organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-2-(prop-2-yn­yl­oxy)-1-benzofuro[3,2-d]pyrimidin-4(3H)-one

aDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and bDepartment of Pharmacology, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: huyangg111@yahoo.com.cn

(Received 25 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title compound, C19H12N2O3, the 1-benzofuro[3,2-d]pyrimidinone unit is approximately planar, the maximum deviation from the mean plane being 0.045 (1) Å. The attached phenyl ring makes a dihedral angle of 86.73 (6)° with the fused ring system. The packing of the mol­ecules in the crystal structure is mainly governed by C—H⋯π hydrogen-bonding inter­actions.

Related literature

For related preparation and biological activity, see: Bodke & Sangapure (2003[Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.]). For related literature, see: Ding et al., 2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]. For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005[Hu, Y.-G., Li, G. H., Tian, J.-H., Ding, M.-W. & He, H.-W (2005). Acta Cryst. E61, o3266-o3268.], 2006[Hu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.], 2007[Hu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836-o1838.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12N2O3

  • Mr = 316.31

  • Monoclinic, P 21 /n

  • a = 12.6748 (13) Å

  • b = 7.1531 (7) Å

  • c = 17.5793 (17) Å

  • β = 104.645 (2)°

  • V = 1542.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 (2) K

  • 0.30 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.994

  • 9340 measured reflections

  • 3496 independent reflections

  • 2681 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.02

  • 3496 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.78 3.529 (1) 138
C4—H4⋯Cg2ii 0.93 2.81 3.641 (1) 150
C11—H11ACg2iii 0.97 2.76 3.402 (1) 124
C31—H13⋯Cg1iv 0.93 2.77 3.521 (1) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C14–C19 phenyl ring and Cg2 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Benzofuropyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Bodke & Sangapure, 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing pyrimidinone via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of one such benzofuropyrimidinone derivative. Fig. 1 shows the molecular structure of (I) with the atomic numbering scheme. Bond lengths and angles are unexceptional (Hu et al., 2005, 2006, 2007). The benzofuropyrimidine ring system is almost planar, with a maximum deviation of 0.045 (6) Å for atom C7; the C14—C19 phenyl ring is twisted with respect to it, with a dihedral angle of 86.73 (6)°. In the crystal, intermolecular C—H···π hydrogen bonds (Table 1) stabilize the crystal structure (Fig. 2).

Related literature top

For related preparation and biological activity, see: Bodke & Sangapure (2003). For related literature, see: Ding et al., 2004. For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007). Cg1 is the centroid of the C14–C19 phenyl ring and Cg2 is the centroid of the C1–C6 ring.

Experimental top

To a solution of ethyl 3-((phenylimino)methyleneamino)benzofuran-2-carboxylate (3 mmol) in dichloromethane (5 ml) was added sodium prop-2-yn-1-oxide (3 mmol) in prop-2-yn-1-ol (5 ml). After stirring the reaction mixture for 2 h, the solvent was removed under reduced pressure and the residue was recrystallized from ethanol to give the title compound, in a yield of 89%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All C-bound H atoms were positioned geometrically, with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp and Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2.

Structure description top

Benzofuropyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Bodke & Sangapure, 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing pyrimidinone via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of one such benzofuropyrimidinone derivative. Fig. 1 shows the molecular structure of (I) with the atomic numbering scheme. Bond lengths and angles are unexceptional (Hu et al., 2005, 2006, 2007). The benzofuropyrimidine ring system is almost planar, with a maximum deviation of 0.045 (6) Å for atom C7; the C14—C19 phenyl ring is twisted with respect to it, with a dihedral angle of 86.73 (6)°. In the crystal, intermolecular C—H···π hydrogen bonds (Table 1) stabilize the crystal structure (Fig. 2).

For related preparation and biological activity, see: Bodke & Sangapure (2003). For related literature, see: Ding et al., 2004. For the crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007). Cg1 is the centroid of the C14–C19 phenyl ring and Cg2 is the centroid of the C1–C6 ring.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing in the crystal structure, showing C—H···π hydrogen bonding interactions as dashed lines.
3-Phenyl-2-(prop-2-ynyloxy)-1-benzofuro[3,2-d]pyrimidin-4(3H)-one top
Crystal data top
C19H12N2O3F(000) = 656
Mr = 316.31Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3101 reflections
a = 12.6748 (13) Åθ = 2.4–27.4°
b = 7.1531 (7) ŵ = 0.09 mm1
c = 17.5793 (17) ÅT = 292 K
β = 104.645 (2)°Block, colorless
V = 1542.0 (3) Å30.30 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube2681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 816
Tmin = 0.972, Tmax = 0.994k = 98
9340 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H12N2O3V = 1542.0 (3) Å3
Mr = 316.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6748 (13) ŵ = 0.09 mm1
b = 7.1531 (7) ÅT = 292 K
c = 17.5793 (17) Å0.30 × 0.20 × 0.06 mm
β = 104.645 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3496 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2681 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.994Rint = 0.041
9340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
3496 reflectionsΔρmin = 0.22 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.05495 (11)0.81800 (18)0.22716 (7)0.0377 (3)
C21.11240 (12)0.85724 (19)0.30421 (8)0.0455 (4)
H21.11160.77450.34490.055*
C31.17039 (12)1.0220 (2)0.31838 (9)0.0510 (4)
H31.20991.05020.36930.061*
C41.17078 (13)1.1476 (2)0.25748 (10)0.0522 (4)
H41.20991.25840.26910.063*
C51.11500 (12)1.1122 (2)0.18077 (9)0.0482 (4)
H51.11561.19530.14020.058*
C61.05806 (11)0.9455 (2)0.16777 (7)0.0403 (3)
C70.95602 (11)0.7144 (2)0.11079 (7)0.0409 (3)
C80.98690 (11)0.66798 (18)0.18824 (7)0.0380 (3)
C90.88390 (12)0.6046 (2)0.05294 (8)0.0454 (4)
C100.88737 (11)0.40745 (19)0.16784 (7)0.0397 (3)
C110.88258 (13)0.1884 (2)0.26800 (8)0.0467 (4)
H11A0.96080.20640.28600.056*
H11B0.86780.05610.27160.056*
C120.82912 (12)0.2919 (2)0.31909 (8)0.0456 (4)
C130.78913 (15)0.3726 (2)0.36209 (10)0.0625 (5)
H130.75720.43710.39640.075*
C140.76773 (12)0.32631 (18)0.03895 (7)0.0400 (3)
C150.79825 (13)0.1850 (2)0.00388 (8)0.0468 (4)
H150.87150.16330.00090.056*
C160.71813 (15)0.0755 (2)0.05158 (9)0.0555 (4)
H160.73780.02110.08060.067*
C170.60970 (15)0.1081 (2)0.05642 (9)0.0583 (4)
H170.55630.03550.08930.070*
C180.58085 (13)0.2486 (3)0.01233 (10)0.0612 (5)
H180.50770.26930.01460.073*
C190.65962 (13)0.3592 (2)0.03527 (9)0.0555 (4)
H190.63990.45510.06460.067*
N10.95387 (9)0.50832 (16)0.21918 (6)0.0416 (3)
N20.85008 (9)0.44489 (16)0.08854 (6)0.0413 (3)
O10.99762 (8)0.88383 (13)0.09524 (5)0.0461 (3)
O20.85057 (11)0.63467 (16)0.01731 (6)0.0670 (4)
O30.84625 (9)0.24665 (14)0.18664 (5)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (7)0.0393 (7)0.0367 (7)0.0037 (6)0.0071 (6)0.0010 (5)
C20.0483 (8)0.0460 (9)0.0378 (7)0.0050 (6)0.0027 (6)0.0011 (6)
C30.0485 (9)0.0527 (9)0.0455 (8)0.0006 (7)0.0003 (7)0.0085 (7)
C40.0470 (9)0.0486 (9)0.0597 (9)0.0061 (7)0.0112 (7)0.0075 (7)
C50.0487 (9)0.0489 (9)0.0490 (8)0.0044 (7)0.0161 (7)0.0043 (7)
C60.0378 (7)0.0472 (8)0.0356 (7)0.0017 (6)0.0087 (6)0.0002 (6)
C70.0459 (8)0.0434 (8)0.0327 (7)0.0017 (6)0.0086 (6)0.0042 (6)
C80.0382 (7)0.0410 (8)0.0331 (7)0.0049 (6)0.0055 (6)0.0014 (5)
C90.0517 (9)0.0499 (9)0.0326 (7)0.0026 (7)0.0070 (6)0.0031 (6)
C100.0450 (8)0.0407 (7)0.0319 (7)0.0003 (6)0.0070 (6)0.0028 (6)
C110.0588 (9)0.0415 (8)0.0377 (7)0.0021 (7)0.0082 (7)0.0091 (6)
C120.0475 (9)0.0474 (9)0.0390 (8)0.0010 (7)0.0055 (6)0.0067 (6)
C130.0673 (11)0.0661 (11)0.0560 (10)0.0056 (9)0.0194 (9)0.0024 (8)
C140.0468 (8)0.0405 (8)0.0295 (6)0.0001 (6)0.0040 (6)0.0004 (5)
C150.0527 (9)0.0495 (9)0.0385 (7)0.0036 (7)0.0124 (7)0.0015 (6)
C160.0757 (12)0.0456 (9)0.0444 (8)0.0005 (8)0.0135 (8)0.0092 (7)
C170.0628 (11)0.0528 (10)0.0509 (9)0.0088 (8)0.0011 (8)0.0049 (7)
C180.0433 (9)0.0667 (11)0.0666 (11)0.0016 (8)0.0009 (8)0.0073 (9)
C190.0515 (10)0.0567 (10)0.0551 (9)0.0076 (7)0.0075 (7)0.0141 (7)
N10.0489 (7)0.0410 (7)0.0319 (6)0.0009 (5)0.0048 (5)0.0028 (5)
N20.0475 (7)0.0443 (7)0.0290 (5)0.0030 (5)0.0041 (5)0.0005 (5)
O10.0533 (6)0.0497 (6)0.0342 (5)0.0078 (5)0.0087 (4)0.0047 (4)
O20.0928 (9)0.0695 (8)0.0301 (5)0.0207 (7)0.0005 (5)0.0078 (5)
O30.0649 (7)0.0460 (6)0.0339 (5)0.0101 (5)0.0058 (5)0.0040 (4)
Geometric parameters (Å, º) top
C1—C61.3941 (19)C10—N21.3804 (16)
C1—C21.3946 (18)C11—O31.4486 (15)
C1—C81.4371 (18)C11—C121.457 (2)
C2—C31.378 (2)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.398 (2)C12—C131.164 (2)
C3—H30.9300C13—H130.9300
C4—C51.379 (2)C14—C151.3731 (19)
C4—H40.9300C14—C191.376 (2)
C5—C61.383 (2)C14—N21.4522 (17)
C5—H50.9300C15—C161.385 (2)
C6—O11.3832 (15)C15—H150.9300
C7—C81.3593 (18)C16—C171.375 (2)
C7—O11.3766 (16)C16—H160.9300
C7—C91.4200 (19)C17—C181.374 (2)
C8—N11.3749 (16)C17—H170.9300
C9—O21.2190 (16)C18—C191.378 (2)
C9—N21.4199 (18)C18—H180.9300
C10—N11.2888 (17)C19—H190.9300
C10—O31.3382 (16)
C6—C1—C2119.28 (13)O3—C11—H11A109.1
C6—C1—C8105.01 (11)C12—C11—H11A109.1
C2—C1—C8135.71 (12)O3—C11—H11B109.1
C3—C2—C1118.12 (13)C12—C11—H11B109.1
C3—C2—H2120.9H11A—C11—H11B107.9
C1—C2—H2120.9C13—C12—C11177.69 (16)
C2—C3—C4121.05 (14)C12—C13—H13180.0
C2—C3—H3119.5C15—C14—C19121.04 (13)
C4—C3—H3119.5C15—C14—N2119.98 (13)
C5—C4—C3122.07 (14)C19—C14—N2118.98 (12)
C5—C4—H4119.0C14—C15—C16118.90 (15)
C3—C4—H4119.0C14—C15—H15120.6
C4—C5—C6115.92 (13)C16—C15—H15120.6
C4—C5—H5122.0C17—C16—C15120.66 (14)
C6—C5—H5122.0C17—C16—H16119.7
C5—C6—O1124.85 (12)C15—C16—H16119.7
C5—C6—C1123.55 (12)C18—C17—C16119.57 (15)
O1—C6—C1111.59 (12)C18—C17—H17120.2
C8—C7—O1112.72 (12)C16—C17—H17120.2
C8—C7—C9123.55 (13)C17—C18—C19120.47 (16)
O1—C7—C9123.65 (12)C17—C18—H18119.8
C7—C8—N1124.03 (12)C19—C18—H18119.8
C7—C8—C1106.30 (12)C14—C19—C18119.36 (14)
N1—C8—C1129.65 (12)C14—C19—H19120.3
O2—C9—N2121.50 (13)C18—C19—H19120.3
O2—C9—C7128.57 (14)C10—N1—C8113.50 (11)
N2—C9—C7109.92 (11)C10—N2—C9122.46 (11)
N1—C10—O3122.34 (12)C10—N2—C14120.23 (11)
N1—C10—N2126.51 (13)C9—N2—C14117.18 (10)
O3—C10—N2111.15 (11)C7—O1—C6104.37 (10)
O3—C11—C12112.40 (12)C10—O3—C11116.41 (11)
C6—C1—C2—C30.0 (2)C16—C17—C18—C191.4 (3)
C8—C1—C2—C3179.90 (15)C15—C14—C19—C180.1 (2)
C1—C2—C3—C40.7 (2)N2—C14—C19—C18179.27 (14)
C2—C3—C4—C50.9 (2)C17—C18—C19—C140.7 (3)
C3—C4—C5—C60.4 (2)O3—C10—N1—C8179.94 (12)
C4—C5—C6—O1179.66 (13)N2—C10—N1—C80.8 (2)
C4—C5—C6—C10.3 (2)C7—C8—N1—C101.97 (19)
C2—C1—C6—C50.5 (2)C1—C8—N1—C10176.24 (13)
C8—C1—C6—C5179.57 (13)N1—C10—N2—C91.1 (2)
C2—C1—C6—O1179.48 (12)O3—C10—N2—C9178.16 (12)
C8—C1—C6—O10.48 (14)N1—C10—N2—C14174.64 (13)
O1—C7—C8—N1178.20 (12)O3—C10—N2—C146.10 (17)
C9—C7—C8—N11.4 (2)O2—C9—N2—C10179.54 (13)
O1—C7—C8—C10.37 (16)C7—C9—N2—C101.62 (19)
C9—C7—C8—C1177.17 (13)O2—C9—N2—C144.6 (2)
C6—C1—C8—C70.50 (14)C7—C9—N2—C14174.25 (12)
C2—C1—C8—C7179.45 (15)C15—C14—N2—C1096.71 (16)
C6—C1—C8—N1177.95 (13)C19—C14—N2—C1083.87 (17)
C2—C1—C8—N12.1 (3)C15—C14—N2—C987.32 (15)
C8—C7—C9—O2179.20 (15)C19—C14—N2—C992.09 (16)
O1—C7—C9—O22.7 (3)C8—C7—O1—C60.08 (15)
C8—C7—C9—N20.5 (2)C9—C7—O1—C6176.88 (13)
O1—C7—C9—N2176.00 (12)C5—C6—O1—C7179.79 (13)
O3—C11—C12—C13164 (4)C1—C6—O1—C70.26 (14)
C19—C14—C15—C160.3 (2)N1—C10—O3—C111.5 (2)
N2—C14—C15—C16179.10 (12)N2—C10—O3—C11177.81 (11)
C14—C15—C16—C170.4 (2)C12—C11—O3—C1077.20 (16)
C15—C16—C17—C181.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.783.529 (1)138
C4—H4···Cg2ii0.932.813.641 (1)150
C11—H11A···Cg2iii0.972.763.402 (1)124
C31—H13···Cg1iv0.932.773.521 (1)139
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H12N2O3
Mr316.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)12.6748 (13), 7.1531 (7), 17.5793 (17)
β (°) 104.645 (2)
V3)1542.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.972, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9340, 3496, 2681
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.02
No. of reflections3496
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.783.529 (1)138
C4—H4···Cg2ii0.932.813.641 (1)150
C11—H11A···Cg2iii0.972.763.402 (1)124
C31—H13···Cg1iv0.932.773.521 (1)139
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D200724001) and the Science Research Project of Yunyang Medical College (No. 2006QDJ16).

References

First citationBodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187–189.  CAS Google Scholar
First citationBruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y.-G., Li, G. H., Tian, J.-H., Ding, M.-W. & He, H.-W (2005). Acta Cryst. E61, o3266–o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Li, G.-H. & Zhou, M.-H. (2007). Acta Cryst. E63, o1836–o1838.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Y.-G., Zheng, A.-H. & Li, G.-H. (2006). Acta Cryst. E62, o1457–o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds