metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzoato-κ2O,O′)(quinoline-2-carboxyl­ato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)manganese(II)

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 29 November 2007; accepted 13 December 2007; online 21 December 2007)

The crystal structure of the title compound, [Mn(C7H5O2)(C10H6NO2)(C10H7NO2)], contains manganese(II) ions six-coordinated in a distorted octa­hedral environment. The equatorial plane is occupied by four O atoms, two from the carboxyl­ate group of the benzoate ion, the other two from carboxyl­ate/carboxyl groups of the quinaldate/quinaldic acid mol­ecules. The axial positions are occupied by the N atoms of the quinoline ring systems. The metal ion lies on a twofold rotation axis that bisects the benzoate ligand; the quinaldate and quinaldic acid ligands are therefore equivalent by symmetry, and the carboxylate/carboxyl groups are disordered. The complexes are joined together by hydrogen bonds between the carboxyl­ate/carboxyl groups of adjacent quinaldate/quinaldic acid mol­ecules, forming zigzag chains that run along the c axis.

Related literature

For related literature, see Zurowska et al. (2007[Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085-3091.]); Dobrzynska et al. (2005[Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945-1951.]); Kumar & Gandotra (1980[Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365-367.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843-844.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]

  • Mr = 521.37

  • Monoclinic, C 2/c

  • a = 19.3839 (4) Å

  • b = 11.6775 (2) Å

  • c = 11.6306 (2) Å

  • β = 117.288 (1)°

  • V = 2339.67 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 (2) K

  • 0.24 × 0.22 × 0.15 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.908

  • 25798 measured reflections

  • 2917 independent reflections

  • 2413 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.08

  • 2917 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.96 (7) 1.70 (7) 2.621 (4) 160 (6)
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The crystal structure of the title compound, Mn(C7H5O2) (C10H7NO2)(C10H6NO2), consists of manganese(II) ions six-coordinated in a distorted octahedral environment (Fig. 1). The basal plane is occupied by four oxygen atoms with Mn—O distances ranging from 2.1293 (18) to 2.2858 (19) Å. Two basal oxygen atoms belong to the carboxylate group of the benzoate ion, that chelates the metal ion in the usual bidentate mode. Each of the two quinoline molecules supply another O atom to the Mn coordination environment. The apical positions are occupied by the nitrogen atoms of the quinoline ring system, with a distance of 2.2858 (19) Å. Both the benzoic acid and quinoline-2-carboxylic acid molecules are planar. The maximum deviation from the quinolinic plane is 0.1040 (9)Å for O2. The maximum deviation from the benzoic plane is 0.013 (2)Å for O1. The two planes make an angle of 82.98 (9)°. The complexes are joined together by hydrogen bonds, between the carboxylate/carboxylic groups of the quinaldic acid molecules (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged. Such H-bonds delineate zigzag chains that run along the c axis (Fig. 3).

Related literature top

For related literature, see Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).

Experimental top

Approximately 0.13 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) were dissolved in 2 ml of dimethylformamide and then 0.14 mmol of benzoic acid were added to the solution. 0.12 mmol of manganese chloride tetrahydrated dissolved in 1 ml of water were also added to the former solution. After one month, single crystals of suitable quality were grown from the solution. The refined structure shows that the crystals incorporated a different quinoline derivative than that expected showing that the material purchased from Sigma was contaminated.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, Uiso(H)=1.2Ueq(C). Exception made to the carboxylic hydrogen atom that was first located in a difference map and then refined with a fixed distance to the parent O atom (0.96 Å). This atom is disordered and its occupancy refined to near 0.5 in the first cycles of refinement and it was then fixed to 0.5 in the last cycles.

Structure description top

Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The crystal structure of the title compound, Mn(C7H5O2) (C10H7NO2)(C10H6NO2), consists of manganese(II) ions six-coordinated in a distorted octahedral environment (Fig. 1). The basal plane is occupied by four oxygen atoms with Mn—O distances ranging from 2.1293 (18) to 2.2858 (19) Å. Two basal oxygen atoms belong to the carboxylate group of the benzoate ion, that chelates the metal ion in the usual bidentate mode. Each of the two quinoline molecules supply another O atom to the Mn coordination environment. The apical positions are occupied by the nitrogen atoms of the quinoline ring system, with a distance of 2.2858 (19) Å. Both the benzoic acid and quinoline-2-carboxylic acid molecules are planar. The maximum deviation from the quinolinic plane is 0.1040 (9)Å for O2. The maximum deviation from the benzoic plane is 0.013 (2)Å for O1. The two planes make an angle of 82.98 (9)°. The complexes are joined together by hydrogen bonds, between the carboxylate/carboxylic groups of the quinaldic acid molecules (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged. Such H-bonds delineate zigzag chains that run along the c axis (Fig. 3).

For related literature, see Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Two of the complexes joined by a hydrogen bond (depicted as a dashed line) between the carboxylic/carboxylate groups of the quinoline molecule.
(Benzoato-κ2O,O')(quinoline-2-carboxylato-κ2N,O)(quinoline-2-carboxylic acid-κ2N,O)manganese(II) top
Crystal data top
[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]F(000) = 1068
Mr = 521.37Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.3839 (4) ÅCell parameters from 8901 reflections
b = 11.6775 (2) Åθ = 2.4–27.5°
c = 11.6306 (2) ŵ = 0.61 mm1
β = 117.288 (1)°T = 293 K
V = 2339.67 (8) Å3Prism, pink
Z = 40.24 × 0.22 × 0.15 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2917 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2525
Tmin = 0.883, Tmax = 0.908k = 1515
25798 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0806P)2 + 2.8119P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.68 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]V = 2339.67 (8) Å3
Mr = 521.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.3839 (4) ŵ = 0.61 mm1
b = 11.6775 (2) ÅT = 293 K
c = 11.6306 (2) Å0.24 × 0.22 × 0.15 mm
β = 117.288 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2413 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.908Rint = 0.027
25798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.68 e Å3
2917 reflectionsΔρmin = 0.50 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.20556 (4)0.25000.03799 (18)
O10.48852 (12)0.37094 (15)0.14858 (17)0.0505 (4)
O20.48495 (10)0.09330 (17)0.09597 (18)0.0508 (5)
H20.525 (3)0.041 (5)0.103 (7)0.07 (2)*0.50
N10.37188 (11)0.15467 (17)0.15100 (18)0.0378 (4)
C10.50000.4239 (3)0.25000.0395 (7)
C20.50000.5526 (3)0.25000.0359 (6)
C30.48852 (16)0.6123 (2)0.1396 (2)0.0457 (6)
H30.48070.57280.06520.055*
C40.4888 (2)0.7302 (3)0.1403 (3)0.0569 (7)
H40.48130.77020.06640.068*
C50.50000.7889 (3)0.25000.0582 (10)
H50.50000.86850.25000.070*
C60.41618 (15)0.0511 (3)0.0173 (3)0.0521 (6)
O30.39792 (16)0.0125 (4)0.0885 (3)0.1252 (15)
C70.35213 (13)0.0869 (2)0.0500 (2)0.0402 (5)
C150.31580 (14)0.1843 (2)0.1866 (2)0.0418 (5)
C100.23875 (14)0.1435 (2)0.1169 (3)0.0487 (6)
C90.22055 (15)0.0739 (3)0.0085 (3)0.0553 (7)
H90.17010.04760.04040.066*
C80.27651 (15)0.0452 (2)0.0249 (3)0.0501 (6)
H80.26520.00140.09630.060*
C110.18377 (18)0.1752 (3)0.1597 (4)0.0668 (9)
H110.13270.15000.11480.080*
C120.2053 (2)0.2419 (4)0.2655 (4)0.0790 (11)
H120.16900.26080.29380.095*
C130.2808 (2)0.2828 (3)0.3327 (3)0.0710 (9)
H130.29420.32920.40490.085*
C140.33583 (17)0.2557 (3)0.2942 (3)0.0551 (7)
H140.38600.28440.33890.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0367 (3)0.0369 (3)0.0406 (3)0.0000.0179 (2)0.000
O10.0663 (12)0.0394 (9)0.0450 (9)0.0012 (8)0.0248 (9)0.0037 (7)
O20.0375 (9)0.0580 (11)0.0577 (10)0.0023 (8)0.0226 (8)0.0194 (9)
N10.0344 (9)0.0405 (10)0.0380 (9)0.0031 (8)0.0162 (8)0.0023 (8)
C10.0338 (15)0.0405 (16)0.0427 (16)0.0000.0161 (13)0.000
C20.0321 (14)0.0367 (16)0.0402 (15)0.0000.0178 (12)0.000
C30.0552 (14)0.0469 (13)0.0379 (11)0.0038 (11)0.0238 (11)0.0019 (10)
C40.076 (2)0.0496 (15)0.0481 (14)0.0032 (14)0.0305 (14)0.0087 (12)
C50.075 (3)0.0352 (18)0.065 (2)0.0000.033 (2)0.000
C60.0408 (13)0.0669 (17)0.0482 (13)0.0026 (12)0.0201 (11)0.0100 (13)
O30.0565 (15)0.199 (4)0.117 (2)0.0191 (18)0.0365 (15)0.111 (3)
C70.0346 (11)0.0402 (12)0.0432 (12)0.0024 (9)0.0157 (9)0.0034 (10)
C150.0360 (11)0.0464 (13)0.0440 (12)0.0093 (9)0.0193 (10)0.0103 (10)
C100.0340 (12)0.0548 (15)0.0575 (15)0.0096 (11)0.0211 (11)0.0161 (12)
C90.0345 (12)0.0608 (16)0.0625 (16)0.0049 (11)0.0152 (11)0.0050 (14)
C80.0415 (13)0.0508 (14)0.0497 (14)0.0044 (11)0.0137 (11)0.0047 (12)
C110.0428 (15)0.088 (2)0.078 (2)0.0158 (15)0.0348 (15)0.0171 (18)
C120.064 (2)0.105 (3)0.088 (2)0.033 (2)0.0518 (19)0.018 (2)
C130.069 (2)0.089 (3)0.0659 (19)0.0200 (18)0.0405 (17)0.0030 (17)
C140.0501 (15)0.0647 (17)0.0522 (15)0.0115 (13)0.0249 (13)0.0014 (13)
Geometric parameters (Å, º) top
Mn1—O2i2.1293 (18)C5—C4i1.375 (3)
Mn1—O22.1293 (18)C5—H50.9300
Mn1—O1i2.2203 (19)C6—O31.200 (4)
Mn1—O12.2203 (19)C6—C71.515 (3)
Mn1—N12.2858 (19)C7—C81.405 (3)
Mn1—N1i2.2858 (19)C15—C141.401 (4)
Mn1—C12.550 (3)C15—C101.416 (4)
O1—C11.258 (2)C10—C91.403 (4)
O2—C61.319 (3)C10—C111.416 (4)
O2—H20.959 (10)C9—C81.352 (4)
N1—C71.319 (3)C9—H90.9300
N1—C151.373 (3)C8—H80.9300
C1—O1i1.258 (2)C11—C121.350 (6)
C1—C21.503 (5)C11—H110.9300
C2—C31.386 (3)C12—C131.390 (6)
C2—C3i1.386 (3)C12—H120.9300
C3—C41.377 (4)C13—C141.370 (4)
C3—H30.9300C13—H130.9300
C4—C51.375 (3)C14—H140.9300
C4—H40.9300
O2i—Mn1—O2104.00 (12)C4—C3—H3120.0
O2i—Mn1—O1i98.44 (7)C2—C3—H3120.0
O2—Mn1—O1i157.55 (8)C5—C4—C3120.2 (3)
O2i—Mn1—O1157.55 (8)C5—C4—H4119.9
O2—Mn1—O198.44 (7)C3—C4—H4119.9
O1i—Mn1—O159.13 (9)C4—C5—C4i120.2 (4)
O2i—Mn1—N187.81 (7)C4—C5—H5119.9
O2—Mn1—N173.62 (7)C4i—C5—H5119.9
O1i—Mn1—N1108.35 (7)O3—C6—O2125.5 (3)
O1—Mn1—N197.90 (7)O3—C6—C7118.1 (2)
O2i—Mn1—N1i73.62 (7)O2—C6—C7114.0 (2)
O2—Mn1—N1i87.81 (7)N1—C7—C8123.7 (2)
O1i—Mn1—N1i97.90 (7)N1—C7—C6116.9 (2)
O1—Mn1—N1i108.35 (7)C8—C7—C6119.3 (2)
N1—Mn1—N1i149.86 (10)N1—C15—C14119.0 (2)
O2i—Mn1—C1128.00 (6)N1—C15—C10121.0 (2)
O2—Mn1—C1128.00 (6)C14—C15—C10119.9 (2)
O1i—Mn1—C129.57 (4)C9—C10—C15118.3 (2)
O1—Mn1—C129.57 (5)C9—C10—C11123.2 (3)
N1—Mn1—C1105.07 (5)C15—C10—C11118.5 (3)
N1i—Mn1—C1105.07 (5)C8—C9—C10119.9 (2)
C1—O1—Mn189.89 (16)C8—C9—H9120.1
C6—O2—Mn1121.28 (15)C10—C9—H9120.1
C6—O2—H2110 (4)C9—C8—C7118.8 (3)
Mn1—O2—H2122 (4)C9—C8—H8120.6
C7—N1—C15118.2 (2)C7—C8—H8120.6
C7—N1—Mn1114.17 (15)C12—C11—C10120.1 (3)
C15—N1—Mn1127.58 (16)C12—C11—H11119.9
O1—C1—O1i121.1 (3)C10—C11—H11119.9
O1—C1—C2119.46 (16)C11—C12—C13121.2 (3)
O1i—C1—C2119.46 (16)C11—C12—H12119.4
O1—C1—Mn160.54 (16)C13—C12—H12119.4
O1i—C1—Mn160.54 (16)C14—C13—C12120.8 (3)
C2—C1—Mn1180.0C14—C13—H13119.6
C3—C2—C3i119.6 (3)C12—C13—H13119.6
C3—C2—C1120.20 (16)C13—C14—C15119.4 (3)
C3i—C2—C1120.20 (16)C13—C14—H14120.3
C4—C3—C2119.9 (2)C15—C14—H14120.3
O2i—Mn1—O1—C13.1 (2)O1—C1—C2—C30.90 (17)
O2—Mn1—O1—C1178.80 (10)O1i—C1—C2—C3179.10 (17)
O1i—Mn1—O1—C10.0Mn1—C1—C2—C3108 (100)
N1—Mn1—O1—C1106.70 (10)O1—C1—C2—C3i179.10 (17)
N1i—Mn1—O1—C188.30 (11)O1i—C1—C2—C3i0.90 (17)
O2i—Mn1—O2—C685.4 (2)Mn1—C1—C2—C3i72 (100)
O1i—Mn1—O2—C696.5 (3)C3i—C2—C3—C40.2 (2)
O1—Mn1—O2—C693.8 (2)C1—C2—C3—C4179.8 (2)
N1—Mn1—O2—C62.0 (2)C2—C3—C4—C50.3 (4)
N1i—Mn1—O2—C6157.9 (2)C3—C4—C5—C4i0.2 (2)
C1—Mn1—O2—C694.6 (2)Mn1—O2—C6—O3160.0 (3)
O2i—Mn1—N1—C7107.04 (17)Mn1—O2—C6—C71.8 (3)
O2—Mn1—N1—C71.76 (16)C15—N1—C7—C81.4 (4)
O1i—Mn1—N1—C7154.79 (16)Mn1—N1—C7—C8179.9 (2)
O1—Mn1—N1—C794.77 (17)C15—N1—C7—C6177.1 (2)
N1i—Mn1—N1—C755.92 (15)Mn1—N1—C7—C61.5 (3)
C1—Mn1—N1—C7124.07 (15)O3—C6—C7—N1163.2 (3)
O2i—Mn1—N1—C1571.34 (19)O2—C6—C7—N10.1 (4)
O2—Mn1—N1—C15176.6 (2)O3—C6—C7—C818.3 (5)
O1i—Mn1—N1—C1526.8 (2)O2—C6—C7—C8178.5 (2)
O1—Mn1—N1—C1586.85 (19)C7—N1—C15—C14179.6 (2)
N1i—Mn1—N1—C15122.46 (19)Mn1—N1—C15—C141.3 (3)
C1—Mn1—N1—C1557.55 (19)C7—N1—C15—C100.1 (3)
Mn1—O1—C1—O1i0.000 (1)Mn1—N1—C15—C10178.43 (17)
Mn1—O1—C1—C2180.0N1—C15—C10—C91.4 (4)
O2i—Mn1—C1—O1178.49 (12)C14—C15—C10—C9178.9 (3)
O2—Mn1—C1—O11.51 (12)N1—C15—C10—C11178.8 (2)
O1i—Mn1—C1—O1180.0C14—C15—C10—C110.9 (4)
N1—Mn1—C1—O179.27 (12)C15—C10—C9—C81.7 (4)
N1i—Mn1—C1—O1100.73 (12)C11—C10—C9—C8178.6 (3)
O2i—Mn1—C1—O1i1.51 (12)C10—C9—C8—C70.5 (4)
O2—Mn1—C1—O1i178.49 (12)N1—C7—C8—C91.1 (4)
O1—Mn1—C1—O1i180.000 (1)C6—C7—C8—C9177.3 (3)
N1—Mn1—C1—O1i100.73 (12)C9—C10—C11—C12179.6 (3)
N1i—Mn1—C1—O1i79.27 (12)C15—C10—C11—C120.7 (5)
O2i—Mn1—C1—C272 (100)C10—C11—C12—C131.4 (6)
O2—Mn1—C1—C2108 (100)C11—C12—C13—C140.6 (6)
O1i—Mn1—C1—C273 (100)C12—C13—C14—C151.0 (5)
O1—Mn1—C1—C2107 (100)N1—C15—C14—C13178.0 (3)
N1—Mn1—C1—C228 (100)C10—C15—C14—C131.7 (4)
N1i—Mn1—C1—C2152 (100)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.96 (7)1.70 (7)2.621 (4)160 (6)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]
Mr521.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.3839 (4), 11.6775 (2), 11.6306 (2)
β (°) 117.288 (1)
V3)2339.67 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.24 × 0.22 × 0.15
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.883, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
25798, 2917, 2413
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.08
No. of reflections2917
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.50

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.96 (7)1.70 (7)2.621 (4)160 (6)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844.  Google Scholar
First citationDobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365–367.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationZurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds