organic compounds
2-Chloro-N-(2,4-dimethylphenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The conformation of the N—H bond in the structure of the title compound, C10H12ClNO, is syn to the ortho methyl group, similar to that observed with respect to the meta methyl group in 2-chloro-N-(3-methylphenyl)acetamide and the ortho-chloro group in 2-chloro-N-(2-chlorophenyl)acetamide. The geometric parameters are similar to those of other acetanilides. The molecules are linked into chains through intermolecular N—H⋯O hydrogen bonds.
Related literature
For related literature, see: Gowda et al. (2007a,b,c,d,e,f, 2008); Shilpa & Gowda (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807062563/bt2650sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062563/bt2650Isup2.hkl
The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The NH atom was located in difference map and its coordinates were refined. Uiso(H) values were set equal to 1.2 Ueq(C,N) or 1.2 Ueq(Cmethyl).
In the present work, the structure of 2-chloro-N-(2,4-dimethylphenyl)- acetamide (24DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic
(Gowda et al., 2007a, b, c, d, e). The conformation of the N—H bond in the structure of 24DMPCA is syn to the ortho methyl group (Fig. 1), similar to that observed with respect to the meta methyl group in the 2-chloro- N-(3-methylphenyl)acetamide (3MPCA)(Gowda et al., 2007e). and ortho chloro group in the 2-chloro-N-(2-chlorophenyl)- acetamide(2CPCA)(Gowda et al., 2007d). The geometric parameters in 24DMPCA are similar to those in 3MPCA (Gowda et al., 2007e), 2CPCA (Gowda et al., 2007d), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007b), 2-chloro-N- (4-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides (Gowda et al. , 2007a). The molecules in the structure are linked into chains through intermolecular N—H···O hydrogen bonding (Table 1 and Fig.2).For related literature, see: Gowda et al. (2007a, 2007b, 2007c, 2007d, 2007e, 2007f), 2008); Shilpa & Gowda (2007).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C10H12ClNO | Z = 2 |
Mr = 197.66 | F(000) = 208 |
Triclinic, P1 | Dx = 1.290 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54180 Å |
a = 4.7235 (7) Å | Cell parameters from 25 reflections |
b = 10.407 (2) Å | θ = 4.2–26.4° |
c = 11.451 (2) Å | µ = 3.00 mm−1 |
α = 67.07 (2)° | T = 299 K |
β = 86.84 (1)° | Needle, colourless |
γ = 78.95 (2)° | 0.60 × 0.06 × 0.04 mm |
V = 508.69 (15) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1394 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
Graphite monochromator | θmax = 66.9°, θmin = 4.2° |
ω/2θ scans | h = 0→5 |
Absorption correction: ψ scan North et al. (1968) | k = −12→12 |
Tmin = 0.803, Tmax = 0.895 | l = −13→13 |
2059 measured reflections | 3 standard reflections every 120 min |
1817 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1035P)2 + 0.2646P] where P = (Fo2 + 2Fc2)/3 |
1817 reflections | (Δ/σ)max = 0.044 |
123 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C10H12ClNO | γ = 78.95 (2)° |
Mr = 197.66 | V = 508.69 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.7235 (7) Å | Cu Kα radiation |
b = 10.407 (2) Å | µ = 3.00 mm−1 |
c = 11.451 (2) Å | T = 299 K |
α = 67.07 (2)° | 0.60 × 0.06 × 0.04 mm |
β = 86.84 (1)° |
Enraf–Nonius CAD-4 diffractometer | 1394 reflections with I > 2σ(I) |
Absorption correction: ψ scan North et al. (1968) | Rint = 0.015 |
Tmin = 0.803, Tmax = 0.895 | 3 standard reflections every 120 min |
2059 measured reflections | intensity decay: 1.0% |
1817 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.190 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.45 e Å−3 |
1817 reflections | Δρmin = −0.47 e Å−3 |
123 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.5208 (2) | −0.02640 (14) | 0.75189 (11) | 0.1062 (6) | |
O1 | 0.2611 (4) | 0.1946 (3) | 0.5165 (2) | 0.0695 (8) | |
N1 | 0.6642 (5) | 0.2847 (3) | 0.4451 (2) | 0.0411 (6) | |
H1N | 0.842 (8) | 0.271 (3) | 0.453 (3) | 0.049* | |
C1 | 0.5306 (5) | 0.4140 (3) | 0.3481 (3) | 0.0380 (6) | |
C2 | 0.6351 (5) | 0.4545 (3) | 0.2256 (3) | 0.0426 (7) | |
C3 | 0.5019 (7) | 0.5837 (3) | 0.1357 (3) | 0.0520 (8) | |
H3 | 0.5711 | 0.6130 | 0.0536 | 0.062* | |
C4 | 0.2697 (7) | 0.6709 (3) | 0.1634 (3) | 0.0539 (8) | |
C5 | 0.1706 (7) | 0.6261 (3) | 0.2857 (3) | 0.0536 (8) | |
H5 | 0.0142 | 0.6822 | 0.3062 | 0.064* | |
C6 | 0.2985 (6) | 0.5003 (3) | 0.3774 (3) | 0.0461 (7) | |
H6 | 0.2300 | 0.4724 | 0.4597 | 0.055* | |
C7 | 0.5218 (5) | 0.1865 (3) | 0.5227 (3) | 0.0449 (7) | |
C8 | 0.7104 (6) | 0.0592 (4) | 0.6200 (3) | 0.0590 (9) | |
H8A | 0.8681 | 0.0901 | 0.6462 | 0.071* | |
H8B | 0.7927 | −0.0072 | 0.5812 | 0.071* | |
C9 | 0.8830 (7) | 0.3623 (4) | 0.1907 (3) | 0.0569 (8) | |
H9A | 1.0565 | 0.3590 | 0.2325 | 0.085* | |
H9B | 0.9069 | 0.4011 | 0.1006 | 0.085* | |
H9C | 0.8435 | 0.2681 | 0.2168 | 0.085* | |
C10 | 0.1310 (10) | 0.8109 (4) | 0.0632 (4) | 0.0815 (12) | |
H10A | 0.2775 | 0.8560 | 0.0104 | 0.122* | |
H10B | 0.0287 | 0.8712 | 0.1032 | 0.122* | |
H10C | −0.0013 | 0.7944 | 0.0121 | 0.122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0551 (6) | 0.1112 (9) | 0.0893 (8) | −0.0082 (5) | 0.0147 (5) | 0.0236 (6) |
O1 | 0.0134 (9) | 0.0749 (15) | 0.0926 (17) | −0.0115 (9) | −0.0051 (10) | −0.0006 (13) |
N1 | 0.0138 (9) | 0.0512 (13) | 0.0519 (13) | −0.0051 (9) | −0.0010 (9) | −0.0132 (11) |
C1 | 0.0211 (12) | 0.0446 (15) | 0.0476 (15) | −0.0062 (10) | −0.0031 (10) | −0.0166 (12) |
C2 | 0.0263 (13) | 0.0534 (17) | 0.0504 (15) | −0.0104 (11) | 0.0017 (11) | −0.0213 (13) |
C3 | 0.0456 (17) | 0.0573 (18) | 0.0484 (16) | −0.0122 (14) | −0.0006 (13) | −0.0141 (14) |
C4 | 0.0493 (18) | 0.0474 (17) | 0.0599 (18) | −0.0044 (13) | −0.0087 (14) | −0.0160 (14) |
C5 | 0.0394 (16) | 0.0548 (18) | 0.0628 (19) | 0.0047 (13) | −0.0037 (13) | −0.0242 (15) |
C6 | 0.0278 (13) | 0.0567 (17) | 0.0503 (16) | −0.0021 (12) | 0.0016 (11) | −0.0195 (13) |
C7 | 0.0174 (12) | 0.0522 (16) | 0.0586 (17) | −0.0060 (11) | −0.0004 (11) | −0.0147 (13) |
C8 | 0.0233 (13) | 0.0593 (19) | 0.073 (2) | −0.0076 (12) | −0.0009 (13) | −0.0021 (16) |
C9 | 0.0369 (16) | 0.072 (2) | 0.0603 (18) | −0.0050 (14) | 0.0090 (14) | −0.0270 (16) |
C10 | 0.087 (3) | 0.059 (2) | 0.075 (2) | 0.006 (2) | −0.009 (2) | −0.0087 (19) |
Cl1—C8 | 1.728 (3) | C5—C6 | 1.371 (4) |
O1—C7 | 1.223 (3) | C5—H5 | 0.9300 |
N1—C7 | 1.333 (4) | C6—H6 | 0.9300 |
N1—C1 | 1.425 (3) | C7—C8 | 1.516 (4) |
N1—H1N | 0.83 (4) | C8—H8A | 0.9700 |
C1—C2 | 1.389 (4) | C8—H8B | 0.9700 |
C1—C6 | 1.392 (4) | C9—H9A | 0.9600 |
C2—C3 | 1.390 (4) | C9—H9B | 0.9600 |
C2—C9 | 1.506 (4) | C9—H9C | 0.9600 |
C3—C4 | 1.390 (5) | C10—H10A | 0.9600 |
C3—H3 | 0.9300 | C10—H10B | 0.9600 |
C4—C5 | 1.378 (5) | C10—H10C | 0.9600 |
C4—C10 | 1.511 (5) | ||
C7—N1—C1 | 124.3 (2) | O1—C7—N1 | 123.9 (3) |
C7—N1—H1N | 119 (2) | O1—C7—C8 | 121.4 (3) |
C1—N1—H1N | 117 (2) | N1—C7—C8 | 114.6 (2) |
C2—C1—C6 | 120.4 (3) | C7—C8—Cl1 | 112.3 (2) |
C2—C1—N1 | 120.0 (2) | C7—C8—H8A | 109.1 |
C6—C1—N1 | 119.6 (2) | Cl1—C8—H8A | 109.1 |
C1—C2—C3 | 117.6 (3) | C7—C8—H8B | 109.1 |
C1—C2—C9 | 121.6 (3) | Cl1—C8—H8B | 109.1 |
C3—C2—C9 | 120.9 (3) | H8A—C8—H8B | 107.9 |
C4—C3—C2 | 122.8 (3) | C2—C9—H9A | 109.5 |
C4—C3—H3 | 118.6 | C2—C9—H9B | 109.5 |
C2—C3—H3 | 118.6 | H9A—C9—H9B | 109.5 |
C5—C4—C3 | 117.8 (3) | C2—C9—H9C | 109.5 |
C5—C4—C10 | 120.9 (3) | H9A—C9—H9C | 109.5 |
C3—C4—C10 | 121.2 (3) | H9B—C9—H9C | 109.5 |
C6—C5—C4 | 121.2 (3) | C4—C10—H10A | 109.5 |
C6—C5—H5 | 119.4 | C4—C10—H10B | 109.5 |
C4—C5—H5 | 119.4 | H10A—C10—H10B | 109.5 |
C5—C6—C1 | 120.3 (3) | C4—C10—H10C | 109.5 |
C5—C6—H6 | 119.9 | H10A—C10—H10C | 109.5 |
C1—C6—H6 | 119.9 | H10B—C10—H10C | 109.5 |
C7—N1—C1—C2 | −130.4 (3) | C3—C4—C5—C6 | 0.7 (5) |
C7—N1—C1—C6 | 50.8 (4) | C10—C4—C5—C6 | −179.0 (3) |
C6—C1—C2—C3 | 0.7 (4) | C4—C5—C6—C1 | −0.8 (5) |
N1—C1—C2—C3 | −178.1 (2) | C2—C1—C6—C5 | 0.1 (4) |
C6—C1—C2—C9 | −179.1 (3) | N1—C1—C6—C5 | 178.9 (3) |
N1—C1—C2—C9 | 2.1 (4) | C1—N1—C7—O1 | 2.5 (5) |
C1—C2—C3—C4 | −0.9 (4) | C1—N1—C7—C8 | −178.9 (3) |
C9—C2—C3—C4 | 178.9 (3) | O1—C7—C8—Cl1 | −25.2 (4) |
C2—C3—C4—C5 | 0.2 (5) | N1—C7—C8—Cl1 | 156.2 (3) |
C2—C3—C4—C10 | 179.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (4) | 2.04 (4) | 2.853 (3) | 165 (3) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C10H12ClNO |
Mr | 197.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 299 |
a, b, c (Å) | 4.7235 (7), 10.407 (2), 11.451 (2) |
α, β, γ (°) | 67.07 (2), 86.84 (1), 78.95 (2) |
V (Å3) | 508.69 (15) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 3.00 |
Crystal size (mm) | 0.60 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan North et al. (1968) |
Tmin, Tmax | 0.803, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2059, 1817, 1394 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.190, 1.09 |
No. of reflections | 1817 |
No. of parameters | 123 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.47 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.83 (4) | 2.04 (4) | 2.853 (3) | 165 (3) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Version 1.2. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975–o1976. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335–o2336. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o3364. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o2333–o2334. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o4488. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o4611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64. Submitted. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of 2-chloro-N-(2,4-dimethylphenyl)- acetamide (24DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, b, c, d, e). The conformation of the N—H bond in the structure of 24DMPCA is syn to the ortho methyl group (Fig. 1), similar to that observed with respect to the meta methyl group in the 2-chloro- N-(3-methylphenyl)acetamide (3MPCA)(Gowda et al., 2007e). and ortho chloro group in the 2-chloro-N-(2-chlorophenyl)- acetamide(2CPCA)(Gowda et al., 2007d). The geometric parameters in 24DMPCA are similar to those in 3MPCA (Gowda et al., 2007e), 2CPCA (Gowda et al., 2007d), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007b), 2-chloro-N- (4-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides (Gowda et al. , 2007a). The molecules in the structure are linked into chains through intermolecular N—H···O hydrogen bonding (Table 1 and Fig.2).