organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­droxy-2,2,6,6-tetra­methyl­piperidinium tri­fluoro­acetate

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, bSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and cSchool of Materials Science and Engineering, Shijizhuang Railway Institute, Shijiazhuang 050043, People's Republic of China
*Correspondence e-mail: dengyicoo@yahoo.com.cn

(Received 5 December 2007; accepted 10 December 2007; online 18 December 2007)

The title compound, C9H20NO+·C2F3O2, is an important inter­mediate in the synthesis of hindered light stabilizers. The piperidinium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen bonds. The CF3 group is disordered over two positions with almost equal site occupancy factors.

Related literature

For general background, see: Borzatta & Carrozza (1991[Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.]). For related structures, see: Nengfang et al. (2005[Nengfang, S., Guo, H. Z., Yin, G. & Wu, A. (2005). Acta Cryst. E61, o2902-o2903.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20NO+·C2F3O2

  • Mr = 271.28

  • Orthorhombic, P 21 21 21

  • a = 7.6204 (8) Å

  • b = 9.8939 (10) Å

  • c = 18.099 (2) Å

  • V = 1364.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.974, Tmax = 0.981

  • 17989 measured reflections

  • 2039 independent reflections

  • 1993 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.132

  • S = 1.23

  • 2039 reflections

  • 202 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.92 1.88 2.786 (3) 169
N1—H1A⋯O1i 0.92 1.96 2.869 (3) 171
O1—H1⋯O3ii 0.84 1.85 2.682 (3) 171
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

4-hydroxyl-2,2,6,6-tetramethylpiperidine is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991; She et al., 2005). The piperidium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H···O and N—H···O hydrogen bonds.

Related literature top

For general background, see: Borzatta & Carrozza (1991). For related structures, see: Nengfang et al. (2005).

Experimental top

An ethanol solution (10 ml) of 2,2,6,6-tetramethylpiperidin-4-ol (3.2 mmol, 0.5 g) was added dropwise to a stirred aqueous solution (6 ml) of trifluoroacetic acid (3.8 mmol, 0.43 g) at 293 K. Then the reaction mixture was filtered and the filtrate stood for about five days until colourless needle shaped crystals were obtained.

Refinement top

In the absence of anomalous scatterers, Friedel pairs had been merged and the absolute structure was arbitrarily assigned. All H atoms were positioned geometrically with C—H ranging from 0.98Å to 1.00Å and refined as riding with Uiso(H)=1.2Ueq(C,N,O) or 1.5eq(Cmethyl). The CF3 group is disordered over two position with a ratio of occupancy factors of 0.459 (1)/0.541 (1). The atoms of the CF3 group were restrained to an isotropic behaviour.

Structure description top

4-hydroxyl-2,2,6,6-tetramethylpiperidine is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991; She et al., 2005). The piperidium ring adopts a chair conformation with the hydroxyl group in an equatorial position. The crystal packing is stabilized by O—H···O and N—H···O hydrogen bonds.

For general background, see: Borzatta & Carrozza (1991). For related structures, see: Nengfang et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major occupied site of the disordered CF3 group is shown.
4-Hydroxy-2,2,6,6-tetramethylpiperidinium trifluoroacetate top
Crystal data top
C9H20NO+·C2F3O2Dx = 1.320 Mg m3
Mr = 271.28Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, P212121Cell parameters from 4344 reflections
a = 7.6204 (8) Åθ = 2.1–28.7°
b = 9.8939 (10) ŵ = 0.12 mm1
c = 18.099 (2) ÅT = 113 K
V = 1364.6 (2) Å3Needle, colourless
Z = 40.22 × 0.20 × 0.16 mm
F(000) = 576
Data collection top
Rigaku Saturn
diffractometer
2039 independent reflections
Radiation source: rotating anode1993 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.057
Detector resolution: 14.63 pixels mm-1θmax = 28.7°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1313
Tmin = 0.974, Tmax = 0.981l = 2424
17989 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.4132P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
2039 reflectionsΔρmax = 0.22 e Å3
202 parametersΔρmin = 0.21 e Å3
48 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C9H20NO+·C2F3O2V = 1364.6 (2) Å3
Mr = 271.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6204 (8) ŵ = 0.12 mm1
b = 9.8939 (10) ÅT = 113 K
c = 18.099 (2) Å0.22 × 0.20 × 0.16 mm
Data collection top
Rigaku Saturn
diffractometer
2039 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1993 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.057
17989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05748 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.23Δρmax = 0.22 e Å3
2039 reflectionsΔρmin = 0.21 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.9028 (3)0.20835 (18)0.73102 (11)0.0271 (5)
H10.86830.27690.70780.041*
O20.6874 (3)0.4099 (2)0.58896 (13)0.0394 (6)
O30.7885 (3)0.5590 (2)0.67201 (12)0.0398 (6)
N10.8175 (3)0.1997 (2)0.67551 (12)0.0226 (5)
H1A0.90120.23780.70560.027*
H1B0.76310.26950.65100.027*
C10.6801 (4)0.1339 (3)0.72563 (15)0.0244 (5)
C20.7571 (4)0.0022 (3)0.75609 (14)0.0241 (5)
H2A0.85030.02450.79220.029*
H2B0.66390.04750.78270.029*
C30.8336 (4)0.0893 (3)0.69685 (14)0.0233 (5)
H30.73920.11520.66120.028*
C40.9789 (4)0.0143 (3)0.65571 (15)0.0234 (5)
H4A1.03000.07530.61810.028*
H4B1.07290.00950.69110.028*
C50.9142 (4)0.1151 (3)0.61754 (14)0.0241 (6)
C60.6475 (4)0.2352 (3)0.78794 (18)0.0326 (7)
H6A0.75570.24770.81640.049*
H6B0.55490.20090.82050.049*
H6C0.61100.32200.76680.049*
C70.5089 (4)0.1126 (3)0.68236 (19)0.0335 (7)
H7A0.41410.08990.71680.050*
H7B0.52440.03870.64690.050*
H7C0.47890.19580.65580.050*
C81.0678 (4)0.2025 (3)0.59214 (16)0.0302 (6)
H8A1.02290.28520.56910.045*
H8B1.13840.15220.55620.045*
H8C1.14080.22620.63480.045*
C90.7963 (4)0.0851 (3)0.55106 (16)0.0331 (7)
H9A0.71120.01490.56430.050*
H9B0.86850.05360.50970.050*
H9C0.73380.16750.53660.050*
C100.7562 (4)0.5187 (3)0.60881 (16)0.0281 (6)
C110.8356 (12)0.6096 (9)0.5496 (5)0.037 (3)0.459 (14)
F10.7559 (17)0.7299 (6)0.5473 (4)0.067 (3)0.459 (14)
F21.0045 (10)0.6341 (15)0.5611 (4)0.086 (4)0.459 (14)
F30.8194 (18)0.5655 (13)0.4799 (6)0.070 (4)0.459 (14)
C11'0.7828 (13)0.6165 (8)0.5453 (4)0.042 (3)0.541 (14)
F1'0.6352 (15)0.6809 (12)0.5291 (5)0.126 (4)0.541 (14)
F2'0.900 (2)0.7116 (8)0.5599 (3)0.099 (5)0.541 (14)
F3'0.8406 (14)0.5571 (12)0.4839 (5)0.070 (4)0.541 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0347 (11)0.0164 (8)0.0303 (10)0.0008 (8)0.0069 (9)0.0017 (8)
O20.0504 (13)0.0219 (10)0.0458 (12)0.0013 (10)0.0187 (11)0.0011 (9)
O30.0615 (15)0.0274 (10)0.0306 (11)0.0091 (11)0.0059 (11)0.0024 (9)
N10.0236 (11)0.0177 (10)0.0266 (10)0.0003 (9)0.0010 (9)0.0003 (9)
C10.0212 (12)0.0193 (11)0.0327 (14)0.0006 (10)0.0012 (11)0.0002 (10)
C20.0220 (12)0.0239 (12)0.0266 (12)0.0010 (11)0.0014 (10)0.0015 (10)
C30.0260 (13)0.0189 (11)0.0251 (12)0.0016 (10)0.0050 (10)0.0015 (10)
C40.0242 (12)0.0226 (12)0.0235 (12)0.0017 (11)0.0001 (10)0.0021 (10)
C50.0278 (13)0.0202 (12)0.0244 (12)0.0020 (11)0.0004 (11)0.0008 (10)
C60.0298 (15)0.0269 (14)0.0412 (16)0.0004 (12)0.0098 (13)0.0047 (13)
C70.0242 (13)0.0266 (13)0.0498 (18)0.0009 (11)0.0036 (13)0.0032 (14)
C80.0356 (16)0.0263 (14)0.0286 (14)0.0029 (13)0.0046 (12)0.0016 (12)
C90.0434 (18)0.0272 (14)0.0287 (14)0.0013 (13)0.0109 (13)0.0016 (11)
C100.0292 (13)0.0200 (12)0.0351 (14)0.0032 (11)0.0061 (12)0.0015 (11)
C110.048 (5)0.030 (5)0.033 (5)0.009 (4)0.006 (4)0.004 (4)
F10.132 (8)0.020 (3)0.049 (4)0.017 (4)0.014 (4)0.011 (2)
F20.064 (5)0.129 (9)0.065 (4)0.058 (5)0.007 (3)0.005 (5)
F30.136 (10)0.043 (6)0.030 (5)0.037 (6)0.025 (5)0.002 (4)
C11'0.063 (6)0.037 (4)0.026 (4)0.000 (4)0.010 (3)0.001 (3)
F1'0.123 (7)0.136 (7)0.120 (6)0.051 (6)0.004 (5)0.080 (5)
F2'0.198 (13)0.060 (5)0.039 (3)0.082 (7)0.013 (6)0.012 (3)
F3'0.105 (7)0.063 (7)0.042 (5)0.025 (5)0.042 (4)0.024 (4)
Geometric parameters (Å, º) top
O1—C31.431 (3)C6—H6A0.9800
O1—H10.8400C6—H6B0.9800
O2—C101.250 (3)C6—H6C0.9800
O3—C101.236 (3)C7—H7A0.9800
N1—C11.531 (3)C7—H7B0.9800
N1—C51.531 (3)C7—H7C0.9800
N1—H1A0.9200C8—H8A0.9800
N1—H1B0.9200C8—H8B0.9800
C1—C61.529 (4)C8—H8C0.9800
C1—C21.531 (4)C9—H9A0.9800
C1—C71.537 (4)C9—H9B0.9800
C2—C31.519 (4)C9—H9C0.9800
C2—H2A0.9900C10—C11'1.516 (7)
C2—H2B0.9900C10—C111.525 (8)
C3—C41.526 (4)C11—F21.326 (9)
C3—H31.0000C11—F11.337 (8)
C4—C51.536 (4)C11—F31.339 (8)
C4—H4A0.9900C11'—F2'1.324 (8)
C4—H4B0.9900C11'—F1'1.325 (8)
C5—C81.527 (4)C11'—F3'1.333 (8)
C5—C91.530 (4)
C3—O1—H1109.5H6A—C6—H6B109.5
C1—N1—C5120.2 (2)C1—C6—H6C109.5
C1—N1—H1A107.3H6A—C6—H6C109.5
C5—N1—H1A107.3H6B—C6—H6C109.5
C1—N1—H1B107.3C1—C7—H7A109.5
C5—N1—H1B107.3C1—C7—H7B109.5
H1A—N1—H1B106.9H7A—C7—H7B109.5
C6—C1—N1105.6 (2)C1—C7—H7C109.5
C6—C1—C2110.8 (2)H7A—C7—H7C109.5
N1—C1—C2108.2 (2)H7B—C7—H7C109.5
C6—C1—C7109.1 (2)C5—C8—H8A109.5
N1—C1—C7109.7 (2)C5—C8—H8B109.5
C2—C1—C7113.1 (2)H8A—C8—H8B109.5
C3—C2—C1113.6 (2)C5—C8—H8C109.5
C3—C2—H2A108.9H8A—C8—H8C109.5
C1—C2—H2A108.9H8B—C8—H8C109.5
C3—C2—H2B108.9C5—C9—H9A109.5
C1—C2—H2B108.9C5—C9—H9B109.5
H2A—C2—H2B107.7H9A—C9—H9B109.5
O1—C3—C2109.1 (2)C5—C9—H9C109.5
O1—C3—C4110.1 (2)H9A—C9—H9C109.5
C2—C3—C4109.5 (2)H9B—C9—H9C109.5
O1—C3—H3109.4O3—C10—O2128.9 (3)
C2—C3—H3109.4O3—C10—C11'117.9 (4)
C4—C3—H3109.4O2—C10—C11'112.8 (4)
C3—C4—C5113.1 (2)O3—C10—C11112.4 (4)
C3—C4—H4A109.0O2—C10—C11118.2 (4)
C5—C4—H4A109.0F2—C11—F1106.4 (8)
C3—C4—H4B109.0F2—C11—F3107.3 (8)
C5—C4—H4B109.0F1—C11—F3102.6 (8)
H4A—C4—H4B107.8F2—C11—C10112.5 (7)
C8—C5—C9108.9 (2)F1—C11—C10111.5 (7)
C8—C5—N1105.4 (2)F3—C11—C10115.7 (9)
C9—C5—N1111.2 (2)F2'—C11'—F1'106.0 (8)
C8—C5—C4111.2 (2)F2'—C11'—F3'104.8 (8)
C9—C5—C4112.4 (2)F1'—C11'—F3'107.9 (8)
N1—C5—C4107.6 (2)F2'—C11'—C10113.2 (6)
C1—C6—H6A109.5F1'—C11'—C10111.2 (6)
C1—C6—H6B109.5F3'—C11'—C10113.3 (8)
C5—N1—C1—C6165.7 (2)O2—C10—C11—F2121.8 (8)
C5—N1—C1—C247.0 (3)C11'—C10—C11—F2164 (3)
C5—N1—C1—C776.9 (3)O3—C10—C11—F169.1 (8)
C6—C1—C2—C3166.0 (2)O2—C10—C11—F1118.7 (8)
N1—C1—C2—C350.6 (3)C11'—C10—C11—F145 (2)
C7—C1—C2—C371.2 (3)O3—C10—C11—F3174.2 (8)
C1—C2—C3—O1179.6 (2)O2—C10—C11—F32.0 (11)
C1—C2—C3—C459.1 (3)C11'—C10—C11—F372 (2)
O1—C3—C4—C5180.0 (2)O3—C10—C11'—F2'25.7 (9)
C2—C3—C4—C560.1 (3)O2—C10—C11'—F2'160.6 (8)
C1—N1—C5—C8166.6 (2)C11—C10—C11'—F2'47 (2)
C1—N1—C5—C975.6 (3)O3—C10—C11'—F1'93.5 (8)
C1—N1—C5—C447.8 (3)O2—C10—C11'—F1'80.2 (9)
C3—C4—C5—C8167.3 (2)C11—C10—C11'—F1'167 (3)
C3—C4—C5—C970.4 (3)O3—C10—C11'—F3'144.8 (8)
C3—C4—C5—N152.4 (3)O2—C10—C11'—F3'41.5 (10)
O3—C10—C11—F250.4 (9)C11—C10—C11'—F3'72 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.921.882.786 (3)169
N1—H1A···O1i0.921.962.869 (3)171
O1—H1···O3ii0.841.852.682 (3)171
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H20NO+·C2F3O2
Mr271.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)7.6204 (8), 9.8939 (10), 18.099 (2)
V3)1364.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
17989, 2039, 1993
Rint0.057
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.132, 1.23
No. of reflections2039
No. of parameters202
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.921.882.786 (3)169.4
N1—H1A···O1i0.921.962.869 (3)171.1
O1—H1···O3ii0.841.852.682 (3)170.5
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y1, z.
 

References

First citationBorzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.  Google Scholar
First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNengfang, S., Guo, H. Z., Yin, G. & Wu, A. (2005). Acta Cryst. E61, o2902–o2903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds