metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(tri­phenyl­arsine)copper(I) hexa­fluoridophosphate

aJohannes Kepler Universität Linz, Institut für Anorganische Chemie, Altenbergerstr. 69, 4040 Linz, Austria, and bUniversität Regensburg, Zentrale Analytik, Röntgenstrukturanalyse, Universitätsstr. 31, 93053 Regensburg, Germany
*Correspondence e-mail: uwe.monkowius@jku.at

(Received 22 November 2007; accepted 29 November 2007; online 6 December 2007)

In the crystal structure of the title compound, [Cu(C18H15As)4]PF6, the Cu atom is coordinated by four As atoms of triphenyl­arsine ligands in a tetra­hedral geometry. The complex cation is located on a crystallographic threefold axis. Both PF6 anions are located on special positions of site symmetry [\overline{3}]. The Cu—As bond of the independent arsine ligand is shorter than the Cu—As bonds of the three symmetry-related arsine ligands.

Related literature

For related literature, see: Bowmaker et al. (1990[Bowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697-1705.]); Engelhardt et al. (1985[Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H15As)4]PF6

  • Mr = 1433.40

  • Trigonal, [R \overline 3]

  • a = 14.4025 (10) Å

  • c = 52.015 (4) Å

  • V = 9344.1 (12) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 296 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.349, Tmax = 0.769

  • 23664 measured reflections

  • 4049 independent reflections

  • 3118 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.04

  • 4049 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

As1—Cu1 2.5472 (5)
As1—C1 1.959 (4)
As1—C7 1.956 (3)
As1—C13 1.958 (5)
As2—Cu1 2.5044 (9)
As2—C19 1.950 (4)
Cu1—As1—C1 112.61 (13)
Cu1—As1—C7 117.80 (13)
Cu1—As1—C13 122.35 (11)
C1—As1—C7 101.64 (15)
C1—As1—C13 99.19 (17)
C7—As1—C13 99.85 (17)
Cu1—As2—C19 117.96 (10)
C19—As2—C19i 99.81 (18)
As1—Cu1—As2 109.30 (2)
As1—Cu1—As1i 109.65 (2)
Symmetry codes: (i) -y+1, x-y, z; (ii) -y, x-y, z; (iii) -x, -y, -z; (iv) -x+y+2, -x+2, z; (v) [x-y+{\script{2\over 3}}, x-{\script{2\over 3}}, -z+{\script{1\over 3}}].

Data collection: IPDS Software (Stoe, 1998[Stoe (1998). IPDS Software. Version 2.89. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Crystals of the title compound were obtained as a side-product in the preparation of [(Ph-BIAN)Cu(I)(Ph3As)2][PF6] (Ph-BIAN = Bis(phenyl-imino)acenaphthene) in methylene chloride solution. To identify this compound a single-crystal structure analysis was performed.

The title compound contains [(Ph3As)4Cu]+ ions which are disposed about crystallographic threefold axes, the metal atom lying on a special position of symmetry 3 is coordinated by two independent ligands. One of it is totally independent, whereas the other three are symmetry-related completing the nearly regular tetrahedral environment of the copper atom. The bond angles are 109.30 (2) and 109.65 (2) ° for As1—Cu1—As2 and As1—Cu1—As1', respectively. Two independent phosphorus and fluorine atoms are found. The Cu—As2 bond of the independent (axial) arsine ligand is significantly shorter than the value for the off-axis Cu—As1 bonds (2.5044 (9) versus 2.5472 (5) Å). A similar distortion was previously found for the analogous salts [(Ph3P)4Cu]+ (with ClO4- or PF6- as anions), which also crystallize in the same space group (Bowmaker et al., 1990, Engelhardt et al., 1985).

Related literature top

For related literature, see: Bowmaker et al. (1990); Engelhardt et al. (1985).

Experimental top

The title compound was isolated as a side-product in the preparation of [(Ph-BIAN)Cu(I)(Ph3As)2][PF6] (Ph-BIAN = Bis(phenyl-imino)acenaphthene). [Cu(NCMe)4]PF6 (50 mg, 0.13 mmol) and Ph3As (93 mg, 0.30 mmol) was stirred in methylene chloride (10 ml) for 2 h. Ph-BIAN (51 mg, 0.15 mmol) was added and stirring was continued for another 2 h. The product was precipitated with pentane. Slow diffusion of diethyl ether into a methylene chloride solution of the product mixture yielded a dark powder and the title compound as colourless crystals. To identify the colourless crystals a single-crystal analysis was performed.

Refinement top

The H-atoms were calculated geometrically and refined using a riding model with C—H = 0.93Å and U(H) = 1.2Ueq(C).

Structure description top

Crystals of the title compound were obtained as a side-product in the preparation of [(Ph-BIAN)Cu(I)(Ph3As)2][PF6] (Ph-BIAN = Bis(phenyl-imino)acenaphthene) in methylene chloride solution. To identify this compound a single-crystal structure analysis was performed.

The title compound contains [(Ph3As)4Cu]+ ions which are disposed about crystallographic threefold axes, the metal atom lying on a special position of symmetry 3 is coordinated by two independent ligands. One of it is totally independent, whereas the other three are symmetry-related completing the nearly regular tetrahedral environment of the copper atom. The bond angles are 109.30 (2) and 109.65 (2) ° for As1—Cu1—As2 and As1—Cu1—As1', respectively. Two independent phosphorus and fluorine atoms are found. The Cu—As2 bond of the independent (axial) arsine ligand is significantly shorter than the value for the off-axis Cu—As1 bonds (2.5044 (9) versus 2.5472 (5) Å). A similar distortion was previously found for the analogous salts [(Ph3P)4Cu]+ (with ClO4- or PF6- as anions), which also crystallize in the same space group (Bowmaker et al., 1990, Engelhardt et al., 1985).

For related literature, see: Bowmaker et al. (1990); Engelhardt et al. (1985).

Computing details top

Data collection: IPDS Software (Stoe, 1998); cell refinement: IPDS Software (Stoe, 1998); data reduction: IPDS Software (Stoe, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Tetrakis(triphenylarsine)copper(I) hexafluoridophosphate top
Crystal data top
[Cu(C18H15As)4]PF6Cell parameters were determined by indexing 8000 reflections with I/sigma limit 6.0.
Mr = 1433.40Dx = 1.528 Mg m3
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3Cell parameters from 8000 reflections
a = 14.4025 (10) Åθ = 2.4–25.9°
c = 52.015 (4) ŵ = 2.55 mm1
V = 9344.1 (12) Å3T = 296 K
Z = 6Prism, light yellow, translucent
F(000) = 43320.14 × 0.12 × 0.10 mm
Data collection top
Stoe IPDS
diffractometer
4049 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
rotation scansθmax = 25.9°, θmin = 2.4°
Absorption correction: part of the refinement model (ΔF)
refined from delta-F (Walker & Stuart, 1983)
h = 1717
Tmin = 0.349, Tmax = 0.769k = 1717
23664 measured reflectionsl = 6361
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
4049 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu(C18H15As)4]PF6Z = 6
Mr = 1433.40Mo Kα radiation
Trigonal, R3µ = 2.55 mm1
a = 14.4025 (10) ÅT = 296 K
c = 52.015 (4) Å0.14 × 0.12 × 0.10 mm
V = 9344.1 (12) Å3
Data collection top
Stoe IPDS
diffractometer
4049 independent reflections
Absorption correction: part of the refinement model (ΔF)
refined from delta-F (Walker & Stuart, 1983)
3118 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.769Rint = 0.032
23664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 1.77 e Å3
4049 reflectionsΔρmin = 0.62 e Å3
254 parameters
Special details top

Experimental. Data were collected applying an imaging plate system (Stoe) with the following measurement parameters:

Detector distance [mm] 70 Phi movement mode Oscillation Phi incr. [degrees] 1.0 Number of exposures 192 Irradiation / exposure [min] 2.50

For a detailed description of the method see: Sheldrick, G.M., Paulus, E. Vertesy, L. & Hahn, F. (1995) Acta Cryst. B51, 89–98.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.47917 (3)0.20088 (3)0.06525 (1)0.0440 (1)
As20.666670.333330.12958 (1)0.0398 (1)
Cu10.666670.333330.08144 (1)0.0466 (2)
C10.4361 (3)0.0520 (3)0.07350 (6)0.0448 (10)
C20.5099 (3)0.0188 (3)0.06918 (8)0.0610 (14)
C30.4877 (4)0.0818 (4)0.07706 (10)0.0771 (19)
C40.3929 (4)0.1499 (3)0.08911 (9)0.0730 (16)
C50.3189 (4)0.1186 (3)0.09291 (9)0.0699 (16)
C60.3402 (3)0.0175 (3)0.08519 (7)0.0564 (12)
C70.4540 (3)0.1926 (3)0.02816 (6)0.0491 (11)
C80.3857 (4)0.0974 (4)0.01602 (8)0.0779 (18)
C90.3650 (6)0.0970 (5)0.00996 (10)0.106 (3)
C100.4128 (6)0.1912 (5)0.02384 (9)0.096 (2)
C110.4819 (5)0.2846 (5)0.01205 (9)0.082 (2)
C120.5020 (3)0.2858 (3)0.01399 (7)0.0604 (12)
C130.3514 (3)0.2028 (3)0.07735 (6)0.0457 (10)
C140.2602 (3)0.1674 (4)0.06245 (8)0.0648 (14)
C150.1694 (4)0.1644 (4)0.07263 (9)0.0786 (19)
C160.1697 (4)0.1970 (4)0.09752 (9)0.0730 (17)
C170.2590 (4)0.2334 (4)0.11206 (8)0.0699 (16)
C180.3503 (3)0.2367 (3)0.10222 (7)0.0584 (12)
C190.7988 (3)0.4342 (3)0.14716 (6)0.0420 (10)
C200.8947 (3)0.4451 (3)0.13850 (7)0.0541 (11)
C210.9898 (3)0.5153 (3)0.15034 (9)0.0653 (16)
C220.9904 (4)0.5749 (4)0.17108 (9)0.0732 (17)
C230.8955 (4)0.5649 (4)0.17971 (9)0.0786 (17)
C240.7999 (3)0.4955 (3)0.16784 (7)0.0620 (14)
P10.000000.000000.000000.0713 (7)
F10.0013 (5)0.0885 (4)0.01719 (9)0.185 (3)
P21.333330.666670.166670.0504 (6)
F21.2304 (2)0.6030 (3)0.18418 (6)0.0990 (11)
H20.574300.064300.061000.0730*
H30.537700.103600.074200.0930*
H40.379200.217000.094700.0880*
H50.253800.165200.100700.0830*
H60.289500.003400.087900.0680*
H80.353600.033500.025300.0940*
H90.318600.032700.018100.1270*
H100.397600.190700.041200.1160*
H110.515900.347900.021500.0990*
H120.548500.350300.022000.0730*
H140.259600.145600.045600.0780*
H150.108200.140100.062600.0940*
H160.108500.194100.104300.0870*
H170.259400.256300.128800.0840*
H180.411200.261900.112400.0700*
H200.894800.404600.124600.0650*
H211.053900.522500.144300.0780*
H221.054600.621700.179200.0880*
H230.895900.605400.193700.0950*
H240.736200.489800.173700.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0427 (2)0.0399 (2)0.0462 (2)0.0183 (2)0.0025 (1)0.0001 (1)
As20.0426 (2)0.0426 (2)0.0341 (3)0.0213 (1)0.00000.0000
Cu10.0483 (3)0.0483 (3)0.0431 (4)0.0241 (1)0.00000.0000
C10.0454 (19)0.0368 (17)0.0476 (17)0.0171 (15)0.0056 (14)0.0021 (13)
C20.051 (2)0.050 (2)0.081 (3)0.0245 (19)0.0029 (19)0.0043 (19)
C30.079 (3)0.063 (3)0.106 (4)0.048 (3)0.000 (3)0.002 (2)
C40.087 (3)0.043 (2)0.087 (3)0.031 (2)0.010 (2)0.003 (2)
C50.064 (3)0.047 (2)0.083 (3)0.016 (2)0.012 (2)0.012 (2)
C60.050 (2)0.045 (2)0.070 (2)0.0205 (18)0.0069 (17)0.0076 (17)
C70.049 (2)0.053 (2)0.0471 (17)0.0269 (17)0.0011 (14)0.0021 (15)
C80.102 (4)0.061 (3)0.055 (2)0.029 (3)0.014 (2)0.0080 (19)
C90.148 (6)0.099 (4)0.065 (3)0.058 (4)0.034 (3)0.032 (3)
C100.145 (5)0.129 (5)0.047 (2)0.093 (5)0.008 (3)0.002 (3)
C110.110 (4)0.099 (4)0.061 (3)0.070 (4)0.017 (3)0.024 (3)
C120.061 (2)0.060 (2)0.060 (2)0.030 (2)0.0038 (18)0.0097 (18)
C130.0430 (18)0.0395 (18)0.0536 (18)0.0199 (15)0.0032 (14)0.0017 (14)
C140.059 (2)0.080 (3)0.061 (2)0.039 (2)0.0094 (19)0.009 (2)
C150.056 (3)0.105 (4)0.085 (3)0.048 (3)0.013 (2)0.004 (3)
C160.067 (3)0.076 (3)0.087 (3)0.044 (3)0.015 (2)0.010 (2)
C170.079 (3)0.071 (3)0.063 (2)0.040 (3)0.011 (2)0.002 (2)
C180.055 (2)0.058 (2)0.058 (2)0.025 (2)0.0021 (17)0.0078 (17)
C190.0421 (18)0.0405 (17)0.0400 (15)0.0181 (15)0.0002 (13)0.0029 (13)
C200.054 (2)0.058 (2)0.0539 (19)0.0306 (19)0.0005 (16)0.0032 (16)
C210.041 (2)0.067 (3)0.088 (3)0.027 (2)0.0015 (19)0.005 (2)
C220.054 (3)0.065 (3)0.093 (3)0.024 (2)0.020 (2)0.014 (2)
C230.067 (3)0.080 (3)0.081 (3)0.031 (3)0.020 (2)0.039 (2)
C240.051 (2)0.069 (3)0.062 (2)0.027 (2)0.0027 (17)0.0179 (19)
P10.0817 (12)0.0817 (12)0.0507 (13)0.0409 (6)0.00000.0000
F10.229 (6)0.182 (5)0.173 (4)0.124 (5)0.008 (4)0.076 (4)
P20.0409 (7)0.0409 (7)0.0694 (14)0.0205 (4)0.00000.0000
F20.0655 (17)0.101 (2)0.117 (2)0.0315 (17)0.0315 (16)0.0196 (18)
Geometric parameters (Å, º) top
As1—Cu12.5472 (5)C13—C141.384 (6)
As1—C11.959 (4)C13—C181.386 (5)
As1—C71.956 (3)C14—C151.391 (8)
As1—C131.958 (5)C15—C161.376 (7)
As2—Cu12.5044 (9)C16—C171.352 (8)
As2—C191.950 (4)C17—C181.390 (8)
As2—C19i1.950 (5)C19—C201.385 (7)
As2—C19ii1.950 (4)C19—C241.387 (5)
P1—F1iii1.549 (8)C20—C211.376 (6)
P1—F1iv1.549 (5)C21—C221.376 (7)
P1—F1v1.549 (7)C22—C231.376 (9)
P1—F1vi1.549 (8)C23—C241.378 (7)
P1—F1vii1.549 (7)C2—H20.9300
P1—F11.549 (5)C3—H30.9300
P2—F2viii1.584 (5)C4—H40.9300
P2—F21.584 (3)C5—H50.9300
P2—F2ix1.583 (5)C6—H60.9300
P2—F2x1.585 (3)C8—H80.9300
P2—F2xi1.584 (3)C9—H90.9300
P2—F2xii1.584 (3)C10—H100.9300
C1—C21.385 (7)C11—H110.9300
C1—C61.377 (6)C12—H120.9300
C2—C31.381 (6)C14—H140.9300
C3—C41.371 (8)C15—H150.9300
C4—C51.363 (8)C16—H160.9300
C5—C61.389 (6)C17—H170.9300
C7—C81.378 (6)C18—H180.9300
C7—C121.377 (5)C20—H200.9300
C8—C91.383 (7)C21—H210.9300
C9—C101.379 (8)C22—H220.9300
C10—C111.356 (9)C23—H230.9300
C11—C121.383 (6)C24—H240.9300
As1···H2ii3.1700C14···H9vi3.0700
Cu1···H23.5700C19···H24ii2.6000
Cu1···H123.6000C19···H18ii2.6700
Cu1···H183.6600C20···H24ii3.0000
Cu1···H203.6800C20···H18ii2.8000
Cu1···H2i3.5700C21···H22x2.9700
Cu1···H12i3.6000C24···H24ii3.0700
Cu1···H18i3.6600H2···Cu13.5700
Cu1···H20i3.6800H2···C13i2.9300
Cu1···H2ii3.5700H2···As1i3.1700
Cu1···H12ii3.6000H3···H10xiii2.5600
Cu1···H18ii3.6600H4···H4xiv2.5300
Cu1···H20ii3.6800H4···H4xv2.5300
F2···C223.343 (7)H6···C142.9200
F1···H14vii2.7500H6···C132.6000
F1···H152.7100H8···C12.7300
F2···H222.6900H8···C11v3.0300
C6···C143.590 (7)H9···C14v3.0700
C8···C143.455 (7)H10···H3xiii2.5600
C14···C83.455 (7)H12···Cu13.6000
C14···C63.590 (7)H12···C12ii3.0000
C18···C19i3.574 (6)H12···C7ii2.8000
C18···C20i3.551 (6)H14···C72.6900
C19···C18ii3.574 (5)H14···C82.7200
C20···C24ii3.590 (6)H14···F1iii2.7500
C20···C18ii3.551 (6)H15···F12.7100
C22···F23.343 (7)H18···C20i2.8000
C24···C20i3.590 (7)H18···Cu13.6600
C1···H82.7300H18···C19i2.6700
C1···H20ii2.8200H20···C1i2.8200
C6···H20ii3.0000H20···C6i3.0000
C7···H12i2.8000H20···Cu13.6800
C7···H142.6900H21···H22x2.3900
C8···H142.7200H22···F22.6900
C11···H8vi3.0300H22···C21ix2.9700
C12···H12i3.0000H22···H21ix2.3900
C13···H62.6000H24···C20i3.0000
C13···H2ii2.9300H24···C24i3.0700
C14···H62.9200H24···C19i2.6000
Cu1—As1—C1112.61 (13)C8—C9—C10120.5 (5)
Cu1—As1—C7117.80 (13)C9—C10—C11119.8 (5)
Cu1—As1—C13122.35 (11)C10—C11—C12120.0 (5)
C1—As1—C7101.64 (15)C7—C12—C11120.8 (4)
C1—As1—C1399.19 (17)As1—C13—C18118.8 (3)
C7—As1—C1399.85 (17)C14—C13—C18118.5 (4)
Cu1—As2—C19117.96 (10)As1—C13—C14122.7 (3)
Cu1—As2—C19i117.96 (11)C13—C14—C15120.2 (4)
Cu1—As2—C19ii117.96 (10)C14—C15—C16120.3 (5)
C19—As2—C19i99.81 (18)C15—C16—C17119.9 (6)
C19—As2—C19ii99.81 (18)C16—C17—C18120.5 (4)
C19i—As2—C19ii99.8 (2)C13—C18—C17120.6 (4)
As1—Cu1—As2109.30 (2)As2—C19—C24122.3 (4)
As1—Cu1—As1i109.65 (2)C20—C19—C24119.1 (4)
As1—Cu1—As1ii109.65 (2)As2—C19—C20118.6 (3)
As1i—Cu1—As2109.30 (2)C19—C20—C21120.5 (4)
As1ii—Cu1—As2109.30 (2)C20—C21—C22120.2 (5)
As1i—Cu1—As1ii109.65 (2)C21—C22—C23119.6 (5)
F1vii—P1—F1iv90.0 (3)C22—C23—C24120.6 (4)
F1vii—P1—F1v180.00C19—C24—C23119.9 (5)
F1vii—P1—F1vi90.0 (3)C1—C2—H2120.00
F1iii—P1—F1iv90.0 (3)C3—C2—H2120.00
F1iii—P1—F1v90.0 (3)C4—C3—H3120.00
F1iii—P1—F1vi180.00C2—C3—H3120.00
F1iv—P1—F1v90.0 (3)C3—C4—H4120.00
F1iv—P1—F1vi90.0 (3)C5—C4—H4120.00
F1v—P1—F1vi90.0 (3)C4—C5—H5120.00
F1—P1—F1vii90.0 (3)C6—C5—H5120.00
F1—P1—F1iii90.0 (3)C1—C6—H6120.00
F1—P1—F1iv180.00C5—C6—H6120.00
F1—P1—F1v90.0 (3)C9—C8—H8120.00
F1—P1—F1vi90.0 (3)C7—C8—H8120.00
F1vii—P1—F1iii90.0 (3)C8—C9—H9120.00
F2viii—P2—F2ix180.00C10—C9—H9120.00
F2viii—P2—F2x89.8 (2)C11—C10—H10120.00
F2xi—P2—F2xii89.8 (2)C9—C10—H10120.00
F2xi—P2—F2ix89.8 (2)C10—C11—H11120.00
F2xi—P2—F2x180.00C12—C11—H11120.00
F2xii—P2—F2ix90.2 (2)C7—C12—H12120.00
F2xii—P2—F2x90.2 (2)C11—C12—H12120.00
F2ix—P2—F2x90.2 (2)C15—C14—H14120.00
F2viii—P2—F2xii89.8 (2)C13—C14—H14120.00
F2—P2—F2viii90.2 (2)C16—C15—H15120.00
F2—P2—F2xi90.2 (2)C14—C15—H15120.00
F2—P2—F2xii180.00C15—C16—H16120.00
F2—P2—F2ix89.8 (2)C17—C16—H16120.00
F2—P2—F2x89.8 (2)C16—C17—H17120.00
F2viii—P2—F2xi90.2 (2)C18—C17—H17120.00
C2—C1—C6119.0 (4)C17—C18—H18120.00
As1—C1—C2117.7 (3)C13—C18—H18120.00
As1—C1—C6123.1 (3)C19—C20—H20120.00
C1—C2—C3120.0 (4)C21—C20—H20120.00
C2—C3—C4120.8 (5)C22—C21—H21120.00
C3—C4—C5119.6 (4)C20—C21—H21120.00
C4—C5—C6120.4 (4)C21—C22—H22120.00
C1—C6—C5120.3 (5)C23—C22—H22120.00
As1—C7—C8122.1 (3)C24—C23—H23120.00
C8—C7—C12119.1 (3)C22—C23—H23120.00
As1—C7—C12118.8 (3)C23—C24—H24120.00
C7—C8—C9119.8 (5)C19—C24—H24120.00
C1—As1—Cu1—As266.60 (12)Cu1—As2—C19—C24134.7 (3)
C7—As1—Cu1—As2175.59 (14)C19i—As2—C19—C245.6 (3)
C13—As1—Cu1—As251.33 (12)C19ii—As2—C19—C2496.2 (3)
C1—As1—Cu1—As1i53.18 (12)As1—C1—C2—C3173.5 (3)
C7—As1—Cu1—As1i64.63 (15)As1—C1—C6—C5173.4 (3)
C13—As1—Cu1—As1i171.12 (12)C2—C1—C6—C51.1 (6)
C1—As1—Cu1—As1ii173.61 (12)C6—C1—C2—C31.4 (6)
C7—As1—Cu1—As1ii55.80 (15)C1—C2—C3—C40.2 (7)
C13—As1—Cu1—As1ii68.45 (13)C2—C3—C4—C51.3 (7)
C13—As1—C1—C2176.1 (3)C3—C4—C5—C61.5 (7)
Cu1—As1—C1—C6129.4 (3)C4—C5—C6—C10.3 (6)
Cu1—As1—C13—C14151.9 (3)C12—C7—C8—C91.1 (9)
C1—As1—C13—C1483.8 (4)As1—C7—C8—C9175.6 (6)
C7—As1—C13—C1419.8 (4)C8—C7—C12—C110.3 (8)
Cu1—As1—C1—C245.2 (3)As1—C7—C12—C11176.5 (5)
C7—As1—C1—C281.8 (3)C7—C8—C9—C100.4 (12)
C13—As1—C7—C880.5 (5)C8—C9—C10—C111.1 (13)
Cu1—As1—C7—C1238.7 (4)C9—C10—C11—C121.8 (13)
C7—As1—C1—C6103.6 (3)C10—C11—C12—C71.2 (10)
C13—As1—C1—C61.5 (3)As1—C13—C14—C15176.0 (4)
C13—As1—C7—C1296.2 (4)C14—C13—C18—C171.1 (6)
Cu1—As1—C7—C8144.6 (4)C18—C13—C14—C151.2 (7)
C1—As1—C7—C821.1 (5)As1—C13—C18—C17176.2 (3)
C1—As1—C13—C1893.4 (3)C13—C14—C15—C160.3 (7)
Cu1—As1—C13—C1830.9 (3)C14—C15—C16—C170.8 (8)
C1—As1—C7—C12162.2 (4)C15—C16—C17—C181.0 (7)
C7—As1—C13—C18163.0 (3)C16—C17—C18—C130.0 (7)
C19ii—As2—C19—C2084.2 (3)As2—C19—C20—C21180.0 (3)
C19ii—As2—Cu1—As163.5 (2)C24—C19—C20—C210.4 (6)
C19—As2—Cu1—As1176.49 (15)As2—C19—C24—C23179.4 (3)
C19—As2—Cu1—As1ii56.49 (15)C20—C19—C24—C231.0 (6)
C19i—As2—Cu1—As156.49 (17)C19—C20—C21—C220.5 (6)
C19—As2—Cu1—As1i63.51 (15)C20—C21—C22—C230.8 (7)
Cu1—As2—C19—C2044.9 (3)C21—C22—C23—C240.2 (7)
C19i—As2—C19—C20174.0 (3)C22—C23—C24—C190.7 (7)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x+y, x, z; (iv) x, y, z; (v) y, x+y, z; (vi) xy, x, z; (vii) y, xy, z; (viii) y+2, xy, z; (ix) y+2/3, x+y+4/3, z+1/3; (x) xy+2/3, x2/3, z+1/3; (xi) x+y+2, x+2, z; (xii) x+8/3, y+4/3, z+1/3; (xiii) x+1, y, z; (xiv) y, xy1, z; (xv) x+y+1, x, z.

Experimental details

Crystal data
Chemical formula[Cu(C18H15As)4]PF6
Mr1433.40
Crystal system, space groupTrigonal, R3
Temperature (K)296
a, c (Å)14.4025 (10), 52.015 (4)
V3)9344.1 (12)
Z6
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionPart of the refinement model (ΔF)
refined from delta-F (Walker & Stuart, 1983)
Tmin, Tmax0.349, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
23664, 4049, 3118
Rint0.032
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.04
No. of reflections4049
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 0.62

Computer programs: IPDS Software (Stoe, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
As1—Cu12.5472 (5)As2—Cu12.5044 (9)
As1—C11.959 (4)As2—C191.950 (4)
As1—C71.956 (3)P1—F11.549 (5)
As1—C131.958 (5)P2—F21.584 (3)
Cu1—As1—C1112.61 (13)As1—Cu1—As1i109.65 (2)
Cu1—As1—C7117.80 (13)F1ii—P1—F1iii90.0 (3)
Cu1—As1—C13122.35 (11)F2iv—P2—F2v180.00
C1—As1—C7101.64 (15)As1—C1—C2117.7 (3)
C1—As1—C1399.19 (17)As1—C7—C8122.1 (3)
C7—As1—C1399.85 (17)As1—C13—C18118.8 (3)
Cu1—As2—C19117.96 (10)As2—C19—C24122.3 (4)
C19—As2—C19i99.81 (18)As2—C19—C20118.6 (3)
As1—Cu1—As2109.30 (2)
Symmetry codes: (i) y+1, xy, z; (ii) y, xy, z; (iii) x, y, z; (iv) x+y+2, x+2, z; (v) xy+2/3, x2/3, z+1/3.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBowmaker, G. A., Healy, P. C., Engelhardt, L. M., Kildea, J. D., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 1697–1705.  CSD CrossRef CAS Web of Science Google Scholar
First citationEngelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (1998). IPDS Software. Version 2.89. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds