metal-organic compounds
(Benzoato-κ2O,O′)(quinoline-2-carboxylato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)manganese(II)
aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt
The 7H5O2)(C10H6NO2)(C10H7NO2)], contains manganese(II) ions six-coordinated in a distorted octahedral environment. The equatorial plane is occupied by four O atoms, two from the carboxylate group of the benzoate ion, the other two from carboxylate/carboxyl groups of the quinaldate/quinaldic acid molecules. The axial positions are occupied by the N atoms of the quinoline ring systems. The metal ion lies on a twofold rotation axis that bisects the benzoate ligand; the quinaldate and quinaldic acid ligands are therefore equivalent by symmetry, and the carboxylate/carboxyl groups are disordered. The complexes are joined together by hydrogen bonds between the carboxylate/carboxyl groups of adjacent quinaldate/quinaldic acid molecules, forming zigzag chains that run along the c axis.
of the title compound, [Mn(CRelated literature
For related literature, see Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807066809/bt2660sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066809/bt2660Isup2.hkl
Approximately 0.13 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) were dissolved in 2 ml of dimethylformamide and then 0.14 mmol of benzoic acid were added to the solution. 0.12 mmol of manganese chloride tetrahydrated dissolved in 1 ml of water were also added to the former solution. After one month, single crystals of suitable quality were grown from the solution. The refined structure shows that the crystals incorporated a different quinoline derivative than that expected showing that the material purchased from Sigma was contaminated.
All H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, Uiso(H)=1.2Ueq(C). Exception made to the carboxylic hydrogen atom that was first located in a difference map and then refined with a fixed distance to the parent O atom (0.96 Å). This atom is disordered and its occupancy refined to near 0.5 in the first cycles of
and it was then fixed to 0.5 in the last cycles.Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The
of the title compound, Mn(C7H5O2) (C10H7NO2)(C10H6NO2), consists of manganese(II) ions six-coordinated in a distorted octahedral environment (Fig. 1). The basal plane is occupied by four oxygen atoms with Mn—O distances ranging from 2.1293 (18) to 2.2858 (19) Å. Two basal oxygen atoms belong to the carboxylate group of the benzoate ion, that chelates the metal ion in the usual bidentate mode. Each of the two quinoline molecules supply another O atom to the Mn coordination environment. The apical positions are occupied by the nitrogen atoms of the quinoline ring system, with a distance of 2.2858 (19) Å. Both the benzoic acid and quinoline-2-carboxylic acid molecules are planar. The maximum deviation from the quinolinic plane is 0.1040 (9)Å for O2. The maximum deviation from the benzoic plane is 0.013 (2)Å for O1. The two planes make an angle of 82.98 (9)°. The complexes are joined together by hydrogen bonds, between the carboxylate/carboxylic groups of the quinaldic acid molecules (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged. Such H-bonds delineate zigzag chains that run along the c axis (Fig. 3).For related literature, see Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)] | F(000) = 1068 |
Mr = 521.37 | Dx = 1.480 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.3839 (4) Å | Cell parameters from 8901 reflections |
b = 11.6775 (2) Å | θ = 2.4–27.5° |
c = 11.6306 (2) Å | µ = 0.61 mm−1 |
β = 117.288 (1)° | T = 293 K |
V = 2339.67 (8) Å3 | Prism, pink |
Z = 4 | 0.24 × 0.22 × 0.15 mm |
Bruker APEX CCD area-detector diffractometer | 2917 independent reflections |
Radiation source: fine-focus sealed tube | 2413 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 28.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −25→25 |
Tmin = 0.883, Tmax = 0.908 | k = −15→15 |
25798 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0806P)2 + 2.8119P] where P = (Fo2 + 2Fc2)/3 |
2917 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.68 e Å−3 |
1 restraint | Δρmin = −0.50 e Å−3 |
[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)] | V = 2339.67 (8) Å3 |
Mr = 521.37 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.3839 (4) Å | µ = 0.61 mm−1 |
b = 11.6775 (2) Å | T = 293 K |
c = 11.6306 (2) Å | 0.24 × 0.22 × 0.15 mm |
β = 117.288 (1)° |
Bruker APEX CCD area-detector diffractometer | 2917 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2413 reflections with I > 2σ(I) |
Tmin = 0.883, Tmax = 0.908 | Rint = 0.027 |
25798 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 1 restraint |
wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.68 e Å−3 |
2917 reflections | Δρmin = −0.50 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.5000 | 0.20556 (4) | 0.2500 | 0.03799 (18) | |
O1 | 0.48852 (12) | 0.37094 (15) | 0.14858 (17) | 0.0505 (4) | |
O2 | 0.48495 (10) | 0.09330 (17) | 0.09597 (18) | 0.0508 (5) | |
H2 | 0.525 (3) | 0.041 (5) | 0.103 (7) | 0.07 (2)* | 0.50 |
N1 | 0.37188 (11) | 0.15467 (17) | 0.15100 (18) | 0.0378 (4) | |
C1 | 0.5000 | 0.4239 (3) | 0.2500 | 0.0395 (7) | |
C2 | 0.5000 | 0.5526 (3) | 0.2500 | 0.0359 (6) | |
C3 | 0.48852 (16) | 0.6123 (2) | 0.1396 (2) | 0.0457 (6) | |
H3 | 0.4807 | 0.5728 | 0.0652 | 0.055* | |
C4 | 0.4888 (2) | 0.7302 (3) | 0.1403 (3) | 0.0569 (7) | |
H4 | 0.4813 | 0.7702 | 0.0664 | 0.068* | |
C5 | 0.5000 | 0.7889 (3) | 0.2500 | 0.0582 (10) | |
H5 | 0.5000 | 0.8685 | 0.2500 | 0.070* | |
C6 | 0.41618 (15) | 0.0511 (3) | 0.0173 (3) | 0.0521 (6) | |
O3 | 0.39792 (16) | 0.0125 (4) | −0.0885 (3) | 0.1252 (15) | |
C7 | 0.35213 (13) | 0.0869 (2) | 0.0500 (2) | 0.0402 (5) | |
C15 | 0.31580 (14) | 0.1843 (2) | 0.1866 (2) | 0.0418 (5) | |
C10 | 0.23875 (14) | 0.1435 (2) | 0.1169 (3) | 0.0487 (6) | |
C9 | 0.22055 (15) | 0.0739 (3) | 0.0085 (3) | 0.0553 (7) | |
H9 | 0.1701 | 0.0476 | −0.0404 | 0.066* | |
C8 | 0.27651 (15) | 0.0452 (2) | −0.0249 (3) | 0.0501 (6) | |
H8 | 0.2652 | −0.0014 | −0.0963 | 0.060* | |
C11 | 0.18377 (18) | 0.1752 (3) | 0.1597 (4) | 0.0668 (9) | |
H11 | 0.1327 | 0.1500 | 0.1148 | 0.080* | |
C12 | 0.2053 (2) | 0.2419 (4) | 0.2655 (4) | 0.0790 (11) | |
H12 | 0.1690 | 0.2608 | 0.2938 | 0.095* | |
C13 | 0.2808 (2) | 0.2828 (3) | 0.3327 (3) | 0.0710 (9) | |
H13 | 0.2942 | 0.3292 | 0.4049 | 0.085* | |
C14 | 0.33583 (17) | 0.2557 (3) | 0.2942 (3) | 0.0551 (7) | |
H14 | 0.3860 | 0.2844 | 0.3389 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0367 (3) | 0.0369 (3) | 0.0406 (3) | 0.000 | 0.0179 (2) | 0.000 |
O1 | 0.0663 (12) | 0.0394 (9) | 0.0450 (9) | −0.0012 (8) | 0.0248 (9) | −0.0037 (7) |
O2 | 0.0375 (9) | 0.0580 (11) | 0.0577 (10) | −0.0023 (8) | 0.0226 (8) | −0.0194 (9) |
N1 | 0.0344 (9) | 0.0405 (10) | 0.0380 (9) | 0.0031 (8) | 0.0162 (8) | 0.0023 (8) |
C1 | 0.0338 (15) | 0.0405 (16) | 0.0427 (16) | 0.000 | 0.0161 (13) | 0.000 |
C2 | 0.0321 (14) | 0.0367 (16) | 0.0402 (15) | 0.000 | 0.0178 (12) | 0.000 |
C3 | 0.0552 (14) | 0.0469 (13) | 0.0379 (11) | −0.0038 (11) | 0.0238 (11) | −0.0019 (10) |
C4 | 0.076 (2) | 0.0496 (15) | 0.0481 (14) | −0.0032 (14) | 0.0305 (14) | 0.0087 (12) |
C5 | 0.075 (3) | 0.0352 (18) | 0.065 (2) | 0.000 | 0.033 (2) | 0.000 |
C6 | 0.0408 (13) | 0.0669 (17) | 0.0482 (13) | 0.0026 (12) | 0.0201 (11) | −0.0100 (13) |
O3 | 0.0565 (15) | 0.199 (4) | 0.117 (2) | −0.0191 (18) | 0.0365 (15) | −0.111 (3) |
C7 | 0.0346 (11) | 0.0402 (12) | 0.0432 (12) | 0.0024 (9) | 0.0157 (9) | 0.0034 (10) |
C15 | 0.0360 (11) | 0.0464 (13) | 0.0440 (12) | 0.0093 (9) | 0.0193 (10) | 0.0103 (10) |
C10 | 0.0340 (12) | 0.0548 (15) | 0.0575 (15) | 0.0096 (11) | 0.0211 (11) | 0.0161 (12) |
C9 | 0.0345 (12) | 0.0608 (16) | 0.0625 (16) | −0.0049 (11) | 0.0152 (11) | 0.0050 (14) |
C8 | 0.0415 (13) | 0.0508 (14) | 0.0497 (14) | −0.0044 (11) | 0.0137 (11) | −0.0047 (12) |
C11 | 0.0428 (15) | 0.088 (2) | 0.078 (2) | 0.0158 (15) | 0.0348 (15) | 0.0171 (18) |
C12 | 0.064 (2) | 0.105 (3) | 0.088 (2) | 0.033 (2) | 0.0518 (19) | 0.018 (2) |
C13 | 0.069 (2) | 0.089 (3) | 0.0659 (19) | 0.0200 (18) | 0.0405 (17) | −0.0030 (17) |
C14 | 0.0501 (15) | 0.0647 (17) | 0.0522 (15) | 0.0115 (13) | 0.0249 (13) | −0.0014 (13) |
Mn1—O2i | 2.1293 (18) | C5—C4i | 1.375 (3) |
Mn1—O2 | 2.1293 (18) | C5—H5 | 0.9300 |
Mn1—O1i | 2.2203 (19) | C6—O3 | 1.200 (4) |
Mn1—O1 | 2.2203 (19) | C6—C7 | 1.515 (3) |
Mn1—N1 | 2.2858 (19) | C7—C8 | 1.405 (3) |
Mn1—N1i | 2.2858 (19) | C15—C14 | 1.401 (4) |
Mn1—C1 | 2.550 (3) | C15—C10 | 1.416 (4) |
O1—C1 | 1.258 (2) | C10—C9 | 1.403 (4) |
O2—C6 | 1.319 (3) | C10—C11 | 1.416 (4) |
O2—H2 | 0.959 (10) | C9—C8 | 1.352 (4) |
N1—C7 | 1.319 (3) | C9—H9 | 0.9300 |
N1—C15 | 1.373 (3) | C8—H8 | 0.9300 |
C1—O1i | 1.258 (2) | C11—C12 | 1.350 (6) |
C1—C2 | 1.503 (5) | C11—H11 | 0.9300 |
C2—C3 | 1.386 (3) | C12—C13 | 1.390 (6) |
C2—C3i | 1.386 (3) | C12—H12 | 0.9300 |
C3—C4 | 1.377 (4) | C13—C14 | 1.370 (4) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.375 (3) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | ||
O2i—Mn1—O2 | 104.00 (12) | C4—C3—H3 | 120.0 |
O2i—Mn1—O1i | 98.44 (7) | C2—C3—H3 | 120.0 |
O2—Mn1—O1i | 157.55 (8) | C5—C4—C3 | 120.2 (3) |
O2i—Mn1—O1 | 157.55 (8) | C5—C4—H4 | 119.9 |
O2—Mn1—O1 | 98.44 (7) | C3—C4—H4 | 119.9 |
O1i—Mn1—O1 | 59.13 (9) | C4—C5—C4i | 120.2 (4) |
O2i—Mn1—N1 | 87.81 (7) | C4—C5—H5 | 119.9 |
O2—Mn1—N1 | 73.62 (7) | C4i—C5—H5 | 119.9 |
O1i—Mn1—N1 | 108.35 (7) | O3—C6—O2 | 125.5 (3) |
O1—Mn1—N1 | 97.90 (7) | O3—C6—C7 | 118.1 (2) |
O2i—Mn1—N1i | 73.62 (7) | O2—C6—C7 | 114.0 (2) |
O2—Mn1—N1i | 87.81 (7) | N1—C7—C8 | 123.7 (2) |
O1i—Mn1—N1i | 97.90 (7) | N1—C7—C6 | 116.9 (2) |
O1—Mn1—N1i | 108.35 (7) | C8—C7—C6 | 119.3 (2) |
N1—Mn1—N1i | 149.86 (10) | N1—C15—C14 | 119.0 (2) |
O2i—Mn1—C1 | 128.00 (6) | N1—C15—C10 | 121.0 (2) |
O2—Mn1—C1 | 128.00 (6) | C14—C15—C10 | 119.9 (2) |
O1i—Mn1—C1 | 29.57 (4) | C9—C10—C15 | 118.3 (2) |
O1—Mn1—C1 | 29.57 (5) | C9—C10—C11 | 123.2 (3) |
N1—Mn1—C1 | 105.07 (5) | C15—C10—C11 | 118.5 (3) |
N1i—Mn1—C1 | 105.07 (5) | C8—C9—C10 | 119.9 (2) |
C1—O1—Mn1 | 89.89 (16) | C8—C9—H9 | 120.1 |
C6—O2—Mn1 | 121.28 (15) | C10—C9—H9 | 120.1 |
C6—O2—H2 | 110 (4) | C9—C8—C7 | 118.8 (3) |
Mn1—O2—H2 | 122 (4) | C9—C8—H8 | 120.6 |
C7—N1—C15 | 118.2 (2) | C7—C8—H8 | 120.6 |
C7—N1—Mn1 | 114.17 (15) | C12—C11—C10 | 120.1 (3) |
C15—N1—Mn1 | 127.58 (16) | C12—C11—H11 | 119.9 |
O1—C1—O1i | 121.1 (3) | C10—C11—H11 | 119.9 |
O1—C1—C2 | 119.46 (16) | C11—C12—C13 | 121.2 (3) |
O1i—C1—C2 | 119.46 (16) | C11—C12—H12 | 119.4 |
O1—C1—Mn1 | 60.54 (16) | C13—C12—H12 | 119.4 |
O1i—C1—Mn1 | 60.54 (16) | C14—C13—C12 | 120.8 (3) |
C2—C1—Mn1 | 180.0 | C14—C13—H13 | 119.6 |
C3—C2—C3i | 119.6 (3) | C12—C13—H13 | 119.6 |
C3—C2—C1 | 120.20 (16) | C13—C14—C15 | 119.4 (3) |
C3i—C2—C1 | 120.20 (16) | C13—C14—H14 | 120.3 |
C4—C3—C2 | 119.9 (2) | C15—C14—H14 | 120.3 |
O2i—Mn1—O1—C1 | 3.1 (2) | O1—C1—C2—C3 | −0.90 (17) |
O2—Mn1—O1—C1 | −178.80 (10) | O1i—C1—C2—C3 | 179.10 (17) |
O1i—Mn1—O1—C1 | 0.0 | Mn1—C1—C2—C3 | −108 (100) |
N1—Mn1—O1—C1 | 106.70 (10) | O1—C1—C2—C3i | 179.10 (17) |
N1i—Mn1—O1—C1 | −88.30 (11) | O1i—C1—C2—C3i | −0.90 (17) |
O2i—Mn1—O2—C6 | 85.4 (2) | Mn1—C1—C2—C3i | 72 (100) |
O1i—Mn1—O2—C6 | −96.5 (3) | C3i—C2—C3—C4 | 0.2 (2) |
O1—Mn1—O2—C6 | −93.8 (2) | C1—C2—C3—C4 | −179.8 (2) |
N1—Mn1—O2—C6 | 2.0 (2) | C2—C3—C4—C5 | −0.3 (4) |
N1i—Mn1—O2—C6 | 157.9 (2) | C3—C4—C5—C4i | 0.2 (2) |
C1—Mn1—O2—C6 | −94.6 (2) | Mn1—O2—C6—O3 | 160.0 (3) |
O2i—Mn1—N1—C7 | −107.04 (17) | Mn1—O2—C6—C7 | −1.8 (3) |
O2—Mn1—N1—C7 | −1.76 (16) | C15—N1—C7—C8 | 1.4 (4) |
O1i—Mn1—N1—C7 | 154.79 (16) | Mn1—N1—C7—C8 | 179.9 (2) |
O1—Mn1—N1—C7 | 94.77 (17) | C15—N1—C7—C6 | −177.1 (2) |
N1i—Mn1—N1—C7 | −55.92 (15) | Mn1—N1—C7—C6 | 1.5 (3) |
C1—Mn1—N1—C7 | 124.07 (15) | O3—C6—C7—N1 | −163.2 (3) |
O2i—Mn1—N1—C15 | 71.34 (19) | O2—C6—C7—N1 | 0.1 (4) |
O2—Mn1—N1—C15 | 176.6 (2) | O3—C6—C7—C8 | 18.3 (5) |
O1i—Mn1—N1—C15 | −26.8 (2) | O2—C6—C7—C8 | −178.5 (2) |
O1—Mn1—N1—C15 | −86.85 (19) | C7—N1—C15—C14 | 179.6 (2) |
N1i—Mn1—N1—C15 | 122.46 (19) | Mn1—N1—C15—C14 | 1.3 (3) |
C1—Mn1—N1—C15 | −57.55 (19) | C7—N1—C15—C10 | −0.1 (3) |
Mn1—O1—C1—O1i | 0.000 (1) | Mn1—N1—C15—C10 | −178.43 (17) |
Mn1—O1—C1—C2 | 180.0 | N1—C15—C10—C9 | −1.4 (4) |
O2i—Mn1—C1—O1 | −178.49 (12) | C14—C15—C10—C9 | 178.9 (3) |
O2—Mn1—C1—O1 | 1.51 (12) | N1—C15—C10—C11 | 178.8 (2) |
O1i—Mn1—C1—O1 | 180.0 | C14—C15—C10—C11 | −0.9 (4) |
N1—Mn1—C1—O1 | −79.27 (12) | C15—C10—C9—C8 | 1.7 (4) |
N1i—Mn1—C1—O1 | 100.73 (12) | C11—C10—C9—C8 | −178.6 (3) |
O2i—Mn1—C1—O1i | 1.51 (12) | C10—C9—C8—C7 | −0.5 (4) |
O2—Mn1—C1—O1i | −178.49 (12) | N1—C7—C8—C9 | −1.1 (4) |
O1—Mn1—C1—O1i | 180.000 (1) | C6—C7—C8—C9 | 177.3 (3) |
N1—Mn1—C1—O1i | 100.73 (12) | C9—C10—C11—C12 | 179.6 (3) |
N1i—Mn1—C1—O1i | −79.27 (12) | C15—C10—C11—C12 | −0.7 (5) |
O2i—Mn1—C1—C2 | −72 (100) | C10—C11—C12—C13 | 1.4 (6) |
O2—Mn1—C1—C2 | 108 (100) | C11—C12—C13—C14 | −0.6 (6) |
O1i—Mn1—C1—C2 | −73 (100) | C12—C13—C14—C15 | −1.0 (5) |
O1—Mn1—C1—C2 | 107 (100) | N1—C15—C14—C13 | −178.0 (3) |
N1—Mn1—C1—C2 | 28 (100) | C10—C15—C14—C13 | 1.7 (4) |
N1i—Mn1—C1—C2 | −152 (100) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3ii | 0.96 (7) | 1.70 (7) | 2.621 (4) | 160 (6) |
Symmetry code: (ii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C7H5O2)(C10H6NO2)(C10H7NO2)] |
Mr | 521.37 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 19.3839 (4), 11.6775 (2), 11.6306 (2) |
β (°) | 117.288 (1) |
V (Å3) | 2339.67 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.24 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.883, 0.908 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25798, 2917, 2413 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.149, 1.08 |
No. of reflections | 2917 |
No. of parameters | 169 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.68, −0.50 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.96 (7) | 1.70 (7) | 2.621 (4) | 160 (6) |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.
References
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844. Google Scholar
Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365–367. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The crystal structure of the title compound, Mn(C7H5O2) (C10H7NO2)(C10H6NO2), consists of manganese(II) ions six-coordinated in a distorted octahedral environment (Fig. 1). The basal plane is occupied by four oxygen atoms with Mn—O distances ranging from 2.1293 (18) to 2.2858 (19) Å. Two basal oxygen atoms belong to the carboxylate group of the benzoate ion, that chelates the metal ion in the usual bidentate mode. Each of the two quinoline molecules supply another O atom to the Mn coordination environment. The apical positions are occupied by the nitrogen atoms of the quinoline ring system, with a distance of 2.2858 (19) Å. Both the benzoic acid and quinoline-2-carboxylic acid molecules are planar. The maximum deviation from the quinolinic plane is 0.1040 (9)Å for O2. The maximum deviation from the benzoic plane is 0.013 (2)Å for O1. The two planes make an angle of 82.98 (9)°. The complexes are joined together by hydrogen bonds, between the carboxylate/carboxylic groups of the quinaldic acid molecules (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged. Such H-bonds delineate zigzag chains that run along the c axis (Fig. 3).