organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Indole-3-thio­uronium nitrate

aCrystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and bChemical Biology & Organic Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: a.l.spek@chem.uu.nl

(Received 29 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, C9H10N3S+·NO3, the indole ring system and the thiouronium group are nearly perpendicular, with a dihedral angle of 88.62 (6)°. Hydrogen bonding generates two-dimensional networks which are linked to each other via π stacking inter­actions of the indole groups [average inter-planar ring–ring distance of 3.449 (2) Å].

Related literature

For reviews of the supra­molecular chemistry of thio­urea derivatives, see: Takemoto (2005[Takemoto, Y. (2005). Org. Biomol. Chem. 3, 4299-4306.]); Fitzmaurice et al. (2002[Fitzmaurice, R. J., Kyne, G. M., Douheret, D. & Kilburn, J. D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 841-864.]); Schmidtchen & Berger (1997[Schmidtchen, F. P. & Berger, M. (1997). Chem. Rev. 97, 1609-1646.]). For anion recognition of thio­uronium salts, see: Esteban Gómez et al. (2005[Esteban Gómez, D., Fabbrizzi, L., Lichelli, M. & Monzani, E. (2005). Org. Biomol. Chem. 3, 1495-1500.]). For the synthesis of the title compound, see: Harris (1969[Harris, R. L. N. (1969). Tetrahedron Lett. 4465-4466.]); van der Geer et al. (2007[Geer, E. P. L. van der, Li, Q., van Koten, G., Klein Gebbink, R. J. M. & Hessen, B. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.09.021.]). For thermal motion analysis, see: Schomaker & Trueblood (1998[Schomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507-514.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N3S+·NO3

  • Mr = 254.27

  • Orthorhombic, P b c a

  • a = 12.0524 (2) Å

  • b = 8.7395 (1) Å

  • c = 21.1893 (3) Å

  • V = 2231.91 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 (2) K

  • 0.30 × 0.24 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 32180 measured reflections

  • 2563 independent reflections

  • 2120 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.04

  • 2563 reflections

  • 194 parameters

  • All H-atom parameters refined

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.880 (18) 2.036 (19) 2.8290 (16) 149.4 (16)
N2—H2N⋯O1 0.87 (2) 2.00 (2) 2.8679 (17) 174.2 (16)
N2—H3N⋯O2ii 0.90 (2) 2.108 (19) 2.9013 (16) 147.0 (16)
N3—H4N⋯O2 0.90 (2) 2.00 (2) 2.8966 (19) 172.5 (19)
N3—H5N⋯O3iii 0.89 (2) 2.10 (2) 2.8817 (17) 145.0 (18)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea derivatives have found widespread application in molecular recognition and supramolecular chemistry, largely due to their hydrogen-bonding complementarity with carboxylate groups (Takemoto, 2005; Fitzmaurice et al., 2002; Schmidtchen & Berger, 1997). Of all thiourea derivatives, positively-charged thiouronium salts may be among the strongest anion receptors due to their increased acidity and the electrostatic stabilization of the anion-receptor complex (Esteban Gómez et al., 2005). Recently, we have demonstrated that N-substituted indole-3-thiouronium salts are readily available from indole by nucleophilic substitution at the nitrogen atom followed by electrophilic aromatic substitution with thiourea (van der Geer et al., 2007). In order to gain more insight into the hydrogen-bonding properties of indole-3-thiouronium salts, we have obtained the crystal structure of the title compound indole-3-thiouronium nitrate (I).

Bond distances and angles are as expected. The thiouronium group itself is planar, with the C—N bond lengths of 1.3076 (19) and 1.3162 (19) Å indicating a significant degree of double-bond character. Reflecting the resulting hindered rotation about the C—N bonds, solution-phase 1H NMR shows separate signals for the thiouronium hydrogen atoms cis and trans to sulfur at room temperature. The least-squares plane of the thiouronium moiety forms an interplanar angle of 88.62 (6)° with respect to the least-squares plane of the indole group (Fig. 1).

A thermal motion analysis using the program THMA11 (Schomaker & Trueblood, 1998) results in a low weighted R value (R = SQRT[(Σ (wΔU)2) / (Σ (wUobs)2)]) of 0.084 indicating that the molecule behaves as a rigid body in the solid state.

All N—H groups act as hydrogen bond donors with the oxygen atoms of the nitrate anion as acceptors. O1 and O2 accept two hydrogen bonds, respectively, while O3 accepts only one. By this hydrogen bonding scheme a two-dimensional network in the a,b-plane is formed (Fig. 2).

Via π stacking interactions the indole ring systems form parallel, centrosymmetric dimers with an average ring···ring distance of 3.449 (2) Å (Fig. 3). These π stacking interactions occur between the two-dimensional hydrogen bonded layers.

Related literature top

For reviewsof the supramolecular chemistry of thiourea derivatives, see: Takemoto (2005); Fitzmaurice et al. (2002); Schmidtchen & Berger (1997). For anion recognition of thiouronium salts, see: Esteban Gómez et al. (2005). For the synthesis of the title compound, see: Harris (1969); van der Geer et al. (2007). For thermal motion analysis, see: Schomaker & Trueblood (1998).

Experimental top

Indole-3-thiouronium iodide was prepared as described in literature (Harris, 1969). To a solution of indole-3-thiouronium iodide (0.100 g, 0.313 mmol) in EtOH (10 ml) was added AgNO3 (0.0532 g, 0.313 mmol). The solution was stirred for 1 h, filtered to remove AgCl, and concentrated to approximately 3 ml. Ether (60 ml) was added, and after 48 h, white needles were collected by centrifugation, washed with ether, and dried in vacuo. Yield: 0.0738 g (0.290 mmol, 93%). Anal. Calcd for C9H10N4O3S: C, 42.51; H, 3.96; N, 22.03; S, 12.61. Found: C, 42.32; H, 4.08; N, 21.92; S, 12.73. The 1H NMR spectrum was identical to that of indole-3-thiouronium iodide. FT—IR (ATR, ν, cm-1): 3335, 3264, 3122, 1662, 1640, 1498, 1423, 1388, 1308, 1237, 1218, 1128, 1104, 1065, 1049, 1006, 816, 744. Crystals suitable for X-ray diffraction studies were obtained by ether vapor diffusion into an EtOH solution of the product.

Refinement top

364 frames were collected as φ scans and 397 frames as ω scans with a rotation angle of 1° and an exposure time of 60 s, respectively.

Structure description top

Thiourea derivatives have found widespread application in molecular recognition and supramolecular chemistry, largely due to their hydrogen-bonding complementarity with carboxylate groups (Takemoto, 2005; Fitzmaurice et al., 2002; Schmidtchen & Berger, 1997). Of all thiourea derivatives, positively-charged thiouronium salts may be among the strongest anion receptors due to their increased acidity and the electrostatic stabilization of the anion-receptor complex (Esteban Gómez et al., 2005). Recently, we have demonstrated that N-substituted indole-3-thiouronium salts are readily available from indole by nucleophilic substitution at the nitrogen atom followed by electrophilic aromatic substitution with thiourea (van der Geer et al., 2007). In order to gain more insight into the hydrogen-bonding properties of indole-3-thiouronium salts, we have obtained the crystal structure of the title compound indole-3-thiouronium nitrate (I).

Bond distances and angles are as expected. The thiouronium group itself is planar, with the C—N bond lengths of 1.3076 (19) and 1.3162 (19) Å indicating a significant degree of double-bond character. Reflecting the resulting hindered rotation about the C—N bonds, solution-phase 1H NMR shows separate signals for the thiouronium hydrogen atoms cis and trans to sulfur at room temperature. The least-squares plane of the thiouronium moiety forms an interplanar angle of 88.62 (6)° with respect to the least-squares plane of the indole group (Fig. 1).

A thermal motion analysis using the program THMA11 (Schomaker & Trueblood, 1998) results in a low weighted R value (R = SQRT[(Σ (wΔU)2) / (Σ (wUobs)2)]) of 0.084 indicating that the molecule behaves as a rigid body in the solid state.

All N—H groups act as hydrogen bond donors with the oxygen atoms of the nitrate anion as acceptors. O1 and O2 accept two hydrogen bonds, respectively, while O3 accepts only one. By this hydrogen bonding scheme a two-dimensional network in the a,b-plane is formed (Fig. 2).

Via π stacking interactions the indole ring systems form parallel, centrosymmetric dimers with an average ring···ring distance of 3.449 (2) Å (Fig. 3). These π stacking interactions occur between the two-dimensional hydrogen bonded layers.

For reviewsof the supramolecular chemistry of thiourea derivatives, see: Takemoto (2005); Fitzmaurice et al. (2002); Schmidtchen & Berger (1997). For anion recognition of thiouronium salts, see: Esteban Gómez et al. (2005). For the synthesis of the title compound, see: Harris (1969); van der Geer et al. (2007). For thermal motion analysis, see: Schomaker & Trueblood (1998).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen bonding scheme in compound (I). View along the crystallographic b axis. C—H hydrogen atoms are omitted for clarity. Symmetry operations i: 1 - x, 1/2 + y, 0.5 - z; ii: 1/2 + x, y, 0.5 - z; iii: 2 - x, 1/2 + y, 0.5 - z.
[Figure 3] Fig. 3. π stacking interactions between the indole ring systems in (I). View along the crystallographic a axis. Symmetry operation i: 1 - x, 1 - y, -z.
Indole-3-thiouronium nitrate top
Crystal data top
C9H10N3S+·NO3F(000) = 1056
Mr = 254.27Dx = 1.513 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 44477 reflections
a = 12.0524 (2) Åθ = 1.0–27.5°
b = 8.7395 (1) ŵ = 0.29 mm1
c = 21.1893 (3) ÅT = 150 K
V = 2231.91 (5) Å3Plate, colourless
Z = 80.30 × 0.24 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2120 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
φ and ω scansh = 1515
32180 measured reflectionsk = 1111
2563 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.089All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.7806P]
where P = (Fo2 + 2Fc2)/3
2563 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H10N3S+·NO3V = 2231.91 (5) Å3
Mr = 254.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0524 (2) ŵ = 0.29 mm1
b = 8.7395 (1) ÅT = 150 K
c = 21.1893 (3) Å0.30 × 0.24 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2120 reflections with I > 2σ(I)
32180 measured reflectionsRint = 0.048
2563 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.04Δρmax = 0.26 e Å3
2563 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69778 (3)0.42394 (4)0.119223 (18)0.02623 (13)
N10.37464 (10)0.47136 (15)0.12180 (6)0.0261 (3)
H1N0.3086 (14)0.448 (2)0.1367 (9)0.034 (5)*
N20.67908 (11)0.63413 (15)0.21093 (6)0.0247 (3)
H2N0.7073 (14)0.693 (2)0.2402 (9)0.036 (5)*
H3N0.6067 (17)0.642 (2)0.2016 (8)0.037 (5)*
N30.85228 (11)0.53570 (16)0.19399 (7)0.0281 (3)
H4N0.8814 (17)0.598 (2)0.2236 (10)0.049 (6)*
H5N0.9029 (17)0.481 (2)0.1728 (10)0.048 (6)*
C10.47062 (12)0.40523 (18)0.14151 (7)0.0263 (3)
H10.4724 (13)0.320 (2)0.1715 (8)0.030 (4)*
C20.55884 (11)0.47801 (17)0.11306 (6)0.0224 (3)
C30.56104 (12)0.70408 (16)0.03254 (7)0.0241 (3)
H30.6404 (14)0.7099 (18)0.0278 (7)0.025 (4)*
C40.49126 (14)0.80176 (18)0.00043 (7)0.0283 (3)
H40.5191 (15)0.876 (2)0.0291 (9)0.037 (5)*
C50.37534 (13)0.79541 (18)0.00913 (7)0.0296 (3)
H50.3302 (14)0.868 (2)0.0129 (9)0.040 (5)*
C60.32737 (12)0.68900 (18)0.04876 (7)0.0267 (3)
H60.2499 (15)0.6822 (18)0.0556 (7)0.028 (4)*
C70.39845 (11)0.58860 (16)0.08036 (6)0.0222 (3)
C80.51463 (11)0.59550 (15)0.07326 (6)0.0203 (3)
C90.74591 (11)0.54277 (16)0.18022 (6)0.0219 (3)
O10.78687 (8)0.82212 (13)0.30339 (5)0.0302 (3)
O20.95458 (8)0.75180 (13)0.27976 (5)0.0308 (3)
O30.92651 (9)0.94570 (13)0.34188 (5)0.0351 (3)
N40.88984 (10)0.84099 (14)0.30879 (6)0.0240 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0208 (2)0.0269 (2)0.0309 (2)0.00496 (14)0.00216 (14)0.00352 (15)
N10.0191 (6)0.0331 (7)0.0262 (6)0.0050 (5)0.0008 (5)0.0028 (5)
N20.0174 (6)0.0284 (7)0.0284 (7)0.0015 (5)0.0012 (5)0.0036 (6)
N30.0179 (6)0.0306 (7)0.0357 (7)0.0028 (5)0.0010 (5)0.0007 (6)
C10.0244 (7)0.0292 (8)0.0253 (7)0.0031 (6)0.0015 (6)0.0024 (6)
C20.0186 (6)0.0248 (7)0.0239 (7)0.0001 (5)0.0017 (5)0.0015 (6)
C30.0212 (7)0.0245 (7)0.0265 (7)0.0034 (6)0.0018 (6)0.0024 (6)
C40.0323 (8)0.0253 (8)0.0273 (8)0.0035 (6)0.0004 (6)0.0022 (6)
C50.0311 (8)0.0286 (8)0.0291 (8)0.0039 (6)0.0066 (6)0.0009 (6)
C60.0190 (7)0.0326 (8)0.0287 (8)0.0008 (6)0.0038 (6)0.0048 (6)
C70.0198 (7)0.0260 (7)0.0207 (6)0.0029 (6)0.0005 (5)0.0030 (5)
C80.0178 (6)0.0222 (7)0.0209 (7)0.0010 (5)0.0001 (5)0.0029 (5)
C90.0175 (6)0.0228 (7)0.0255 (7)0.0004 (5)0.0009 (5)0.0059 (6)
O10.0145 (5)0.0416 (6)0.0345 (6)0.0011 (4)0.0000 (4)0.0075 (5)
O20.0186 (5)0.0431 (7)0.0308 (6)0.0075 (5)0.0033 (4)0.0002 (5)
O30.0293 (6)0.0403 (7)0.0358 (6)0.0102 (5)0.0002 (5)0.0051 (5)
N40.0177 (6)0.0309 (7)0.0235 (6)0.0003 (5)0.0013 (5)0.0042 (5)
Geometric parameters (Å, º) top
S1—C21.7448 (14)C3—C41.378 (2)
S1—C91.7566 (15)C3—C81.399 (2)
N1—C11.359 (2)C3—H30.963 (17)
N1—C71.3795 (19)C4—C51.410 (2)
N1—H1N0.880 (18)C4—H40.963 (18)
N2—C91.3076 (19)C5—C61.380 (2)
N2—H2N0.87 (2)C5—H50.955 (19)
N2—H3N0.90 (2)C6—C71.397 (2)
N3—C91.3162 (19)C6—H60.946 (18)
N3—H4N0.90 (2)C7—C81.4096 (19)
N3—H5N0.89 (2)O1—N41.2572 (15)
C1—C21.378 (2)O2—N41.2628 (16)
C1—H10.979 (18)O3—N41.2348 (16)
C2—C81.432 (2)
C2—S1—C9102.23 (7)C3—C4—H4121.7 (11)
C1—N1—C7109.54 (12)C5—C4—H4117.2 (11)
C1—N1—H1N124.0 (12)C6—C5—C4121.41 (14)
C7—N1—H1N126.1 (12)C6—C5—H5120.3 (11)
C9—N2—H2N118.1 (11)C4—C5—H5118.3 (11)
C9—N2—H3N122.4 (11)C5—C6—C7117.25 (14)
H2N—N2—H3N119.5 (16)C5—C6—H6123.3 (10)
C9—N3—H4N120.3 (13)C7—C6—H6119.5 (10)
C9—N3—H5N125.3 (13)N1—C7—C6130.09 (13)
H4N—N3—H5N113.9 (18)N1—C7—C8107.84 (12)
N1—C1—C2109.03 (13)C6—C7—C8122.07 (13)
N1—C1—H1122.8 (10)C3—C8—C7119.47 (13)
C2—C1—H1128.2 (10)C3—C8—C2134.50 (13)
C1—C2—C8107.55 (12)C7—C8—C2106.03 (12)
C1—C2—S1125.65 (12)N2—C9—N3121.22 (14)
C8—C2—S1126.55 (11)N2—C9—S1121.59 (11)
C4—C3—C8118.73 (14)N3—C9—S1117.19 (11)
C4—C3—H3121.4 (10)O3—N4—O1120.15 (12)
C8—C3—H3119.8 (10)O3—N4—O2120.86 (12)
C3—C4—C5121.04 (15)O1—N4—O2118.99 (12)
C7—N1—C1—C20.19 (17)C4—C3—C8—C70.1 (2)
N1—C1—C2—C80.26 (17)C4—C3—C8—C2179.62 (15)
N1—C1—C2—S1174.86 (11)N1—C7—C8—C3178.96 (13)
C9—S1—C2—C195.95 (14)C6—C7—C8—C31.2 (2)
C9—S1—C2—C890.45 (13)N1—C7—C8—C20.71 (15)
C8—C3—C4—C51.3 (2)C6—C7—C8—C2179.17 (13)
C3—C4—C5—C61.7 (2)C1—C2—C8—C3179.01 (16)
C4—C5—C6—C70.6 (2)S1—C2—C8—C34.5 (2)
C1—N1—C7—C6179.29 (15)C1—C2—C8—C70.60 (16)
C1—N1—C7—C80.58 (16)S1—C2—C8—C7175.14 (11)
C5—C6—C7—N1179.32 (14)C2—S1—C9—N24.19 (14)
C5—C6—C7—C80.8 (2)C2—S1—C9—N3176.06 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.880 (18)2.036 (19)2.8290 (16)149.4 (16)
N2—H2N···O10.87 (2)2.00 (2)2.8679 (17)174.2 (16)
N2—H3N···O2ii0.90 (2)2.108 (19)2.9013 (16)147.0 (16)
N3—H4N···O20.90 (2)2.00 (2)2.8966 (19)172.5 (19)
N3—H5N···O3iii0.89 (2)2.10 (2)2.8817 (17)145.0 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10N3S+·NO3
Mr254.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)12.0524 (2), 8.7395 (1), 21.1893 (3)
V3)2231.91 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.24 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32180, 2563, 2120
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04
No. of reflections2563
No. of parameters194
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: COLLECT (Nonius, 1999), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C21.7448 (14)N2—C91.3076 (19)
S1—C91.7566 (15)N3—C91.3162 (19)
C2—S1—C9102.23 (7)N2—C9—S1121.59 (11)
N2—C9—N3121.22 (14)N3—C9—S1117.19 (11)
C9—S1—C2—C195.95 (14)C2—S1—C9—N24.19 (14)
C9—S1—C2—C890.45 (13)C2—S1—C9—N3176.06 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.880 (18)2.036 (19)2.8290 (16)149.4 (16)
N2—H2N···O10.87 (2)2.00 (2)2.8679 (17)174.2 (16)
N2—H3N···O2ii0.90 (2)2.108 (19)2.9013 (16)147.0 (16)
N3—H4N···O20.90 (2)2.00 (2)2.8966 (19)172.5 (19)
N3—H5N···O3iii0.89 (2)2.10 (2)2.8817 (17)145.0 (18)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

References

First citationEsteban Gómez, D., Fabbrizzi, L., Lichelli, M. & Monzani, E. (2005). Org. Biomol. Chem. 3, 1495–1500.  Web of Science PubMed Google Scholar
First citationFitzmaurice, R. J., Kyne, G. M., Douheret, D. & Kilburn, J. D. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 841–864.  Web of Science CrossRef Google Scholar
First citationGeer, E. P. L. van der, Li, Q., van Koten, G., Klein Gebbink, R. J. M. & Hessen, B. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.09.021.  Google Scholar
First citationHarris, R. L. N. (1969). Tetrahedron Lett. 4465–4466.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchmidtchen, F. P. & Berger, M. (1997). Chem. Rev. 97, 1609–1646.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507–514.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemoto, Y. (2005). Org. Biomol. Chem. 3, 4299–4306.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds