organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Indole-3-thio­uronium iodide

aCrystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and bChemical Biology & Organic Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: a.l.spek@chem.uu.nl

(Received 29 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, C9H10N3S+·I, the indole ring system and the thiouronium group are essentially perpendicular, with a dihedral angle of 89.87 (8)°. By inter­molecular hydrogen bonding, a three-dimensional network is formed, which is additionally supported by inter­molecular C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Harris (1969[Harris, R. L. N. (1969). Tetrahedron Lett. 4465-4466.]); van der Geer et al. (2007[Geer, E. P. L. van der, Li, Q., van Koten, G., Klein Gebbink, R. J. M. & Hessen, B. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.09.021.]). For the crystal structures of similar compounds, see: Lutz et al. (2008[Lutz, M., Spek, A. L., van der Geer, E. P. L., van Koten, G. & Klein Gebbink, R. J. M. (2008). Acta Cryst. E64, o194.]); Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 1143-1144.]). For the characterization of C—H⋯π inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]). For thermal-motion analysis, see: Schomaker & Trueblood (1998[Schomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507-514.]). For the Cambridge Structural Database (update of August 2007), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N3S+·I

  • Mr = 319.16

  • Monoclinic, P 21 /c

  • a = 10.5098 (2) Å

  • b = 10.6264 (3) Å

  • c = 10.6951 (4) Å

  • β = 102.648 (2)°

  • V = 1165.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 150 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.24, Tmax = 0.42

  • 15531 measured reflections

  • 2668 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.09

  • 2668 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯I1i 0.76 (2) 2.91 (2) 3.6295 (17) 158 (2)
N2—H2N⋯I1 0.86 (3) 2.76 (3) 3.5736 (18) 158 (2)
N2—H3N⋯I1ii 0.80 (2) 2.97 (2) 3.6269 (17) 141 (2)
N3—H4N⋯I1iii 0.75 (3) 2.86 (3) 3.5990 (19) 165 (2)
N3—H5N⋯I1 0.88 (3) 2.95 (3) 3.7258 (19) 149 (2)
C1—H1⋯Cg1iv 0.91 (2) 2.91 (2) 3.794 (2) 162.8 (18)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the six-membered ring.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: PEAKREF (Schreurs, 2005[Schreurs, A. M. M. (2005). PEAKREF. Utrecht University, The Netherlands.]); data reduction: EVAL14 (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) and SADABS (Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Uronium and thiouronium ions are positively charged with the charge delocalized over the N—C—N group. In crystal engineering this group is therefore complementary to the negatively charged carboxylate group, not only in charge distribution but also in hydrogen-bonding ability.

The molecular geometry of the cation of title compound indole-3-thiouronium iodide (I) (Fig. 1) is very similar to the corresponding nitrate salt (Lutz et al., 2007). The C—N bond lengths of 1.306 (2) and 1.317 (2) Å show significant double bond character while the C—S bond of 1.7533 (19) Å is in the expected range for a single bond. Similar distances and angles have also been found in the benzylthiouronium cation (Ng, 1995).

As in the nitrate salt, the cation consists of two planar subunits, i.e. the indole and the thiouronium moieties, which are perpendicular to each other with an angle of 89.87 (8)° between the corresponding least squares planes. The weighted R value of a thermal motion analysis using the program THMA11 (Schomaker & Trueblood, 1998) results in a low weighted R value of 0.106, which is slightly higher than in the nitrate salt (0.084).

The iodide anion is surrounded by five N—H groups which act as hydrogen bond donors (Fig. 2). This results in a three dimensional hydrogen bonded network. The H···I distances of 2.76 (3) to 2.97 (2) Å are in the same range as found for other N—H···I hydrogen bonds in the Cambridge Structural Database (update August 2007; Allen, 2002), where we calculate an average H···I distance of 2.80 Å. In general, N—H···I hydrogen bonds are relatively weak; the average hydrogen bonded intermolecular N···I distance is 3.65 Å in the Cambridge Structural Database, which is not shorter than the sum of van der Waals radii of 1.55 (nitrogen) plus 1.98 Å (iodine).

In addition to the N—H···I hydrogen bonds there are weak intermolecular C—H···π interactions between H1 and the six-membered ring of the indole moiety (Fig. 3). The distance of H1 to the least squares plane of the six-membered ring is 2.83 (2) Å and the distance to the center of gravity of this ring is 2.91 (2) Å (Table 2). According to the classification of Malone et al. (1997) this is a "Type I" C—H···π interaction.

Related literature top

For the synthesis of the title compound, see: Harris (1969); van der Geer et al. (2007). For the crystal structures of similar compounds, see: Lutz et al. (2007); Ng (1995). For the characterization of C—H···π interactions, see: Malone et al. (1997). For thermal-motion analysis, see: Schomaker & Trueblood (1998). For the Cambridge Structural Database (update of August 2007), see: Allen (2002).

Experimental top

Indole-3-thiouronium iodide was prepared as described in literature (Harris, 1969; van der Geer et al., 2007) and crystallized by diethyl ether vapor diffusion into an acetone solution.

Refinement top

All H atoms were freely refined.

Structure description top

Uronium and thiouronium ions are positively charged with the charge delocalized over the N—C—N group. In crystal engineering this group is therefore complementary to the negatively charged carboxylate group, not only in charge distribution but also in hydrogen-bonding ability.

The molecular geometry of the cation of title compound indole-3-thiouronium iodide (I) (Fig. 1) is very similar to the corresponding nitrate salt (Lutz et al., 2007). The C—N bond lengths of 1.306 (2) and 1.317 (2) Å show significant double bond character while the C—S bond of 1.7533 (19) Å is in the expected range for a single bond. Similar distances and angles have also been found in the benzylthiouronium cation (Ng, 1995).

As in the nitrate salt, the cation consists of two planar subunits, i.e. the indole and the thiouronium moieties, which are perpendicular to each other with an angle of 89.87 (8)° between the corresponding least squares planes. The weighted R value of a thermal motion analysis using the program THMA11 (Schomaker & Trueblood, 1998) results in a low weighted R value of 0.106, which is slightly higher than in the nitrate salt (0.084).

The iodide anion is surrounded by five N—H groups which act as hydrogen bond donors (Fig. 2). This results in a three dimensional hydrogen bonded network. The H···I distances of 2.76 (3) to 2.97 (2) Å are in the same range as found for other N—H···I hydrogen bonds in the Cambridge Structural Database (update August 2007; Allen, 2002), where we calculate an average H···I distance of 2.80 Å. In general, N—H···I hydrogen bonds are relatively weak; the average hydrogen bonded intermolecular N···I distance is 3.65 Å in the Cambridge Structural Database, which is not shorter than the sum of van der Waals radii of 1.55 (nitrogen) plus 1.98 Å (iodine).

In addition to the N—H···I hydrogen bonds there are weak intermolecular C—H···π interactions between H1 and the six-membered ring of the indole moiety (Fig. 3). The distance of H1 to the least squares plane of the six-membered ring is 2.83 (2) Å and the distance to the center of gravity of this ring is 2.91 (2) Å (Table 2). According to the classification of Malone et al. (1997) this is a "Type I" C—H···π interaction.

