organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding patterns in the cocrystal 2-amino-4,6-di­meth­oxy­pyrimidine–anthranilic acid (1/1)

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India, and bFaculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, England.
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 21 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title cocrystal, C6H9N3O2·C7H7NO2, the asymmetric unit contains two crystallographically independent 2-amino-4,6-dimeth­oxy pyrimidine-anthranilic acid adducts. The 2-amino-4,6-dimeth­oxy pyrimidine mol­ecules inter­act with the carboxylic group of the respective anthranilic acid mol­ecules through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded motif R22(8). The pyrimidine mol­ecules also form base pairs via a pair of N—H⋯N hydrogen bonds, forming another R22(8) motif. The typical intra­molecular N—H⋯O hydrogen bond is observed in the anthranilic acid mol­ecules. Furthermore, the crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]); Balasub­ramani et al. (2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.], 2006[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907-o2909.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Boone et al. (1977[Boone, C. D. G., Derissen, J. L. & Schoone, J. C. (1977). Acta Cryst. B33, 3205-3206.]); Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]); Low et al. (2002[Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289-o294.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Muthiah et al. (2006[Muthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605-o607.]); Schwalbe & Williams (1982[Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.]); Stanley et al. (2005[Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.]); Takazawa et al. (1986[Takazawa, H., Ohba, S. & Saito, Y. (1986). Acta Cryst. C42, 1880-1881.]); Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.], 2007a[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007a). Acta Cryst. E63, o4212.],b[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007b). Acta Cryst. C63, o295-o300.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N3O2·C7H7NO2

  • Mr = 292.30

  • Triclinic, [P \overline 1]

  • a = 7.2802 (3) Å

  • b = 7.4095 (2) Å

  • c = 25.8035 (9) Å

  • α = 83.636 (2)°

  • β = 83.1620 (10)°

  • γ = 82.373 (2)°

  • V = 1363.38 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.24 × 0.19 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 24443 measured reflections

  • 6286 independent reflections

  • 4140 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.04

  • 6286 reflections

  • 390 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A1⋯O4A 0.86 1.97 2.818 (2) 169
N2A—H2A2⋯N3Ai 0.86 2.35 3.166 (2) 160
O3A—H3A⋯N1A 0.82 1.86 2.6808 (19) 175
O4B—H4B⋯N1B 0.82 1.81 2.603 (2) 164
N4A—H7⋯O4A 0.91 (2) 1.97 (2) 2.650 (2) 130 (2)
N2B—H2B1⋯O3B 0.86 2.22 3.075 (2) 170
N2B—H2B2⋯N3Bii 0.86 2.33 3.165 (2) 164
N4A—H16⋯N4Aiii 0.87 (2) 2.58 (2) 3.100 (3) 119.7 (18)
N4B—H4B1⋯O3B 0.86 2.12 2.749 (2) 129
N4B—H4B2⋯O3Aiv 0.86 2.59 3.450 (2) 176
C8B—H8B3⋯O3Biv 0.96 2.47 3.339 (2) 150
C14A—H14A⋯O3A 0.93 2.42 2.747 (3) 100
C14B—H14B⋯O4B 0.93 2.30 2.655 (2) 102
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+3, -y+1, -z+1; (iii) -x+1, -y+3, -z; (iv) -x+2, -y+2, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol.276, Macromolecular Crystallography, part A. edited by C. W. Carter Jr & R. M. Sweet. pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Aminopyrimidine-Carboxylate interactions are of fundamental importantance since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). The adducts of carboxylic acids with 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/ carboxylates systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structures of 2-amino-4,6-dimethoxy pyrimidine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxy pyrimidine phthalic acid (1/1) (Thanigaimani et al., 2007a), 2-amino-4,6-dimethyl pyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005) and 2-amino-4,6-dimethyl pyrimidine 4-hydroxybenzoic acid (1/1) (Balasubramani et al., 2006), have been recently reported from our laboratory. The crystal structure of anthranilic acid (Boone et al., 1977; Takazawa et al., 1986) is known. In the present study, the hydrogen-bonding patterns in the 2-amino-4,6-dimethoxypyrimidine anthranilic acid (1/1) cocrystal, (I), are investigated.

The asymmetric unit (Fig. 1) contains pair of molecules of 2-amino-4,6-dimethoxypyrimidine (A&B) and anthranilic acid (A&B). The carboxyl group of each anthranilic acid interacts with the corresponding 2-amino-4,6-dimethoxy pyrimidine molecule via a pair of N—H···O and O—H···N hydrogen bonds generating R22(8) ring motif. (Etter, 1990; Bernstein et al., 1995). In both the types (A & B) inversion related bases are paired via (2) N—H···N(3) hydrogen bonds forming another type of R22(8) motif. This type of base pairing has been reported in the crystal structures of 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah et al., 2006) and 2-amino-4,6-dimethoxypyrimidinium 4-hydroxybenzoate (Thanigaimani et al., 2007b). The carboxyl oxygen atom (O3A) of anthranilic acid (Molecule A) is linked to 4-amino group (N4B) of anthranilic acid (Molecule B) via N—H···O hydrogen bonds. In each of the anthranilic acid molecule, there is a typical intramolecular hydrogen bond between the amino NH2 group and the carboxylic group, (graph-set notation S6). There is also a C—H···O hydrogen bond involving atom C8B of the pyrimidine moiety and O4B of the anthranilic acid molecule. The π-π stacking interactions between the aromatic ring are also observed. The pyrimidine ring of 2-amino-4,6-diemthoxy pyrimidine (molecule A) forms stacking interactions with the aryl rings of the anthranilic acid (molecule A), with interplanar and centroid-centroid distance of 3.430 Å and 3.5436 (11) Å, respectively, and a slip angle (angle between the centroid vector and the normal to the plane) is 13.85°. A similar type of stacking is also observed between two 2-amino-4,6-dimethoxy pyrimidine (molecule B) related by an inversion centre. The centroid-centroid distance and interplanar distance are 3.5411 (10) Å and 3.380 Å, respectively, the slip angle being 17.33°. These are typical aromatic stacking values (Hunter, 1994).

Related literature top

For related literature, see: Baker & Santi (1965); Balasubramani et al. (2005, 2006); Bernstein et al. (1995); Boone et al. (1977); Chinnakali et al. (1999); Desiraju (1989); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Stanley et al. (2005); Takazawa et al. (1986); Thanigaimani et al. (2006, 2007a,b).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) and anthranilic acid (34 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colourless plate-like crystals were obtained.

Refinement top

The hydrogen atoms of the N4A (H4A1, H4A2) were located in difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically and were refined using a riding model. The C—H and O—H bond lengths are 0.93–0.96 and 0.82Å respectively [Uiso(H)= 1.2Ueq (C, O)].

Structure description top

Aminopyrimidine-Carboxylate interactions are of fundamental importantance since they are involved in protein-nucleic acids recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Hydrogen bonding plays a key role in molecular recognition and crystal engineering research (Desiraju, 1989). The adducts of carboxylic acids with 2-aminoheterocylic ring system form a graph-set motif R22(8) (Lynch & Jones, 2004). This motif is very robust in aminopyrimidine-carboxylic acid/ carboxylates systems. The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Stanley et al., 2005) and co-crystals (Chinnakali et al., 1999) have been reported. The crystal structure of 2-amino-4,6-dimethoxy pyrimidine has also been reported (Low et al., 2002). The crystal structures of 2-amino-4,6-dimethoxy pyrimidine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 2-amino-4,6-dimethoxy pyrimidine phthalic acid (1/1) (Thanigaimani et al., 2007a), 2-amino-4,6-dimethyl pyrimidine cinnamic acid (1/2) (Balasubramani et al., 2005) and 2-amino-4,6-dimethyl pyrimidine 4-hydroxybenzoic acid (1/1) (Balasubramani et al., 2006), have been recently reported from our laboratory. The crystal structure of anthranilic acid (Boone et al., 1977; Takazawa et al., 1986) is known. In the present study, the hydrogen-bonding patterns in the 2-amino-4,6-dimethoxypyrimidine anthranilic acid (1/1) cocrystal, (I), are investigated.

The asymmetric unit (Fig. 1) contains pair of molecules of 2-amino-4,6-dimethoxypyrimidine (A&B) and anthranilic acid (A&B). The carboxyl group of each anthranilic acid interacts with the corresponding 2-amino-4,6-dimethoxy pyrimidine molecule via a pair of N—H···O and O—H···N hydrogen bonds generating R22(8) ring motif. (Etter, 1990; Bernstein et al., 1995). In both the types (A & B) inversion related bases are paired via (2) N—H···N(3) hydrogen bonds forming another type of R22(8) motif. This type of base pairing has been reported in the crystal structures of 2-amino-4,6-dimethylpyrimidinium salicylate (Muthiah et al., 2006) and 2-amino-4,6-dimethoxypyrimidinium 4-hydroxybenzoate (Thanigaimani et al., 2007b). The carboxyl oxygen atom (O3A) of anthranilic acid (Molecule A) is linked to 4-amino group (N4B) of anthranilic acid (Molecule B) via N—H···O hydrogen bonds. In each of the anthranilic acid molecule, there is a typical intramolecular hydrogen bond between the amino NH2 group and the carboxylic group, (graph-set notation S6). There is also a C—H···O hydrogen bond involving atom C8B of the pyrimidine moiety and O4B of the anthranilic acid molecule. The π-π stacking interactions between the aromatic ring are also observed. The pyrimidine ring of 2-amino-4,6-diemthoxy pyrimidine (molecule A) forms stacking interactions with the aryl rings of the anthranilic acid (molecule A), with interplanar and centroid-centroid distance of 3.430 Å and 3.5436 (11) Å, respectively, and a slip angle (angle between the centroid vector and the normal to the plane) is 13.85°. A similar type of stacking is also observed between two 2-amino-4,6-dimethoxy pyrimidine (molecule B) related by an inversion centre. The centroid-centroid distance and interplanar distance are 3.5411 (10) Å and 3.380 Å, respectively, the slip angle being 17.33°. These are typical aromatic stacking values (Hunter, 1994).

For related literature, see: Baker & Santi (1965); Balasubramani et al. (2005, 2006); Bernstein et al. (1995); Boone et al. (1977); Chinnakali et al. (1999); Desiraju (1989); Etter (1990); Hunt et al. (1980); Hunter (1994); Low et al. (2002); Lynch & Jones (2004); Muthiah et al. (2006); Schwalbe & Williams (1982); Stanley et al. (2005); Takazawa et al. (1986); Thanigaimani et al. (2006, 2007a,b).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON(Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of (I). Dashed lines indicate hydrogen bonds [symmetry code: (i) -x + 2, -y + 1, -z; (ii) -x + 3, -y + 1, -z + 1; (iv) -x + 2, -y + 2, -z + 1.
2-amino-4,6-dimethoxypyrimidine–anthranilic acid (1/1) top
Crystal data top
C6H9N3O2·C7H7NO2Z = 4
Mr = 292.30F(000) = 616
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2802 (3) ÅCell parameters from 25 reflections
b = 7.4095 (2) Åθ = 3.0–27.6°
c = 25.8035 (9) ŵ = 0.11 mm1
α = 83.636 (2)°T = 120 K
β = 83.162 (1)°Plate-like, colourless
γ = 82.373 (2)°0.24 × 0.19 × 0.08 mm
V = 1363.38 (8) Å3
Data collection top
Bruker–Nonius CCD
diffractometer
4140 reflections with I > 2σ(I)
Radiation source: Bruker-Nonius FR591 rotating anodeRint = 0.064
Graphite monochromatorθmax = 27.6°, θmin = 3.0°
Detector resolution: 9.091 pixels mm-1h = 99
φ and ω scansk = 99
24443 measured reflectionsl = 3333
6286 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.223P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6286 reflectionsΔρmax = 0.29 e Å3
390 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C6H9N3O2·C7H7NO2γ = 82.373 (2)°
Mr = 292.30V = 1363.38 (8) Å3
Triclinic, P1Z = 4
a = 7.2802 (3) ÅMo Kα radiation
b = 7.4095 (2) ŵ = 0.11 mm1
c = 25.8035 (9) ÅT = 120 K
α = 83.636 (2)°0.24 × 0.19 × 0.08 mm
β = 83.162 (1)°
Data collection top
Bruker–Nonius CCD
diffractometer
4140 reflections with I > 2σ(I)
24443 measured reflectionsRint = 0.064
6286 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
6286 reflectionsΔρmin = 0.31 e Å3
390 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.21498 (19)0.13688 (17)0.11198 (5)0.0321 (4)
O2A0.9788 (2)0.62312 (17)0.21411 (5)0.0325 (4)
N1A0.9714 (2)0.65251 (19)0.12796 (6)0.0245 (5)
N2A0.9553 (2)0.6942 (2)0.03985 (6)0.0299 (5)
N3A1.0875 (2)0.41201 (19)0.07324 (6)0.0242 (5)
C2A1.0060 (2)0.5827 (2)0.08148 (7)0.0240 (6)
C4A1.1324 (2)0.3082 (2)0.11596 (7)0.0251 (6)
C5A1.0999 (3)0.3628 (2)0.16628 (7)0.0282 (6)
C6A1.0193 (3)0.5400 (2)0.16970 (7)0.0258 (6)
C7A1.2546 (3)0.0744 (3)0.06061 (8)0.0364 (7)
C8A1.0194 (3)0.5193 (3)0.26230 (7)0.0425 (8)
O1B1.23977 (18)0.52942 (18)0.36928 (5)0.0318 (4)
O2B0.76374 (17)0.84403 (18)0.47739 (5)0.0303 (4)
N1B1.0400 (2)0.7436 (2)0.50440 (6)0.0250 (5)
N2B1.3186 (2)0.6512 (2)0.53585 (6)0.0290 (5)
N3B1.2895 (2)0.5829 (2)0.45247 (5)0.0244 (5)
C2B1.2140 (3)0.6598 (2)0.49642 (7)0.0244 (6)
C4B1.1779 (3)0.5992 (2)0.41485 (7)0.0243 (6)
C5B0.9958 (3)0.6842 (2)0.41835 (7)0.0268 (6)
C6B0.9336 (3)0.7556 (2)0.46478 (7)0.0251 (6)
C7B1.4261 (3)0.4377 (3)0.36371 (8)0.0355 (7)
C8B0.6364 (3)0.8702 (3)0.43854 (7)0.0309 (6)
O3A0.79403 (19)0.97701 (17)0.15298 (5)0.0306 (4)
O4A0.7717 (2)1.03505 (17)0.06735 (5)0.0372 (4)
N4A0.6470 (2)1.3700 (3)0.02930 (6)0.0298 (5)
C9A0.6511 (2)1.2676 (2)0.12255 (7)0.0240 (5)
C10A0.6112 (2)1.4017 (2)0.08103 (7)0.0251 (6)
C11A0.5288 (3)1.5756 (3)0.09344 (7)0.0290 (6)
C12A0.4867 (3)1.6146 (3)0.14425 (7)0.0315 (6)
C13A0.5262 (3)1.4836 (3)0.18544 (8)0.0321 (6)
C14A0.6066 (3)1.3120 (3)0.17417 (7)0.0279 (6)
C15A0.7426 (3)1.0846 (2)0.11184 (7)0.0259 (6)
O3B1.10809 (18)0.82786 (17)0.63163 (5)0.0302 (4)
O4B0.85924 (18)0.8829 (2)0.58677 (5)0.0333 (5)
N4B1.0645 (2)0.9650 (2)0.72764 (6)0.0355 (6)
C9B0.8187 (3)0.9691 (2)0.67164 (7)0.0243 (5)
C10B0.8820 (3)0.9998 (2)0.71877 (7)0.0251 (6)
C11B0.7504 (3)1.0696 (3)0.75827 (7)0.0293 (6)
C12B0.5670 (3)1.1126 (3)0.75049 (8)0.0313 (6)
C13B0.5050 (3)1.0903 (3)0.70327 (8)0.0315 (6)
C14B0.6303 (3)1.0186 (3)0.66481 (7)0.0300 (6)
C15B0.9429 (3)0.8870 (2)0.62876 (7)0.0258 (6)
H2A10.903700.803800.043800.0360*
H2A20.974300.656300.009100.0360*
H7A11.314100.049400.063300.0550*
H7A21.335900.151200.039200.0550*
H7A31.140500.079800.045000.0550*
H5A1.130600.284900.195600.0340*
H8A10.983300.594300.290700.0640*
H8A21.150700.479000.260800.0640*
H8A30.951700.415000.267800.0640*
H5B0.921500.692000.391100.0320*
H2B11.273200.698100.564400.0350*
H2B21.431600.598800.532800.0350*
H8B10.520000.932800.452400.0460*
H8B20.616500.753500.428800.0460*
H8B30.687000.942000.408200.0460*
H7B11.452500.393600.329700.0530*
H7B21.438300.336400.390200.0530*
H7B31.512400.521500.367500.0530*
H3A0.848100.880000.143500.0460*
H70.722 (3)1.265 (3)0.0224 (9)0.057 (7)*
H11A0.502201.666200.066500.0350*
H12A0.430801.730800.151400.0380*
H13A0.498901.511400.220000.0390*
H14A0.632101.223000.201600.0330*
H160.653 (3)1.465 (3)0.0067 (9)0.046 (7)*
H4B0.932600.834000.564400.0500*
H11B0.789001.086600.790300.0350*
H12B0.482401.157600.777300.0380*
H13B0.380601.123300.697800.0380*
H14B0.588901.002300.633100.0360*
H4B11.146400.922300.703800.0430*
H4B21.097900.985600.757100.0430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0400 (8)0.0249 (7)0.0303 (7)0.0042 (6)0.0089 (6)0.0023 (6)
O2A0.0483 (9)0.0293 (7)0.0203 (7)0.0006 (6)0.0080 (6)0.0041 (5)
N1A0.0279 (8)0.0238 (8)0.0213 (8)0.0010 (6)0.0036 (6)0.0018 (6)
N2A0.0427 (10)0.0238 (8)0.0205 (8)0.0073 (7)0.0042 (7)0.0035 (6)
N3A0.0249 (8)0.0212 (8)0.0255 (8)0.0018 (6)0.0041 (6)0.0016 (6)
C2A0.0226 (10)0.0262 (10)0.0230 (9)0.0018 (8)0.0023 (7)0.0027 (7)
C4A0.0241 (10)0.0220 (9)0.0292 (10)0.0020 (8)0.0055 (8)0.0005 (8)
C5A0.0337 (11)0.0274 (10)0.0234 (10)0.0018 (8)0.0092 (8)0.0024 (8)
C6A0.0273 (10)0.0277 (10)0.0238 (10)0.0052 (8)0.0055 (8)0.0037 (8)
C7A0.0461 (13)0.0269 (10)0.0337 (11)0.0092 (9)0.0060 (9)0.0063 (8)
C8A0.0650 (16)0.0404 (13)0.0218 (10)0.0009 (11)0.0123 (10)0.0003 (9)
O1B0.0296 (7)0.0409 (8)0.0255 (7)0.0022 (6)0.0056 (6)0.0106 (6)
O2B0.0225 (7)0.0416 (8)0.0264 (7)0.0017 (6)0.0062 (5)0.0037 (6)
N1B0.0224 (8)0.0311 (9)0.0214 (8)0.0019 (7)0.0042 (6)0.0022 (6)
N2B0.0230 (8)0.0428 (10)0.0212 (8)0.0038 (7)0.0053 (6)0.0088 (7)
N3B0.0252 (8)0.0281 (8)0.0202 (8)0.0037 (6)0.0026 (6)0.0028 (6)
C2B0.0236 (10)0.0272 (10)0.0224 (9)0.0053 (8)0.0017 (7)0.0008 (7)
C4B0.0282 (10)0.0265 (10)0.0194 (9)0.0078 (8)0.0020 (7)0.0030 (7)
C5B0.0256 (10)0.0333 (11)0.0226 (9)0.0037 (8)0.0062 (7)0.0037 (8)
C6B0.0228 (10)0.0278 (10)0.0243 (10)0.0032 (8)0.0036 (7)0.0011 (8)
C7B0.0308 (11)0.0460 (12)0.0298 (11)0.0033 (9)0.0038 (8)0.0136 (9)
C8B0.0242 (10)0.0394 (11)0.0296 (10)0.0029 (9)0.0080 (8)0.0007 (8)
O3A0.0376 (8)0.0260 (7)0.0255 (7)0.0048 (6)0.0033 (6)0.0013 (5)
O4A0.0541 (9)0.0290 (7)0.0252 (7)0.0094 (7)0.0050 (6)0.0049 (6)
N4A0.0387 (10)0.0255 (9)0.0225 (9)0.0059 (8)0.0037 (7)0.0023 (7)
C9A0.0210 (9)0.0260 (9)0.0248 (9)0.0010 (8)0.0025 (7)0.0040 (7)
C10A0.0217 (10)0.0297 (10)0.0241 (10)0.0003 (8)0.0034 (7)0.0064 (8)
C11A0.0292 (11)0.0270 (10)0.0299 (10)0.0039 (8)0.0072 (8)0.0029 (8)
C12A0.0324 (11)0.0279 (10)0.0336 (11)0.0043 (8)0.0047 (9)0.0085 (8)
C13A0.0332 (11)0.0363 (11)0.0263 (10)0.0013 (9)0.0014 (8)0.0092 (8)
C14A0.0266 (10)0.0301 (10)0.0260 (10)0.0017 (8)0.0016 (8)0.0016 (8)
C15A0.0254 (10)0.0278 (10)0.0240 (10)0.0017 (8)0.0029 (8)0.0019 (8)
O3B0.0248 (7)0.0375 (8)0.0274 (7)0.0005 (6)0.0022 (5)0.0034 (6)
O4B0.0282 (8)0.0494 (9)0.0217 (7)0.0018 (6)0.0026 (6)0.0090 (6)
N4B0.0276 (9)0.0528 (11)0.0283 (9)0.0019 (8)0.0064 (7)0.0134 (8)
C9B0.0260 (10)0.0242 (9)0.0216 (9)0.0034 (8)0.0003 (7)0.0004 (7)
C10B0.0257 (10)0.0244 (9)0.0251 (10)0.0044 (8)0.0022 (8)0.0006 (7)
C11B0.0323 (11)0.0319 (10)0.0241 (10)0.0029 (8)0.0014 (8)0.0069 (8)
C12B0.0318 (11)0.0295 (10)0.0316 (11)0.0041 (9)0.0054 (8)0.0070 (8)
C13B0.0241 (10)0.0343 (11)0.0355 (11)0.0009 (8)0.0003 (8)0.0066 (9)
C14B0.0267 (10)0.0347 (11)0.0287 (10)0.0010 (8)0.0045 (8)0.0049 (8)
C15B0.0257 (10)0.0293 (10)0.0218 (9)0.0038 (8)0.0021 (8)0.0002 (7)
Geometric parameters (Å, º) top
O1A—C4A1.340 (2)C7A—H7A20.9598
O1A—C7A1.437 (2)C7A—H7A10.9599
O2A—C6A1.344 (2)C7A—H7A30.9598
O2A—C8A1.428 (2)C8A—H8A20.9604
O1B—C4B1.342 (2)C8A—H8A10.9595
O1B—C7B1.433 (3)C8A—H8A30.9594
O2B—C6B1.342 (2)C4B—C5B1.387 (3)
O2B—C8B1.426 (2)C5B—C6B1.367 (2)
O3A—C15A1.315 (2)C5B—H5B0.9293
O4A—C15A1.230 (2)C7B—H7B10.9595
O3A—H3A0.8200C7B—H7B30.9599
O3B—C15B1.232 (3)C7B—H7B20.9600
O4B—C15B1.310 (2)C8B—H8B30.9605
O4B—H4B0.8193C8B—H8B20.9602
N1A—C2A1.342 (2)C8B—H8B10.9599
N1A—C6A1.338 (2)C9A—C15A1.469 (2)
N2A—C2A1.338 (2)C9A—C10A1.407 (2)
N3A—C4A1.321 (2)C9A—C14A1.398 (3)
N3A—C2A1.352 (2)C10A—C11A1.401 (3)
N2A—H2A20.8605C11A—C12A1.364 (3)
N2A—H2A10.8598C12A—C13A1.387 (3)
N1B—C6B1.343 (2)C13A—C14A1.374 (3)
N1B—C2B1.338 (3)C11A—H11A0.9303
N2B—C2B1.333 (2)C12A—H12A0.9302
N3B—C4B1.324 (2)C13A—H13A0.9300
N3B—C2B1.351 (2)C14A—H14A0.9304
N2B—H2B10.8608C9B—C15B1.475 (3)
N2B—H2B20.8604C9B—C10B1.402 (3)
N4A—C10A1.369 (2)C9B—C14B1.399 (3)
N4A—H70.91 (2)C10B—C11B1.406 (3)
N4A—H160.87 (2)C11B—C12B1.364 (3)
N4B—C10B1.361 (3)C12B—C13B1.382 (3)
N4B—H4B20.8602C13B—C14B1.368 (3)
N4B—H4B10.8601C11B—H11B0.9304
C4A—C5A1.387 (2)C12B—H12B0.9297
C5A—C6A1.373 (2)C13B—H13B0.9295
C5A—H5A0.9299C14B—H14B0.9302
O1B···C8A3.366 (2)C7B···H2B2viii2.9499
O2A···O3A3.1345 (18)C8A···H5A2.5674
O2A···C11Bi3.386 (3)C8B···H5B2.5643
O2B···O4B3.0386 (18)C8B···H14Biii2.6313
O3A···O2A3.1345 (18)C10B···H5Aii2.8828
O3A···N1A2.6808 (19)C11A···H7A1xv3.0702
O3B···C8Bi3.339 (2)C11B···H5Aii2.8311
O3B···N4B2.749 (2)C11B···H12Axiii2.9790
O3B···N2B3.075 (2)C12A···H12Bxiii2.8221
O4A···N4A2.650 (2)C12B···H13Axiii2.9326
O4A···N2A2.818 (2)C12B···H12Axiii2.9020
O4B···C7Bii3.405 (3)C13A···H12Bxiii2.9162
O4B···O2B3.0386 (18)C13B···H4B1xiv3.0357
O4B···C6Bi3.320 (2)C15A···H2A12.9083
O4B···C6B3.348 (2)C15A···H72.55 (2)
O4B···N1B2.603 (2)C15B···H4B12.6288
O1A···H11Bii2.8584C15B···H2B13.0282
O1B···H8A12.8768H2A1···C7Avi3.0537
O2A···H3A2.6478H2A1···C15A2.9083
O2A···H11Bi2.8917H2A1···H7A3vi2.4003
O2B···H4B2.6746H2A1···O4A1.9706
O3A···H4B2i2.5912H2A2···H7A3vi2.3895
O3A···H12Biii2.7485H2A2···H2A2vi2.3863
O3A···H14A2.4228H2A2···C7Avi3.0049
O3B···H8B3i2.4721H2A2···H7vii2.3871
O3B···H2B12.2238H2A2···N4Avii2.8055
O3B···H4B12.1213H2A2···N3Avi2.3451
O4A···H71.97 (2)H2A2···C2Avi3.0643
O4A···H7A3iv2.7343H7A1···C11Axvi3.0702
O4A···H2A11.9706H7A1···H11Axvi2.3548
O4B···H7B2ii2.8459H3A···C6A2.7105
O4B···H14B2.3016H3A···C2A2.8994
N1A···C15A3.413 (2)H3A···N1A1.8629
N1A···O3A2.6808 (19)H3A···O2A2.6478
N1B···O4B2.603 (2)H7A2···N3A2.6166
N2A···C11Av3.429 (3)H7A2···N4Axii2.9272
N2A···O4A2.818 (2)H4B···C2B2.8079
N2A···N3Avi3.166 (2)H4B···N1B1.8054
N2A···N4Avii3.223 (2)H4B···C6B2.6964
N2A···C7Avi3.355 (3)H4B···O2B2.6746
N2B···O3B3.075 (2)H4B···H2B12.5495
N2B···C7Bviii3.324 (3)H7A3···H2A2vi2.3895
N2B···N3Bviii3.165 (2)H7A3···H2A1vi2.4003
N3A···N2Avi3.166 (2)H7A3···O4Av2.7343
N3B···N2Bviii3.165 (2)H7A3···N2Avi2.7065
N4A···N4Aix3.100 (3)H7A3···N3A2.6110
N4A···O4A2.650 (2)H5A···C11Bii2.8311
N4A···N2Avii3.223 (2)H5A···H8A22.3603
N4B···C13Bx3.424 (3)H5A···C10Bii2.8828
N4B···O3B2.749 (2)H5A···N4Bii2.9299
N1A···H3A1.8629H5A···C8A2.5674
N1B···H4B1.8054H5A···H8A32.3629
N2A···H7vii2.72 (2)H5B···H8B32.3881
N2A···H7A3vi2.7065H5B···C8B2.5643
N2B···H7B2viii2.7691H5B···H8B22.3237
N3A···H16vii2.79 (2)H8A1···O1B2.8768
N3A···H7A32.6110H7···H2A2vii2.3871
N3A···H2A2vi2.3450H7···O4A1.97 (2)
N3A···H7A22.6166H7···N2Avii2.72 (2)
N3B···H8B2x2.8142H7···C15A2.55 (2)
N3B···H7B32.6125H8A2···C5A2.7552
N3B···H7B22.6081H8A2···H5A2.3603
N3B···H2B2viii2.3290H8A3···H5A2.3629
N4A···H7A2xi2.9272H8A3···N4Bii2.8226
N4A···H16ix2.58 (2)H8A3···C5A2.7598
N4A···H11Aix2.8681H2B1···H4B2.5495
N4A···H2A2vii2.8055H2B1···C7Bviii3.0355
N4B···H5Aii2.9299H2B1···H7B2viii2.4952
N4B···H8A3ii2.8226H2B1···C15B3.0282
N4B···H13Bx2.7127H2B1···O3B2.2238
C2A···C10Av3.331 (2)H2B2···N3Bviii2.3290
C2A···C11Av3.458 (3)H2B2···C2Bviii3.0727
C2B···C5Bii3.558 (2)H2B2···C7Bviii2.9499
C2B···C6Bii3.401 (2)H2B2···H2B2viii2.4004
C4A···C9Av3.539 (2)H2B2···H7B2viii2.4198
C4A···C15Av3.488 (3)H8B1···H14Biii2.4098
C5A···C12Axii3.537 (3)H11A···H162.3411
C5A···C13Axii3.447 (3)H11A···H7A1xv2.3548
C5B···C15Bi3.341 (2)H11A···N4Aix2.8681
C5B···C2Bii3.558 (2)H11B···H4B22.3639
C5B···C9Bi3.559 (2)H11B···H12Axiii2.4408
C6A···C12Axii3.493 (3)H11B···O1Aii2.8584
C6B···O4B3.348 (2)H11B···O2Ai2.8917
C6B···O4Bi3.320 (2)H8B2···H5B2.3237
C6B···C2Bii3.401 (2)H8B2···N3Bxiv2.8142
C6B···C15Bi3.514 (2)H8B2···C5B2.7274
C7A···N2Avi3.355 (3)H12A···C12Bxiii2.9019
C7B···O4Bii3.405 (3)H12A···C11Bxiii2.9790
C7B···N2Bviii3.324 (3)H12A···H11Bxiii2.4408
C8A···O1B3.366 (2)H12A···H12Bxiii2.2849
C8B···O3Bi3.339 (2)H12B···O3Aiii2.7485
C8B···C14Biii3.447 (3)H12B···C12Axiii2.8220
C9A···C4Aiv3.539 (2)H12B···C13Axiii2.9162
C9B···C5Bi3.559 (2)H12B···H12Axiii2.2849
C10A···C2Aiv3.331 (2)H12B···H13Axiii2.4834
C11A···N2Aiv3.429 (3)H8B3···H5B2.3881
C11A···C2Aiv3.458 (3)H8B3···O3Bi2.4721
C11B···O2Ai3.386 (3)H8B3···C5B2.7678
C12A···C5Axi3.537 (3)H8B3···H14Biii2.3522
C12A···C6Axi3.493 (3)H13A···H12Bxiii2.4834
C12A···C12Bxiii3.517 (3)H13A···C12Bxiii2.9326
C12B···C13Axiii3.526 (3)H13B···N4Bxiv2.7127
C12B···C12Axiii3.517 (3)H13B···H4B1xiv2.3894
C13A···C5Axi3.447 (3)H14A···H4B2i2.5915
C13A···C12Bxiii3.526 (3)H14A···O3A2.4228
C13B···N4Bxiv3.424 (3)H14B···C8Biii2.6313
C14B···C8Biii3.447 (3)H14B···O4B2.3016
C15A···N1A3.413 (2)H14B···H8B1iii2.4098
C15A···C4Aiv3.488 (3)H14B···H8B3iii2.3522
C15B···C5Bi3.341 (2)H7B2···N2Bviii2.7691
C15B···C6Bi3.514 (2)H7B2···O4Bii2.8459
C2A···H3A2.8994H7B2···H2B1viii2.4952
C2A···H2A2vi3.0643H7B2···H2B2viii2.4198
C2B···H2B2viii3.0727H7B2···N3B2.6081
C2B···H4B2.8079H16···H16ix2.28 (3)
C5A···H8A32.7598H16···H11A2.3411
C5A···H8A22.7552H16···N4Aix2.58 (2)
C5B···H8B32.7678H16···N3Avii2.79 (2)
C5B···H8B22.7274H7B3···N3B2.6125
C6A···H3A2.7105H4B1···O3B2.1213
C6B···H4B2.6964H4B1···C13Bx3.0357
C7A···H2A2vi3.0049H4B1···C15B2.6288
C7A···H2A1vi3.0537H4B1···H13Bx2.3894
C7B···H2B1viii3.0355H4B2···H11B2.3639
C4A—O1A—C7A118.05 (15)C4B—C5B—H5B122.42
C6A—O2A—C8A118.02 (14)C6B—C5B—H5B122.43
C4B—O1B—C7B117.81 (15)O1B—C7B—H7B2109.47
C6B—O2B—C8B117.41 (15)O1B—C7B—H7B3109.50
C15A—O3A—H3A109.45O1B—C7B—H7B1109.50
C15B—O4B—H4B109.42H7B2—C7B—H7B3109.50
C2A—N1A—C6A116.21 (14)H7B1—C7B—H7B2109.40
C2A—N3A—C4A114.84 (15)H7B1—C7B—H7B3109.45
C2A—N2A—H2A1120.01H8B1—C8B—H8B2109.51
C2A—N2A—H2A2120.03O2B—C8B—H8B3109.49
H2A1—N2A—H2A2119.95O2B—C8B—H8B2109.50
C2B—N1B—C6B116.94 (16)O2B—C8B—H8B1109.46
C2B—N3B—C4B114.73 (16)H8B1—C8B—H8B3109.45
H2B1—N2B—H2B2119.91H8B2—C8B—H8B3109.41
C2B—N2B—H2B1120.04C10A—C9A—C15A120.50 (15)
C2B—N2B—H2B2120.05C14A—C9A—C15A120.32 (16)
H7—N4A—H16118 (2)C10A—C9A—C14A119.16 (15)
C10A—N4A—H7116.0 (15)N4A—C10A—C11A118.55 (16)
C10A—N4A—H16116.8 (15)C9A—C10A—C11A118.15 (16)
C10B—N4B—H4B1120.00N4A—C10A—C9A123.30 (15)
C10B—N4B—H4B2120.00C10A—C11A—C12A121.29 (19)
H4B1—N4B—H4B2120.01C11A—C12A—C13A121.0 (2)
N1A—C2A—N2A116.23 (14)C12A—C13A—C14A118.69 (19)
N1A—C2A—N3A125.95 (16)C9A—C14A—C13A121.71 (18)
N2A—C2A—N3A117.82 (16)O4A—C15A—C9A122.52 (16)
N3A—C4A—C5A124.69 (14)O3A—C15A—C9A115.63 (15)
O1A—C4A—N3A119.51 (15)O3A—C15A—O4A121.84 (15)
O1A—C4A—C5A115.79 (15)C10A—C11A—H11A119.34
C4A—C5A—C6A115.23 (16)C12A—C11A—H11A119.36
O2A—C6A—C5A125.55 (16)C13A—C12A—H12A119.48
O2A—C6A—N1A111.41 (14)C11A—C12A—H12A119.53
N1A—C6A—C5A123.04 (16)C12A—C13A—H13A120.66
C6A—C5A—H5A122.42C14A—C13A—H13A120.65
C4A—C5A—H5A122.35C9A—C14A—H14A119.12
O1A—C7A—H7A2109.37C13A—C14A—H14A119.18
H7A1—C7A—H7A3109.49C14B—C9B—C15B118.51 (17)
O1A—C7A—H7A3109.51C10B—C9B—C14B118.82 (17)
H7A1—C7A—H7A2109.42C10B—C9B—C15B122.68 (19)
O1A—C7A—H7A1109.53N4B—C10B—C11B119.07 (17)
H7A2—C7A—H7A3109.50C9B—C10B—C11B118.18 (19)
H8A2—C8A—H8A3109.48N4B—C10B—C9B122.75 (17)
H8A1—C8A—H8A3109.47C10B—C11B—C12B121.16 (18)
O2A—C8A—H8A3109.55C11B—C12B—C13B121.0 (2)
H8A1—C8A—H8A2109.44C12B—C13B—C14B118.7 (2)
O2A—C8A—H8A2109.46C9B—C14B—C13B122.10 (18)
O2A—C8A—H8A1109.42O3B—C15B—C9B124.16 (17)
N2B—C2B—N3B118.31 (18)O4B—C15B—C9B112.92 (18)
N1B—C2B—N2B116.21 (16)O3B—C15B—O4B122.92 (16)
N1B—C2B—N3B125.48 (17)C10B—C11B—H11B119.44
N3B—C4B—C5B125.03 (16)C12B—C11B—H11B119.40
O1B—C4B—N3B119.61 (17)C11B—C12B—H12B119.59
O1B—C4B—C5B115.36 (17)C13B—C12B—H12B119.46
C4B—C5B—C6B115.15 (18)C12B—C13B—H13B120.60
O2B—C6B—N1B111.18 (15)C14B—C13B—H13B120.71
O2B—C6B—C5B126.17 (18)C9B—C14B—H14B118.94
N1B—C6B—C5B122.65 (19)C13B—C14B—H14B118.95
C7A—O1A—C4A—N3A1.2 (2)C4B—C5B—C6B—O2B179.87 (16)
C7A—O1A—C4A—C5A179.01 (17)C14A—C9A—C15A—O4A174.43 (19)
C8A—O2A—C6A—N1A179.08 (17)C15A—C9A—C10A—N4A2.6 (2)
C8A—O2A—C6A—C5A1.1 (3)C15A—C9A—C10A—C11A178.15 (17)
C7B—O1B—C4B—N3B0.6 (2)C14A—C9A—C10A—N4A178.92 (17)
C7B—O1B—C4B—C5B179.14 (16)C14A—C9A—C10A—C11A0.3 (2)
C8B—O2B—C6B—C5B1.5 (3)C10A—C9A—C14A—C13A0.5 (3)
C8B—O2B—C6B—N1B178.82 (15)C15A—C9A—C14A—C13A177.98 (19)
C2A—N1A—C6A—O2A179.97 (17)C10A—C9A—C15A—O4A7.1 (3)
C6A—N1A—C2A—N3A1.4 (2)C14A—C9A—C15A—O3A6.4 (3)
C6A—N1A—C2A—N2A178.93 (16)C10A—C9A—C15A—O3A172.05 (16)
C2A—N1A—C6A—C5A0.2 (3)C9A—C10A—C11A—C12A0.5 (3)
C4A—N3A—C2A—N1A1.1 (2)N4A—C10A—C11A—C12A178.82 (19)
C4A—N3A—C2A—N2A179.32 (14)C10A—C11A—C12A—C13A0.8 (3)
C2A—N3A—C4A—O1A179.60 (14)C11A—C12A—C13A—C14A0.9 (3)
C2A—N3A—C4A—C5A0.6 (2)C12A—C13A—C14A—C9A0.8 (3)
C6B—N1B—C2B—N3B1.7 (3)C10B—C9B—C15B—O3B4.9 (3)
C2B—N1B—C6B—C5B1.0 (2)C10B—C9B—C15B—O4B175.17 (15)
C2B—N1B—C6B—O2B179.28 (14)C14B—C9B—C15B—O3B175.29 (17)
C6B—N1B—C2B—N2B179.12 (15)C14B—C9B—C15B—O4B4.7 (2)
C4B—N3B—C2B—N2B179.14 (15)C15B—C9B—C10B—N4B3.4 (2)
C4B—N3B—C2B—N1B1.7 (2)C15B—C9B—C10B—C11B176.60 (16)
C2B—N3B—C4B—C5B1.0 (2)C10B—C9B—C14B—C13B2.2 (3)
C2B—N3B—C4B—O1B179.26 (15)C15B—C9B—C14B—C13B177.97 (18)
O1A—C4A—C5A—C6A178.51 (17)C14B—C9B—C10B—N4B176.38 (17)
N3A—C4A—C5A—C6A1.7 (3)C14B—C9B—C10B—C11B3.6 (2)
C4A—C5A—C6A—N1A1.3 (3)N4B—C10B—C11B—C12B177.68 (18)
C4A—C5A—C6A—O2A178.56 (18)C9B—C10B—C11B—C12B2.3 (3)
N3B—C4B—C5B—C6B0.5 (3)C10B—C11B—C12B—C13B0.6 (3)
O1B—C4B—C5B—C6B179.79 (15)C11B—C12B—C13B—C14B2.0 (3)
C4B—C5B—C6B—N1B0.4 (2)C12B—C13B—C14B—C9B0.6 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1, z; (v) x, y1, z; (vi) x+2, y+1, z; (vii) x+2, y+2, z; (viii) x+3, y+1, z+1; (ix) x+1, y+3, z; (x) x+1, y, z; (xi) x1, y+1, z; (xii) x+1, y1, z; (xiii) x+1, y+3, z+1; (xiv) x1, y, z; (xv) x1, y+2, z; (xvi) x+1, y2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···O4A0.861.972.818 (2)169
N2A—H2A2···N3Avi0.862.353.166 (2)160
O3A—H3A···N1A0.821.862.6808 (19)175
O4B—H4B···N1B0.821.812.603 (2)164
N4A—H7···O4A0.91 (2)1.97 (2)2.650 (2)130 (2)
N2B—H2B1···O3B0.862.223.075 (2)170
N2B—H2B2···N3Bviii0.862.333.165 (2)164
N4A—H16···N4Aix0.87 (2)2.58 (2)3.100 (3)119.7 (18)
N4B—H4B1···O3B0.862.122.749 (2)129
N4B—H4B2···O3Ai0.862.593.450 (2)176
C8B—H8B3···O3Bi0.962.473.339 (2)150
C14A—H14A···O3A0.932.422.747 (3)100
C14B—H14B···O4B0.932.302.655 (2)102
Symmetry codes: (i) x+2, y+2, z+1; (vi) x+2, y+1, z; (viii) x+3, y+1, z+1; (ix) x+1, y+3, z.

Experimental details

Crystal data
Chemical formulaC6H9N3O2·C7H7NO2
Mr292.30
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.2802 (3), 7.4095 (2), 25.8035 (9)
α, β, γ (°)83.636 (2), 83.162 (1), 82.373 (2)
V3)1363.38 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.19 × 0.08
Data collection
DiffractometerBruker–Nonius CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24443, 6286, 4140
Rint0.064
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.04
No. of reflections6286
No. of parameters390
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON(Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···O4A0.86001.97002.818 (2)169.00
N2A—H2A2···N3Ai0.86002.35003.166 (2)160.00
O3A—H3A···N1A0.82001.86002.6808 (19)175.00
O4B—H4B···N1B0.82001.81002.603 (2)164.00
N4A—H7···O4A0.91 (2)1.97 (2)2.650 (2)130 (2)
N2B—H2B1···O3B0.86002.22003.075 (2)170.00
N2B—H2B2···N3Bii0.86002.33003.165 (2)164.00
N4A—H16···N4Aiii0.87 (2)2.58 (2)3.100 (3)119.7 (18)
N4B—H4B1···O3B0.86002.12002.749 (2)129.00
N4B—H4B2···O3Aiv0.86002.59003.450 (2)176.00
C8B—H8B3···O3Biv0.96002.47003.339 (2)150.00
C14A—H14A···O3A0.93002.42002.747 (3)100.00
C14B—H14B···O4B0.93002.30002.655 (2)102.00
Symmetry codes: (i) x+2, y+1, z; (ii) x+3, y+1, z+1; (iii) x+1, y+3, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

KT thanks the UGC (New Delhi) for the UGC–Rajiv Gandhi Junior Fellowship [Reference No: F.16–12/2000 (SA-II)] DL thanks the EPSRC National Crystallography Service (Southampton, England) for the X-ray data collection.

References

First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2907–o2909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoone, C. D. G., Derissen, J. L. & Schoone, J. C. (1977). Acta Cryst. B33, 3205–3206.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuthiah, P. T., Balasubramani, K., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. C62, o605–o607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol.276, Macromolecular Crystallography, part A. edited by C. W. Carter Jr & R. M. Sweet. pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. & Messerschmidt, M. (2005). Tetrahedron, 61, 7201–7210.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakazawa, H., Ohba, S. & Saito, Y. (1986). Acta Cryst. C42, 1880–1881.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007a). Acta Cryst. E63, o4212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007b). Acta Cryst. C63, o295–o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds