (16) | H8B1—C8B—H8B3 | 109.45 |
H2B1—N2B—H2B2 | 119.91 | H8B2—C8B—H8B3 | 109.41 |
C2B—N2B—H2B1 | 120.04 | C10A—C9A—C15A | 120.50 (15) |
C2B—N2B—H2B2 | 120.05 | C14A—C9A—C15A | 120.32 (16) |
H7—N4A—H16 | 118 (2) | C10A—C9A—C14A | 119.16 (15) |
C10A—N4A—H7 | 116.0 (15) | N4A—C10A—C11A | 118.55 (16) |
C10A—N4A—H16 | 116.8 (15) | C9A—C10A—C11A | 118.15 (16) |
C10B—N4B—H4B1 | 120.00 | N4A—C10A—C9A | 123.30 (15) |
C10B—N4B—H4B2 | 120.00 | C10A—C11A—C12A | 121.29 (19) |
H4B1—N4B—H4B2 | 120.01 | C11A—C12A—C13A | 121.0 (2) |
N1A—C2A—N2A | 116.23 (14) | C12A—C13A—C14A | 118.69 (19) |
N1A—C2A—N3A | 125.95 (16) | C9A—C14A—C13A | 121.71 (18) |
N2A—C2A—N3A | 117.82 (16) | O4A—C15A—C9A | 122.52 (16) |
N3A—C4A—C5A | 124.69 (14) | O3A—C15A—C9A | 115.63 (15) |
O1A—C4A—N3A | 119.51 (15) | O3A—C15A—O4A | 121.84 (15) |
O1A—C4A—C5A | 115.79 (15) | C10A—C11A—H11A | 119.34 |
C4A—C5A—C6A | 115.23 (16) | C12A—C11A—H11A | 119.36 |
O2A—C6A—C5A | 125.55 (16) | C13A—C12A—H12A | 119.48 |
O2A—C6A—N1A | 111.41 (14) | C11A—C12A—H12A | 119.53 |
N1A—C6A—C5A | 123.04 (16) | C12A—C13A—H13A | 120.66 |
C6A—C5A—H5A | 122.42 | C14A—C13A—H13A | 120.65 |
C4A—C5A—H5A | 122.35 | C9A—C14A—H14A | 119.12 |
O1A—C7A—H7A2 | 109.37 | C13A—C14A—H14A | 119.18 |
H7A1—C7A—H7A3 | 109.49 | C14B—C9B—C15B | 118.51 (17) |
O1A—C7A—H7A3 | 109.51 | C10B—C9B—C14B | 118.82 (17) |
H7A1—C7A—H7A2 | 109.42 | C10B—C9B—C15B | 122.68 (19) |
O1A—C7A—H7A1 | 109.53 | N4B—C10B—C11B | 119.07 (17) |
H7A2—C7A—H7A3 | 109.50 | C9B—C10B—C11B | 118.18 (19) |
H8A2—C8A—H8A3 | 109.48 | N4B—C10B—C9B | 122.75 (17) |
H8A1—C8A—H8A3 | 109.47 | C10B—C11B—C12B | 121.16 (18) |
O2A—C8A—H8A3 | 109.55 | C11B—C12B—C13B | 121.0 (2) |
H8A1—C8A—H8A2 | 109.44 | C12B—C13B—C14B | 118.7 (2) |
O2A—C8A—H8A2 | 109.46 | C9B—C14B—C13B | 122.10 (18) |
O2A—C8A—H8A1 | 109.42 | O3B—C15B—C9B | 124.16 (17) |
N2B—C2B—N3B | 118.31 (18) | O4B—C15B—C9B | 112.92 (18) |
N1B—C2B—N2B | 116.21 (16) | O3B—C15B—O4B | 122.92 (16) |
N1B—C2B—N3B | 125.48 (17) | C10B—C11B—H11B | 119.44 |
N3B—C4B—C5B | 125.03 (16) | C12B—C11B—H11B | 119.40 |
O1B—C4B—N3B | 119.61 (17) | C11B—C12B—H12B | 119.59 |
O1B—C4B—C5B | 115.36 (17) | C13B—C12B—H12B | 119.46 |
C4B—C5B—C6B | 115.15 (18) | C12B—C13B—H13B | 120.60 |
O2B—C6B—N1B | 111.18 (15) | C14B—C13B—H13B | 120.71 |
O2B—C6B—C5B | 126.17 (18) | C9B—C14B—H14B | 118.94 |
N1B—C6B—C5B | 122.65 (19) | C13B—C14B—H14B | 118.95 |
C7A—O1A—C4A—N3A | 1.2 (2) | C4B—C5B—C6B—O2B | 179.87 (16) |
C7A—O1A—C4A—C5A | −179.01 (17) | C14A—C9A—C15A—O4A | 174.43 (19) |
C8A—O2A—C6A—N1A | 179.08 (17) | C15A—C9A—C10A—N4A | 2.6 (2) |
C8A—O2A—C6A—C5A | −1.1 (3) | C15A—C9A—C10A—C11A | −178.15 (17) |
C7B—O1B—C4B—N3B | 0.6 (2) | C14A—C9A—C10A—N4A | −178.92 (17) |
C7B—O1B—C4B—C5B | −179.14 (16) | C14A—C9A—C10A—C11A | 0.3 (2) |
C8B—O2B—C6B—C5B | −1.5 (3) | C10A—C9A—C14A—C13A | −0.5 (3) |
C8B—O2B—C6B—N1B | 178.82 (15) | C15A—C9A—C14A—C13A | 177.98 (19) |
C2A—N1A—C6A—O2A | −179.97 (17) | C10A—C9A—C15A—O4A | −7.1 (3) |
C6A—N1A—C2A—N3A | −1.4 (2) | C14A—C9A—C15A—O3A | −6.4 (3) |
C6A—N1A—C2A—N2A | 178.93 (16) | C10A—C9A—C15A—O3A | 172.05 (16) |
C2A—N1A—C6A—C5A | 0.2 (3) | C9A—C10A—C11A—C12A | −0.5 (3) |
C4A—N3A—C2A—N1A | 1.1 (2) | N4A—C10A—C11A—C12A | 178.82 (19) |
C4A—N3A—C2A—N2A | −179.32 (14) | C10A—C11A—C12A—C13A | 0.8 (3) |
C2A—N3A—C4A—O1A | −179.60 (14) | C11A—C12A—C13A—C14A | −0.9 (3) |
C2A—N3A—C4A—C5A | 0.6 (2) | C12A—C13A—C14A—C9A | 0.8 (3) |
C6B—N1B—C2B—N3B | −1.7 (3) | C10B—C9B—C15B—O3B | 4.9 (3) |
C2B—N1B—C6B—C5B | 1.0 (2) | C10B—C9B—C15B—O4B | −175.17 (15) |
C2B—N1B—C6B—O2B | −179.28 (14) | C14B—C9B—C15B—O3B | −175.29 (17) |
C6B—N1B—C2B—N2B | 179.12 (15) | C14B—C9B—C15B—O4B | 4.7 (2) |
C4B—N3B—C2B—N2B | −179.14 (15) | C15B—C9B—C10B—N4B | 3.4 (2) |
C4B—N3B—C2B—N1B | 1.7 (2) | C15B—C9B—C10B—C11B | −176.60 (16) |
C2B—N3B—C4B—C5B | −1.0 (2) | C10B—C9B—C14B—C13B | −2.2 (3) |
C2B—N3B—C4B—O1B | 179.26 (15) | C15B—C9B—C14B—C13B | 177.97 (18) |
O1A—C4A—C5A—C6A | 178.51 (17) | C14B—C9B—C10B—N4B | −176.38 (17) |
N3A—C4A—C5A—C6A | −1.7 (3) | C14B—C9B—C10B—C11B | 3.6 (2) |
C4A—C5A—C6A—N1A | 1.3 (3) | N4B—C10B—C11B—C12B | 177.68 (18) |
C4A—C5A—C6A—O2A | −178.56 (18) | C9B—C10B—C11B—C12B | −2.3 (3) |
N3B—C4B—C5B—C6B | 0.5 (3) | C10B—C11B—C12B—C13B | −0.6 (3) |
O1B—C4B—C5B—C6B | −179.79 (15) | C11B—C12B—C13B—C14B | 2.0 (3) |
C4B—C5B—C6B—N1B | −0.4 (2) | C12B—C13B—C14B—C9B | −0.6 (3) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z; (v) x, y−1, z; (vi) −x+2, −y+1, −z; (vii) −x+2, −y+2, −z; (viii) −x+3, −y+1, −z+1; (ix) −x+1, −y+3, −z; (x) x+1, y, z; (xi) x−1, y+1, z; (xii) x+1, y−1, z; (xiii) −x+1, −y+3, −z+1; (xiv) x−1, y, z; (xv) x−1, y+2, z; (xvi) x+1, y−2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2A1···O4A | 0.86 | 1.97 | 2.818 (2) | 169 |
N2A—H2A2···N3Avi | 0.86 | 2.35 | 3.166 (2) | 160 |
O3A—H3A···N1A | 0.82 | 1.86 | 2.6808 (19) | 175 |
O4B—H4B···N1B | 0.82 | 1.81 | 2.603 (2) | 164 |
N4A—H7···O4A | 0.91 (2) | 1.97 (2) | 2.650 (2) | 130 (2) |
N2B—H2B1···O3B | 0.86 | 2.22 | 3.075 (2) | 170 |
N2B—H2B2···N3Bviii | 0.86 | 2.33 | 3.165 (2) | 164 |
N4A—H16···N4Aix | 0.87 (2) | 2.58 (2) | 3.100 (3) | 119.7 (18) |
N4B—H4B1···O3B | 0.86 | 2.12 | 2.749 (2) | 129 |
N4B—H4B2···O3Ai | 0.86 | 2.59 | 3.450 (2) | 176 |
C8B—H8B3···O3Bi | 0.96 | 2.47 | 3.339 (2) | 150 |
C14A—H14A···O3A | 0.93 | 2.42 | 2.747 (3) | 100 |
C14B—H14B···O4B | 0.93 | 2.30 | 2.655 (2) | 102 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (vi) −x+2, −y+1, −z; (viii) −x+3, −y+1, −z+1; (ix) −x+1, −y+3, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H9N3O2·C7H7NO2 |
Mr | 292.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.2802 (3), 7.4095 (2), 25.8035 (9) |
α, β, γ (°) | 83.636 (2), 83.162 (1), 82.373 (2) |
V (Å3) | 1363.38 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.24 × 0.19 × 0.08 |
Data collection | |
Diffractometer | Bruker–Nonius CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24443, 6286, 4140 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.134, 1.04 |
No. of reflections | 6286 |
No. of parameters | 390 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.31 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON(Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2A1···O4A | 0.8600 | 1.9700 | 2.818 (2) | 169.00 |
N2A—H2A2···N3Ai | 0.8600 | 2.3500 | 3.166 (2) | 160.00 |
O3A—H3A···N1A | 0.8200 | 1.8600 | 2.6808 (19) | 175.00 |
O4B—H4B···N1B | 0.8200 | 1.8100 | 2.603 (2) | 164.00 |
N4A—H7···O4A | 0.91 (2) | 1.97 (2) | 2.650 (2) | 130 (2) |
N2B—H2B1···O3B | 0.8600 | 2.2200 | 3.075 (2) | 170.00 |
N2B—H2B2···N3Bii | 0.8600 | 2.3300 | 3.165 (2) | 164.00 |
N4A—H16···N4Aiii | 0.87 (2) | 2.58 (2) | 3.100 (3) | 119.7 (18) |
N4B—H4B1···O3B | 0.8600 | 2.1200 | 2.749 (2) | 129.00 |
N4B—H4B2···O3Aiv | 0.8600 | 2.5900 | 3.450 (2) | 176.00 |
C8B—H8B3···O3Biv | 0.9600 | 2.4700 | 3.339 (2) | 150.00 |
C14A—H14A···O3A | 0.9300 | 2.4200 | 2.747 (3) | 100.00 |
C14B—H14B···O4B | 0.9300 | 2.3000 | 2.655 (2) | 102.00 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3, −y+1, −z+1; (iii) −x+1, −y+3, −z; (iv) −x+2, −y+2, −z+1. |
Acknowledgements
KT thanks the UGC (New Delhi) for the UGC–Rajiv Gandhi Junior Fellowship [Reference No: F.16–12/2000 (SA-II)] DL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.
References
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909. Web of Science CSD CrossRef IUCr Journals Google Scholar
Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boone, C. D. G., Derissen, J. L. & Schoone, J. C. (1977). Acta Cryst. B33, 3205–3206. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536. CAS Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109. CrossRef CAS Web of Science Google Scholar
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol.276, Macromolecular Crystallography, part A. edited by C. W. Carter Jr & R. M. Sweet. pp. 307–326. New York: Academic Press. Google Scholar
Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210. Web of Science CSD CrossRef CAS Google Scholar
Takazawa, H., Ohba, S. & Saito, Y. (1986). Acta Cryst. C42, 1880–1881. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007a). Acta Cryst. E63, o4212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007b). Acta Cryst. C63, o295–o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminopyrimidine-Carboxylate interactions are of fundamental importantance since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). The adducts of carboxylic acids with 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/ carboxylates systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structures of 2-amino-4,6-dimethoxy pyrimidine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxy pyrimidine phthalic acid (1/1) (Thanigaimani et al., 2007a), 2-amino-4,6-dimethyl pyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005) and 2-amino-4,6-dimethyl pyrimidine 4-hydroxybenzoic acid (1/1) (Balasubramani et al., 2006), have been recently reported from our laboratory. The crystal structure of anthranilic acid (Boone et al., 1977; Takazawa et al., 1986) is known. In the present study, the hydrogen-bonding patterns in the 2-amino-4,6-dimethoxypyrimidine anthranilic acid (1/1) cocrystal, (I), are investigated.
The asymmetric unit (Fig. 1) contains pair of molecules of 2-amino-4,6-dimethoxypyrimidine (A&B) and anthranilic acid (A&B). The carboxyl group of each anthranilic acid interacts with the corresponding 2-amino-4,6-dimethoxy pyrimidine molecule via a pair of N—H···O and O—H···N hydrogen bonds generating R22(8) ring motif. (Etter, 1990; Bernstein et al., 1995). In both the types (A & B) inversion related bases are paired via (2) N—H···N(3) hydrogen bonds forming another type of R22(8) motif. This type of base pairing has been reported in the crystal structures of 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah et al., 2006) and 2-amino-4,6-dimethoxypyrimidinium 4-hydroxybenzoate (Thanigaimani et al., 2007b). The carboxyl oxygen atom (O3A) of anthranilic acid (Molecule A) is linked to 4-amino group (N4B) of anthranilic acid (Molecule B) via N—H···O hydrogen bonds. In each of the anthranilic acid molecule, there is a typical intramolecular hydrogen bond between the amino NH2 group and the carboxylic group, (graph-set notation S6). There is also a C—H···O hydrogen bond involving atom C8B of the pyrimidine moiety and O4B of the anthranilic acid molecule. The π-π stacking interactions between the aromatic ring are also observed. The pyrimidine ring of 2-amino-4,6-diemthoxy pyrimidine (molecule A) forms stacking interactions with the aryl rings of the anthranilic acid (molecule A), with interplanar and centroid-centroid distance of 3.430 Å and 3.5436 (11) Å, respectively, and a slip angle (angle between the centroid vector and the normal to the plane) is 13.85°. A similar type of stacking is also observed between two 2-amino-4,6-dimethoxy pyrimidine (molecule B) related by an inversion centre. The centroid-centroid distance and interplanar distance are 3.5411 (10) Å and 3.380 Å, respectively, the slip angle being 17.33°. These are typical aromatic stacking values (Hunter, 1994).