For the synthesis of the title compound, see: Harris (1969); van der Geer et al. (2007). For the crystal structures of similar compounds, see: Lutz et al. (2007); Ng (1995). For the characterization of C—H···π interactions, see: Malone et al. (1997). For thermal-motion analysis, see: Schomaker & Trueblood (1998). For the Cambridge Structural Database (update of August 2007), see: Allen (2002).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005); data reduction: EVAL14 (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Hydrogen bonded environment of the iodide in (I). C—H hydrogen atoms are omitted for clarity. Symmetry operations i: 1 + x, y, z; ii: 1 - x, 1 - y, -z; iii: x, 0.5 - y, z - 1/2.
[Figure 3] Fig. 3. : C—H···π interaction in (I). View along the crystallographic b axis. Symmetry operation i: x, 0.5 - y, z - 1/2.
Indole-3-thiouronium iodide top
Crystal data top
C9H10N3S+·IF(000) = 616
Mr = 319.16Dx = 1.819 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11915 reflections
a = 10.5098 (2) Åθ = 2.0–27.5°
b = 10.6264 (3) ŵ = 2.89 mm1
c = 10.6951 (4) ÅT = 150 K
β = 102.648 (2)°Block, colourless
V = 1165.46 (6) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2668 independent reflections
Radiation source: rotating anode2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.24, Tmax = 0.42k = 1313
15531 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.045All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.5241P]
where P = (Fo2 + 2Fc2)/3
2668 reflections(Δ/σ)max = 0.003
167 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C9H10N3S+·IV = 1165.46 (6) Å3
Mr = 319.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5098 (2) ŵ = 2.89 mm1
b = 10.6264 (3) ÅT = 150 K
c = 10.6951 (4) Å0.30 × 0.30 × 0.30 mm
β = 102.648 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2668 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2470 reflections with I > 2σ(I)
Tmin = 0.24, Tmax = 0.42Rint = 0.033
15531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045All H-atom parameters refined
S = 1.09Δρmax = 0.50 e Å3
2668 reflectionsΔρmin = 0.53 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43028 (5)0.17217 (4)0.29661 (4)0.02089 (10)
N10.08974 (16)0.33441 (15)0.18625 (17)0.0243 (3)
H1N0.024 (2)0.343 (2)0.140 (2)0.017 (5)*
N20.49115 (18)0.34694 (16)0.13906 (16)0.0237 (3)
H2N0.541 (3)0.384 (3)0.097 (2)0.039 (7)*
H3N0.415 (2)0.365 (2)0.123 (2)0.025 (6)*
N30.65635 (17)0.21727 (17)0.23827 (18)0.0247 (3)
H4N0.680 (2)0.170 (2)0.291 (2)0.025 (6)*
H5N0.711 (2)0.251 (2)0.196 (3)0.040 (7)*
C10.18173 (18)0.24948 (18)0.17078 (18)0.0220 (4)
H10.168 (2)0.198 (2)0.101 (2)0.032 (6)*
C20.29152 (17)0.26651 (17)0.26602 (17)0.0193 (3)
C30.3378 (2)0.42952 (18)0.45307 (19)0.0238 (4)
H30.422 (2)0.402 (2)0.491 (2)0.022 (5)*
C40.2801 (2)0.52789 (19)0.5048 (2)0.0287 (4)
H40.325 (3)0.574 (3)0.577 (3)0.047 (8)*
C50.1524 (2)0.5675 (2)0.4494 (2)0.0312 (5)
H50.117 (2)0.635 (2)0.487 (2)0.027 (6)*
C60.0801 (2)0.5097 (2)0.3418 (2)0.0277 (4)
H60.004 (3)0.536 (2)0.304 (3)0.034 (7)*
C70.13841 (18)0.40987 (18)0.29061 (18)0.0218 (4)
C80.26581 (17)0.36941 (16)0.34426 (17)0.0189 (3)
C90.53403 (17)0.25457 (16)0.21755 (16)0.0183 (3)
I10.770943 (11)0.454617 (11)0.031246 (11)0.02163 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (2)0.0196 (2)0.0242 (2)0.00360 (16)0.00591 (17)0.00584 (17)
N10.0146 (8)0.0273 (8)0.0288 (9)0.0010 (6)0.0001 (7)0.0015 (7)
N20.0188 (8)0.0262 (8)0.0259 (8)0.0001 (7)0.0045 (7)0.0077 (6)
N30.0202 (8)0.0272 (9)0.0278 (9)0.0059 (7)0.0076 (7)0.0069 (7)
C10.0210 (9)0.0227 (9)0.0222 (9)0.0008 (7)0.0047 (7)0.0001 (7)
C20.0160 (8)0.0200 (8)0.0227 (9)0.0001 (7)0.0058 (7)0.0032 (7)
C30.0238 (10)0.0234 (9)0.0232 (9)0.0020 (7)0.0032 (8)0.0034 (7)
C40.0367 (13)0.0238 (10)0.0251 (10)0.0043 (8)0.0059 (9)0.0023 (8)
C50.0365 (13)0.0231 (10)0.0378 (12)0.0020 (8)0.0165 (10)0.0032 (8)
C60.0219 (10)0.0273 (10)0.0354 (11)0.0049 (8)0.0094 (9)0.0003 (8)
C70.0180 (9)0.0211 (8)0.0266 (9)0.0004 (7)0.0058 (7)0.0023 (7)
C80.0185 (9)0.0184 (8)0.0210 (8)0.0006 (7)0.0067 (7)0.0042 (7)
C90.0198 (9)0.0175 (8)0.0173 (8)0.0007 (7)0.0031 (6)0.0014 (6)
I10.01614 (8)0.02314 (8)0.02444 (8)0.00029 (4)0.00192 (5)0.00236 (4)
Geometric parameters (Å, º) top
S1—C21.7406 (18)C1—H10.91 (2)
S1—C91.7533 (19)C2—C81.438 (2)
N1—C11.359 (2)C3—C41.383 (3)
N1—C71.379 (3)C3—C81.396 (3)
N1—H1N0.76 (2)C3—H30.94 (2)
N2—C91.306 (2)C4—C51.407 (4)
N2—H2N0.86 (3)C4—H40.95 (3)
N2—H3N0.80 (2)C5—C61.377 (3)
N3—C91.317 (2)C5—H50.94 (2)
N3—H4N0.75 (3)C6—C71.396 (3)
N3—H5N0.88 (3)C6—H60.93 (3)
C1—C21.374 (3)C7—C81.404 (3)
C2—S1—C9101.87 (9)C3—C4—C5121.3 (2)
C1—N1—C7109.70 (16)C3—C4—H4122.2 (18)
C1—N1—H1N124.2 (16)C5—C4—H4116.5 (18)
C7—N1—H1N125.7 (16)C6—C5—C4121.3 (2)
C9—N2—H2N121.1 (18)C6—C5—H5119.9 (14)
C9—N2—H3N120.1 (17)C4—C5—H5118.8 (14)
H2N—N2—H3N118 (2)C5—C6—C7117.18 (19)
C9—N3—H4N118.3 (18)C5—C6—H6121.6 (15)
C9—N3—H5N120.9 (17)C7—C6—H6121.2 (15)
H4N—N3—H5N121 (2)N1—C7—C6129.98 (18)
N1—C1—C2109.07 (17)N1—C7—C8107.73 (16)
N1—C1—H1120.7 (15)C6—C7—C8122.29 (18)
C2—C1—H1130.0 (15)C3—C8—C7119.67 (17)
C1—C2—C8107.29 (17)C3—C8—C2134.13 (18)
C1—C2—S1126.63 (15)C7—C8—C2106.20 (16)
C8—C2—S1125.81 (14)N2—C9—N3121.41 (18)
C4—C3—C8118.29 (19)N2—C9—S1121.45 (15)
C4—C3—H3121.6 (14)N3—C9—S1117.12 (14)
C8—C3—H3120.1 (14)
C7—N1—C1—C21.0 (2)C4—C3—C8—C70.1 (3)
N1—C1—C2—C80.6 (2)C4—C3—C8—C2179.7 (2)
N1—C1—C2—S1173.64 (14)N1—C7—C8—C3179.32 (17)
C9—S1—C2—C196.99 (19)C6—C7—C8—C30.4 (3)
C9—S1—C2—C889.75 (17)N1—C7—C8—C20.5 (2)
C8—C3—C4—C50.3 (3)C6—C7—C8—C2179.74 (18)
C3—C4—C5—C60.1 (3)C1—C2—C8—C3179.9 (2)
C4—C5—C6—C70.4 (3)S1—C2—C8—C35.5 (3)
C1—N1—C7—C6179.4 (2)C1—C2—C8—C70.1 (2)
C1—N1—C7—C80.9 (2)S1—C2—C8—C7174.27 (14)
C5—C6—C7—N1179.0 (2)C2—S1—C9—N211.53 (17)
C5—C6—C7—C80.7 (3)C2—S1—C9—N3170.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I1i0.76 (2)2.91 (2)3.6295 (17)158 (2)
N2—H2N···I10.86 (3)2.76 (3)3.5736 (18)158 (2)
N2—H3N···I1ii0.80 (2)2.97 (2)3.6269 (17)141 (2)
N3—H4N···I1iii0.75 (3)2.86 (3)3.5990 (19)165 (2)
N3—H5N···I10.88 (3)2.95 (3)3.7258 (19)149 (2)
C1—H1···Cg1iv0.91 (2)2.91 (2)3.794 (2)162.8 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H10N3S+·I
Mr319.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.5098 (2), 10.6264 (3), 10.6951 (4)
β (°) 102.648 (2)
V3)1165.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.24, 0.42
No. of measured, independent and
observed [I > 2σ(I)] reflections
15531, 2668, 2470
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.09
No. of reflections2668
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.53

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2005), EVAL14 (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C21.7406 (18)N2—C91.306 (2)
S1—C91.7533 (19)N3—C91.317 (2)
C2—S1—C9101.87 (9)N2—C9—S1121.45 (15)
N2—C9—N3121.41 (18)N3—C9—S1117.12 (14)
C9—S1—C2—C196.99 (19)C2—S1—C9—N211.53 (17)
C9—S1—C2—C889.75 (17)C2—S1—C9—N3170.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I1i0.76 (2)2.91 (2)3.6295 (17)158 (2)
N2—H2N···I10.86 (3)2.76 (3)3.5736 (18)158 (2)
N2—H3N···I1ii0.80 (2)2.97 (2)3.6269 (17)141 (2)
N3—H4N···I1iii0.75 (3)2.86 (3)3.5990 (19)165 (2)
N3—H5N···I10.88 (3)2.95 (3)3.7258 (19)149 (2)
C1—H1···Cg1iv0.91 (2)2.91 (2)3.794 (2)162.8 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeer, E. P. L. van der, Li, Q., van Koten, G., Klein Gebbink, R. J. M. & Hessen, B. (2007). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.09.021.  Google Scholar
First citationHarris, R. L. N. (1969). Tetrahedron Lett. 4465–4466.  Google Scholar
First citationLutz, M., Spek, A. L., van der Geer, E. P. L., van Koten, G. & Klein Gebbink, R. J. M. (2008). Acta Cryst. E64, o194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1143–1144.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1998). Acta Cryst. B54, 507–514.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchreurs, A. M. M. (2005). PEAKREF. Utrecht University, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds