organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(acetyl­amino)-1,1′-ethyl­enedipyridinium bis­­(tetra­fluorido­borate)

aSchool of Chemical and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bHunan Research Institute of Chemical Industry, Changsha 410007, People's Republic of China
*Correspondence e-mail: jansenlee1103@yahoo.com.cn

(Received 23 November 2007; accepted 23 November 2007; online 6 December 2007)

In the organic cation of the title compound, C16H20N4O22+·2BF4, the pyridinium rings are nearly parallel, with a dihedral angle of 12.54 (12)°. The crystal packing is stabilized by N—H⋯F, C—H⋯F and C—H⋯O hydrogen bonds.

Related literature

For the 1,2-bis­(amino­pyridinium)ethane dication, see: Xu et al. (2007[Xu, Y.-J., Li, J.-S., Qin, L. & Wang, W. (2007). Acta Cryst. E63, o1825-o1826.]); Fan et al. (2007[Fan, X.-P., Li, J.-S., Zhang, Y.-Y. & Zhou, X.-L. (2007). Acta Cryst. E63, o1717-o1718.]).

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Li (2007[Li, J. S. (2007). PhD dissertation. Tianjin University, People's Republic of China.]); Loeb & Wisner (1998[Loeb, S. J. & Wisner, J. A. (1998). Angew. Chem. Int. Ed. 37, 2838-2840.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N4O22+·2BF4

  • Mr = 473.98

  • Monoclinic, P 21 /c

  • a = 11.368 (2) Å

  • b = 19.422 (4) Å

  • c = 9.0959 (18) Å

  • β = 101.12 (3)°

  • V = 1970.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 (2) K

  • 0.32 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.952, Tmax = 0.973

  • 21399 measured reflections

  • 3846 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.15

  • 3846 reflections

  • 299 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯F7 0.90 (3) 1.98 (3) 2.862 (3) 168 (3)
N4—H4A⋯F4i 0.80 (3) 2.08 (3) 2.868 (3) 170 (3)
C1—H1⋯F1 0.95 2.41 3.269 (3) 150
C1—H1⋯F4 0.95 2.53 3.358 (3) 145
C4—H4⋯O2ii 0.95 2.50 3.404 (3) 159
C5—H5⋯F6iii 0.95 2.37 3.251 (3) 153
C10—H10⋯F3 0.95 2.33 3.285 (3) 179
C11—H11⋯O1iv 0.95 2.58 3.496 (3) 162
C13—H13⋯F2i 0.95 2.48 3.391 (3) 162
C14—H14⋯F8iii 0.95 2.22 3.050 (3) 145
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

As part of our continuous studies of derivatives of 1,2-bis(pyridinium)ethane dications (Xu et al., 2007; Fan et al., 2007), which can thread through the 24-membered crown ether (Loeb & Wisner, 1998), we herein report the crystal structure of the title compound (Fig. 1).

The organic dication has two pyridinium rings with a dihedral angle of 12.54 (12) Å. The C3—N2 and C12—N4 bond lengths of 1.382 (3) and 1.379 (3) Å, respectively, are between typical C=N (1.34–1.38 Å) and C—N bond lengths (1.47–1.50 Å; Allen et al., 1987), suggesting significant double-bond character. The N1+···N3+ distance is 3.765 (3) Å, similar to those reported for the related analogues (Xu et al., 2007; Fan et al., 2007; Loeb & Wisner, 1998).

The crystal structure is stabilized by a series of inter-molecular N—H···F, C—H···F and C—H···O hydrogen bonds (Table 1).

Related literature top

For the 1,2-bis(aminopyridinium)ethane dications, see: Xu et al. (2007); Fan et al. (2007).

For related literature, see: Allen et al. (1987); Li (2007); Loeb & Wisner (1998).

Experimental top

The title compound was prepared using the method of Li (2007). Colourless single crystals were grown by vapor diffusion of (iPr)2O into its acetonitrile solution.

Refinement top

The N-bound H atoms were refined freely while the other H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

As part of our continuous studies of derivatives of 1,2-bis(pyridinium)ethane dications (Xu et al., 2007; Fan et al., 2007), which can thread through the 24-membered crown ether (Loeb & Wisner, 1998), we herein report the crystal structure of the title compound (Fig. 1).

The organic dication has two pyridinium rings with a dihedral angle of 12.54 (12) Å. The C3—N2 and C12—N4 bond lengths of 1.382 (3) and 1.379 (3) Å, respectively, are between typical C=N (1.34–1.38 Å) and C—N bond lengths (1.47–1.50 Å; Allen et al., 1987), suggesting significant double-bond character. The N1+···N3+ distance is 3.765 (3) Å, similar to those reported for the related analogues (Xu et al., 2007; Fan et al., 2007; Loeb & Wisner, 1998).

The crystal structure is stabilized by a series of inter-molecular N—H···F, C—H···F and C—H···O hydrogen bonds (Table 1).

For the 1,2-bis(aminopyridinium)ethane dications, see: Xu et al. (2007); Fan et al. (2007).

For related literature, see: Allen et al. (1987); Li (2007); Loeb & Wisner (1998).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 50% probability displacement ellipsoids.
4,4'-Bis(acetylamino)-1,1'-ethylenedipyridinium bis(tetrafluoroborate) top
Crystal data top
C16H20N4O22+·2BF4F(000) = 968
Mr = 473.98Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4669 reflections
a = 11.368 (2) Åθ = 2.5–25.0°
b = 19.422 (4) ŵ = 0.16 mm1
c = 9.0959 (18) ÅT = 113 K
β = 101.12 (3)°Prism, colorless
V = 1970.6 (7) Å30.32 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3846 independent reflections
Radiation source: Rotating anode3138 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.054
Detector resolution: 7.31 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 1413
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2323
Tmin = 0.952, Tmax = 0.973l = 1111
21399 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.1885P]
where P = (Fo2 + 2Fc2)/3
3846 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H20N4O22+·2BF4V = 1970.6 (7) Å3
Mr = 473.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.368 (2) ŵ = 0.16 mm1
b = 19.422 (4) ÅT = 113 K
c = 9.0959 (18) Å0.32 × 0.20 × 0.18 mm
β = 101.12 (3)°
Data collection top
Rigaku Saturn
diffractometer
3846 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3138 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.973Rint = 0.054
21399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.33 e Å3
3846 reflectionsΔρmin = 0.30 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32100 (17)0.51691 (10)0.6784 (2)0.0170 (4)
N20.56501 (18)0.63875 (11)0.9608 (2)0.0198 (5)
N30.15074 (17)0.44990 (10)0.3099 (2)0.0185 (4)
N40.11675 (18)0.34400 (11)0.0245 (2)0.0193 (5)
O10.72991 (16)0.57022 (9)1.0292 (2)0.0329 (5)
O20.23344 (15)0.42922 (9)0.09946 (19)0.0256 (4)
C10.2934 (2)0.58226 (12)0.7114 (3)0.0189 (5)
H10.21720.60070.66850.023*
C20.3735 (2)0.62158 (12)0.8049 (3)0.0191 (5)
H20.35250.66720.82750.023*
C30.4868 (2)0.59555 (12)0.8686 (2)0.0165 (5)
C40.5144 (2)0.52784 (12)0.8323 (2)0.0182 (5)
H40.59020.50820.87280.022*
C50.4291 (2)0.49065 (12)0.7369 (2)0.0176 (5)
H50.44730.44490.71170.021*
C60.6832 (2)0.62699 (13)1.0264 (3)0.0214 (5)
C70.7466 (2)0.69017 (13)1.0942 (3)0.0261 (6)
H7A0.83070.67911.13500.039*
H7B0.70820.70701.17490.039*
H7C0.74260.72591.01720.039*
C80.2312 (2)0.47529 (12)0.5753 (2)0.0181 (5)
H8A0.14930.48930.58480.022*
H8B0.24150.42590.60190.022*
C90.2478 (2)0.48615 (13)0.4140 (3)0.0215 (5)
H9A0.24530.53600.39040.026*
H9B0.32670.46800.40200.026*
C100.0551 (2)0.48478 (13)0.2363 (3)0.0192 (5)
H100.05090.53310.25120.023*
C110.0370 (2)0.45266 (12)0.1399 (3)0.0182 (5)
H110.10390.47830.08930.022*
C120.0302 (2)0.38156 (12)0.1180 (2)0.0179 (5)
C130.0700 (2)0.34627 (13)0.1969 (3)0.0206 (5)
H130.07670.29800.18430.025*
C140.1577 (2)0.38076 (13)0.2913 (3)0.0217 (5)
H140.22470.35620.34490.026*
C150.2133 (2)0.36836 (13)0.0805 (3)0.0203 (5)
C160.2881 (2)0.31331 (14)0.1681 (3)0.0276 (6)
H16A0.37160.32870.19380.041*
H16B0.28340.27130.10770.041*
H16C0.25810.30390.26020.041*
B10.0229 (2)0.65645 (12)0.4308 (3)0.0138 (5)
B20.5204 (3)0.83160 (14)0.9965 (3)0.0203 (6)
F10.02861 (13)0.59066 (7)0.49479 (16)0.0253 (4)
F20.09234 (14)0.68388 (8)0.43197 (18)0.0347 (4)
F30.03702 (16)0.65177 (9)0.28453 (19)0.0407 (5)
F40.10691 (17)0.69772 (9)0.5142 (2)0.0533 (6)
F50.44339 (13)0.88840 (7)0.97263 (16)0.0284 (4)
F60.60218 (15)0.83575 (8)0.90042 (18)0.0344 (4)
F70.45540 (13)0.77098 (7)0.96911 (17)0.0289 (4)
F80.58269 (13)0.83141 (8)1.14353 (17)0.0337 (4)
H4A0.110 (2)0.3030 (16)0.024 (3)0.025 (8)*
H2A0.541 (2)0.6827 (15)0.963 (3)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0198 (10)0.0167 (10)0.0145 (9)0.0025 (8)0.0037 (8)0.0001 (8)
N20.0203 (11)0.0165 (11)0.0206 (10)0.0009 (9)0.0008 (8)0.0030 (8)
N30.0212 (10)0.0190 (10)0.0152 (9)0.0043 (9)0.0031 (8)0.0012 (8)
N40.0209 (11)0.0158 (11)0.0191 (10)0.0011 (9)0.0017 (8)0.0017 (8)
O10.0231 (10)0.0234 (10)0.0467 (12)0.0029 (8)0.0072 (9)0.0055 (9)
O20.0256 (10)0.0233 (10)0.0242 (9)0.0037 (8)0.0043 (7)0.0023 (7)
C10.0191 (12)0.0186 (12)0.0191 (11)0.0012 (10)0.0041 (9)0.0013 (9)
C20.0226 (13)0.0157 (12)0.0192 (12)0.0017 (10)0.0050 (10)0.0010 (9)
C30.0164 (12)0.0194 (12)0.0135 (11)0.0040 (10)0.0020 (9)0.0001 (9)
C40.0188 (12)0.0192 (12)0.0160 (11)0.0006 (10)0.0017 (9)0.0019 (9)
C50.0199 (12)0.0159 (11)0.0173 (11)0.0013 (10)0.0043 (9)0.0009 (9)
C60.0217 (13)0.0215 (13)0.0194 (12)0.0034 (11)0.0000 (10)0.0002 (10)
C70.0209 (13)0.0249 (14)0.0287 (14)0.0047 (11)0.0047 (11)0.0040 (11)
C80.0162 (12)0.0192 (12)0.0168 (11)0.0049 (10)0.0015 (9)0.0003 (9)
C90.0226 (13)0.0237 (13)0.0171 (12)0.0070 (10)0.0010 (10)0.0028 (10)
C100.0231 (13)0.0192 (12)0.0159 (11)0.0005 (10)0.0051 (10)0.0012 (9)
C110.0193 (12)0.0187 (12)0.0166 (11)0.0007 (10)0.0033 (9)0.0005 (9)
C120.0181 (12)0.0209 (12)0.0152 (11)0.0029 (10)0.0043 (9)0.0006 (9)
C130.0202 (13)0.0193 (12)0.0212 (12)0.0020 (10)0.0014 (10)0.0024 (9)
C140.0209 (13)0.0225 (13)0.0206 (12)0.0030 (10)0.0014 (10)0.0006 (10)
C150.0189 (12)0.0254 (14)0.0166 (11)0.0012 (10)0.0033 (10)0.0008 (10)
C160.0266 (14)0.0269 (14)0.0249 (13)0.0052 (11)0.0062 (11)0.0008 (11)
B10.0190 (13)0.0070 (12)0.0138 (12)0.0019 (10)0.0013 (10)0.0015 (9)
B20.0228 (14)0.0180 (14)0.0208 (13)0.0001 (11)0.0058 (11)0.0009 (11)
F10.0282 (8)0.0186 (7)0.0283 (8)0.0002 (6)0.0031 (6)0.0028 (6)
F20.0340 (9)0.0373 (9)0.0337 (9)0.0130 (7)0.0087 (7)0.0055 (7)
F30.0468 (10)0.0440 (10)0.0365 (9)0.0125 (8)0.0209 (8)0.0144 (8)
F40.0494 (11)0.0233 (9)0.0726 (14)0.0099 (8)0.0250 (10)0.0009 (8)
F50.0339 (9)0.0204 (8)0.0316 (8)0.0070 (6)0.0081 (7)0.0004 (6)
F60.0409 (10)0.0280 (9)0.0403 (9)0.0029 (7)0.0231 (8)0.0036 (7)
F70.0277 (8)0.0187 (8)0.0374 (9)0.0036 (6)0.0004 (7)0.0015 (6)
F80.0268 (8)0.0462 (10)0.0257 (8)0.0029 (7)0.0010 (6)0.0096 (7)
Geometric parameters (Å, º) top
N1—C51.342 (3)C8—C91.529 (3)
N1—C11.355 (3)C8—H8A0.9900
N1—C81.485 (3)C8—H8B0.9900
N2—C61.380 (3)C9—H9A0.9900
N2—C31.382 (3)C9—H9B0.9900
N2—H2A0.90 (3)C10—C111.378 (3)
N3—C101.345 (3)C10—H100.9500
N3—C141.358 (3)C11—C121.400 (3)
N3—C91.485 (3)C11—H110.9500
N4—C121.379 (3)C12—C131.403 (3)
N4—C151.391 (3)C13—C141.360 (3)
N4—H4A0.80 (3)C13—H130.9500
O1—C61.222 (3)C14—H140.9500
O2—C151.210 (3)C15—C161.496 (3)
C1—C21.355 (3)C16—H16A0.9800
C1—H10.9500C16—H16B0.9800
C2—C31.401 (3)C16—H16C0.9800
C2—H20.9500B1—F41.361 (3)
C3—C41.406 (3)B1—F31.373 (3)
C4—C51.375 (3)B1—F11.401 (3)
C4—H40.9500B1—F21.416 (3)
C5—H50.9500B2—F71.387 (3)
C6—C71.495 (3)B2—F81.387 (3)
C7—H7A0.9800B2—F61.396 (3)
C7—H7B0.9800B2—F51.399 (3)
C7—H7C0.9800
C5—N1—C1120.1 (2)N3—C9—C8109.43 (19)
C5—N1—C8120.6 (2)N3—C9—H9A109.8
C1—N1—C8119.3 (2)C8—C9—H9A109.8
C6—N2—C3128.4 (2)N3—C9—H9B109.8
C6—N2—H2A114.9 (18)C8—C9—H9B109.8
C3—N2—H2A115.4 (18)H9A—C9—H9B108.2
C10—N3—C14119.8 (2)N3—C10—C11122.1 (2)
C10—N3—C9120.6 (2)N3—C10—H10119.0
C14—N3—C9119.6 (2)C11—C10—H10119.0
C12—N4—C15128.2 (2)C10—C11—C12118.7 (2)
C12—N4—H4A118 (2)C10—C11—H11120.6
C15—N4—H4A114 (2)C12—C11—H11120.6
N1—C1—C2120.7 (2)N4—C12—C11123.9 (2)
N1—C1—H1119.6N4—C12—C13118.0 (2)
C2—C1—H1119.6C11—C12—C13118.1 (2)
C1—C2—C3120.6 (2)C14—C13—C12120.4 (2)
C1—C2—H2119.7C14—C13—H13119.8
C3—C2—H2119.7C12—C13—H13119.8
N2—C3—C2117.7 (2)N3—C14—C13120.8 (2)
N2—C3—C4124.3 (2)N3—C14—H14119.6
C2—C3—C4118.0 (2)C13—C14—H14119.6
C5—C4—C3118.5 (2)O2—C15—N4122.2 (2)
C5—C4—H4120.7O2—C15—C16123.3 (2)
C3—C4—H4120.7N4—C15—C16114.5 (2)
N1—C5—C4122.1 (2)C15—C16—H16A109.5
N1—C5—H5119.0C15—C16—H16B109.5
C4—C5—H5119.0H16A—C16—H16B109.5
O1—C6—N2122.8 (2)C15—C16—H16C109.5
O1—C6—C7124.0 (2)H16A—C16—H16C109.5
N2—C6—C7113.2 (2)H16B—C16—H16C109.5
C6—C7—H7A109.5F4—B1—F3112.2 (2)
C6—C7—H7B109.5F4—B1—F1109.50 (19)
H7A—C7—H7B109.5F3—B1—F1109.73 (19)
C6—C7—H7C109.5F4—B1—F2109.0 (2)
H7A—C7—H7C109.5F3—B1—F2108.29 (19)
H7B—C7—H7C109.5F1—B1—F2108.0 (2)
N1—C8—C9109.54 (19)F7—B2—F8109.0 (2)
N1—C8—H8A109.8F7—B2—F6109.4 (2)
C9—C8—H8A109.8F8—B2—F6109.0 (2)
N1—C8—H8B109.8F7—B2—F5110.2 (2)
C9—C8—H8B109.8F8—B2—F5109.9 (2)
H8A—C8—H8B108.2F6—B2—F5109.2 (2)
C5—N1—C1—C20.9 (3)C14—N3—C9—C878.7 (3)
C8—N1—C1—C2179.9 (2)N1—C8—C9—N3174.58 (18)
N1—C1—C2—C30.5 (4)C14—N3—C10—C110.7 (3)
C6—N2—C3—C2174.5 (2)C9—N3—C10—C11179.4 (2)
C6—N2—C3—C44.2 (4)N3—C10—C11—C120.2 (3)
C1—C2—C3—N2178.8 (2)C15—N4—C12—C1111.1 (4)
C1—C2—C3—C40.0 (3)C15—N4—C12—C13169.5 (2)
N2—C3—C4—C5178.8 (2)C10—C11—C12—N4179.9 (2)
C2—C3—C4—C50.1 (3)C10—C11—C12—C130.6 (3)
C1—N1—C5—C40.7 (3)N4—C12—C13—C14179.6 (2)
C8—N1—C5—C4179.8 (2)C11—C12—C13—C140.2 (4)
C3—C4—C5—N10.2 (3)C10—N3—C14—C131.2 (3)
C3—N2—C6—O111.9 (4)C9—N3—C14—C13179.9 (2)
C3—N2—C6—C7168.7 (2)C12—C13—C14—N30.7 (4)
C5—N1—C8—C989.3 (3)C12—N4—C15—O21.4 (4)
C1—N1—C8—C989.7 (3)C12—N4—C15—C16177.8 (2)
C10—N3—C9—C8100.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F70.90 (3)1.98 (3)2.862 (3)168 (3)
N4—H4A···F4i0.80 (3)2.08 (3)2.868 (3)170 (3)
C1—H1···F10.952.413.269 (3)150
C1—H1···F40.952.533.358 (3)145
C4—H4···O2ii0.952.503.404 (3)159
C5—H5···F6iii0.952.373.251 (3)153
C10—H10···F30.952.333.285 (3)179
C11—H11···O1iv0.952.583.496 (3)162
C13—H13···F2i0.952.483.391 (3)162
C14—H14···F8iii0.952.223.050 (3)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H20N4O22+·2BF4
Mr473.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.368 (2), 19.422 (4), 9.0959 (18)
β (°) 101.12 (3)
V3)1970.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.952, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
21399, 3846, 3138
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.15
No. of reflections3846
No. of parameters299
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···F70.90 (3)1.98 (3)2.862 (3)168 (3)
N4—H4A···F4i0.80 (3)2.08 (3)2.868 (3)170 (3)
C1—H1···F10.952.413.269 (3)150
C1—H1···F40.952.533.358 (3)145
C4—H4···O2ii0.952.503.404 (3)159
C5—H5···F6iii0.952.373.251 (3)153
C10—H10···F30.952.333.285 (3)179
C11—H11···O1iv0.952.583.496 (3)162
C13—H13···F2i0.952.483.391 (3)162
C14—H14···F8iii0.952.223.050 (3)145
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, X.-P., Li, J.-S., Zhang, Y.-Y. & Zhou, X.-L. (2007). Acta Cryst. E63, o1717–o1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. S. (2007). PhD dissertation. Tianjin University, People's Republic of China.  Google Scholar
First citationLoeb, S. J. & Wisner, J. A. (1998). Angew. Chem. Int. Ed. 37, 2838–2840.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXu, Y.-J., Li, J.-S., Qin, L. & Wang, W. (2007). Acta Cryst. E63, o1825–o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds