organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 2-[(4-nitro­phen­yl)­hydrazono]­propanoate

aDepartment of Chemistry, University of Fuzhou, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: yhyang198@yahoo.com.cn

(Received 10 December 2007; accepted 17 December 2007; online 21 December 2007)

The title compound, C10H11N3O4, is a condensation product of 4-nitro­phenyl­hydrazine and methyl pyruvate. The complete mol­ecule except for the methyl groups can be considered as a conjugated π system. All non-H atoms are approximately coplanar (r.m.s. deviation 0.117 Å). The crystal packing involves an N—H⋯O hydrogen bond and a ππ inter­action between the aromatic rings, with a centroid–centroid distance of 3.617 Å.

Related literature

For related literature, see: Humphrey & Kuethe (2006[Humphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875-2911.]); Tietze et al. (2003[Tietze, L. F., Haunert, F., Feuerstein, T. & Herzig, T. (2003). Eur. J. Org. Chem. pp. 562-566.]); Van Order & Lindwall (1942[Van Order, R. B. & Lindwall, H. G. (1942). Chem. Rev. 30, 69-96.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O4

  • Mr = 237.22

  • Monoclinic, P 21 /c

  • a = 12.836 (3) Å

  • b = 6.9260 (14) Å

  • c = 11.915 (2) Å

  • β = 90.11 (3)°

  • V = 1059.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 (2) K

  • 0.60 × 0.54 × 0.16 mm

Data collection
  • Rigaku R-AXIS SPIDER diffractometer

  • Absorption correction: none

  • 9730 measured reflections

  • 2416 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.09

  • 2416 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯O3i 0.853 (18) 2.200 (18) 2.9928 (17) 154.6 (16)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, a phenylhydrazone derivative, is an important intermediate for the synthesis of indoles by the Fischer indole reaction (Van Order & Lindwall, 1942; Humphrey & Kuethe, 2006).

The molecular structure of the title compound is shown in Fig. 1. The complete molecule except the methyl groups can be considered as a conjugated π-system. All non-H atoms lie in a common plane (r.m.s. deviation 0.117 Å). The crystal packing shows an N—H···O hydrogen bond (Table 1) and a π-π interaction between the aromatic rings with a centroid-centroid distance of 3.617Å (symmetry operator: 1 - x, -y, 1 - z).

Related literature top

For related literature, see: Humphrey & Kuethe (2006); Tietze et al. (2003); Van Order & Lindwall (1942).

Experimental top

A suspension of 4-nitrophenylhydrazine (7.65 g, 50 mmol) in concd. HCl (20 ml) and H2O (20 ml) was heated to reflux untill the suspension solved. The solution was cooled to room temperature. Then the precipitate was filtrated off and dried. The solid was dissolved in methanol (100 ml) and treated with NaOAc (4.92 g, 60 mmol) and methyl pyruvate (5.10 g, 50 mmol). The mixture was stirred at room temperature for 18 h. Then the yellow precipitate was filtered off, washed with methanol and dried to afford 11.13 g of the title compound (47 mmol, 94%) (Tietze et al., 2003). mp: 209.6–211.1°C. IR: (KBr, ν, cm-1): 3301 (N—H), 2962 (C—H), 1716 (C—O), 1611 (C—N), 1578, 1504, 1486, 1438, 1338, 1399, 1253, 1177, 1130, 1113, 847, 751.

Refinement top

H atoms of the two methyl groups were refined using a riding model with C—H = 0.96Å and U(H)=1.5Ueq(C). These methyl groups were allowed to rotate but not to tip. All other H atoms were freely refined.

Structure description top

The title compound, a phenylhydrazone derivative, is an important intermediate for the synthesis of indoles by the Fischer indole reaction (Van Order & Lindwall, 1942; Humphrey & Kuethe, 2006).

The molecular structure of the title compound is shown in Fig. 1. The complete molecule except the methyl groups can be considered as a conjugated π-system. All non-H atoms lie in a common plane (r.m.s. deviation 0.117 Å). The crystal packing shows an N—H···O hydrogen bond (Table 1) and a π-π interaction between the aromatic rings with a centroid-centroid distance of 3.617Å (symmetry operator: 1 - x, -y, 1 - z).

For related literature, see: Humphrey & Kuethe (2006); Tietze et al. (2003); Van Order & Lindwall (1942).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97-2 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(E)-Methyl 2-[(4-nitrophenyl)hydrazono]propanoate top
Crystal data top
C10H11N3O4F(000) = 496
Mr = 237.22Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P2ybcCell parameters from 7757 reflections
a = 12.836 (3) Åθ = 6.4–55.0°
b = 6.9260 (14) ŵ = 0.12 mm1
c = 11.915 (2) ÅT = 173 K
β = 90.11 (3)°Chip, yellow
V = 1059.3 (4) Å30.60 × 0.54 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS Spider
diffractometer
1997 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 10 pixels mm-1h = 1616
ω oscillation scansk = 87
9730 measured reflectionsl = 1515
2416 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.336P]
where P = (Fo2 + 2Fc2)/3
2416 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H11N3O4V = 1059.3 (4) Å3
Mr = 237.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.836 (3) ŵ = 0.12 mm1
b = 6.9260 (14) ÅT = 173 K
c = 11.915 (2) Å0.60 × 0.54 × 0.16 mm
β = 90.11 (3)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
1997 reflections with I > 2σ(I)
9730 measured reflectionsRint = 0.021
2416 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.29 e Å3
2416 reflectionsΔρmin = 0.29 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23523 (9)0.09076 (17)0.62405 (10)0.0249 (3)
N20.65298 (8)0.28388 (17)0.55245 (9)0.0217 (3)
H50.6937 (13)0.255 (3)0.6065 (15)0.028 (4)*
N30.68657 (8)0.33719 (16)0.44935 (9)0.0202 (3)
O10.21019 (8)0.03458 (18)0.71835 (9)0.0362 (3)
O20.17278 (8)0.10441 (19)0.54620 (10)0.0381 (3)
O30.75514 (8)0.43209 (18)0.24033 (8)0.0339 (3)
O40.90897 (7)0.50736 (15)0.31757 (8)0.0256 (3)
C10.34331 (10)0.14249 (18)0.60429 (11)0.0200 (3)
C20.37287 (10)0.2085 (2)0.49903 (11)0.0219 (3)
H10.3235 (14)0.217 (3)0.4375 (16)0.040 (5)*
C30.47596 (10)0.25744 (19)0.48098 (11)0.0207 (3)
H20.4965 (13)0.309 (2)0.4086 (15)0.029 (4)*
C40.54879 (9)0.23761 (19)0.56748 (10)0.0188 (3)
C50.51738 (10)0.1701 (2)0.67302 (11)0.0225 (3)
H30.5685 (14)0.158 (3)0.7310 (16)0.035 (5)*
C60.41453 (10)0.1227 (2)0.69133 (11)0.0225 (3)
H40.3938 (13)0.072 (3)0.7635 (15)0.031 (4)*
C70.78391 (10)0.37883 (19)0.43797 (11)0.0204 (3)
C80.86529 (11)0.3763 (3)0.52797 (12)0.0333 (4)
H60.87670.50530.55480.050*
H70.92910.32580.49800.050*
H80.84230.29620.58880.050*
C90.81181 (10)0.44003 (19)0.32127 (11)0.0204 (3)
C100.94452 (11)0.5806 (2)0.21009 (12)0.0303 (3)
H91.01300.63450.21850.045*
H100.89750.67880.18410.045*
H110.94660.47700.15660.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0205 (6)0.0267 (6)0.0276 (6)0.0007 (5)0.0051 (4)0.0034 (5)
N20.0181 (5)0.0302 (6)0.0169 (5)0.0020 (5)0.0008 (4)0.0016 (4)
N30.0202 (5)0.0217 (6)0.0188 (5)0.0005 (4)0.0040 (4)0.0011 (4)
O10.0273 (5)0.0512 (7)0.0302 (6)0.0087 (5)0.0102 (4)0.0038 (5)
O20.0202 (5)0.0564 (8)0.0376 (6)0.0041 (5)0.0033 (4)0.0014 (5)
O30.0255 (5)0.0559 (7)0.0202 (5)0.0093 (5)0.0011 (4)0.0031 (5)
O40.0199 (5)0.0350 (6)0.0220 (5)0.0066 (4)0.0039 (3)0.0013 (4)
C10.0174 (6)0.0199 (6)0.0227 (6)0.0011 (5)0.0036 (5)0.0039 (5)
C20.0204 (6)0.0246 (7)0.0208 (6)0.0013 (5)0.0005 (5)0.0005 (5)
C30.0216 (6)0.0234 (6)0.0172 (6)0.0006 (5)0.0026 (5)0.0017 (5)
C40.0186 (6)0.0184 (6)0.0193 (6)0.0000 (5)0.0031 (4)0.0022 (5)
C50.0210 (6)0.0293 (7)0.0173 (6)0.0004 (5)0.0001 (5)0.0010 (5)
C60.0235 (6)0.0266 (7)0.0173 (6)0.0014 (5)0.0045 (5)0.0006 (5)
C70.0195 (6)0.0217 (6)0.0199 (6)0.0017 (5)0.0019 (5)0.0024 (5)
C80.0234 (6)0.0543 (10)0.0223 (7)0.0100 (7)0.0005 (5)0.0040 (6)
C90.0191 (6)0.0216 (6)0.0207 (6)0.0007 (5)0.0028 (5)0.0022 (5)
C100.0256 (7)0.0384 (8)0.0270 (7)0.0052 (6)0.0085 (5)0.0057 (6)
Geometric parameters (Å, º) top
N1—O21.2284 (17)C3—C41.3970 (18)
N1—O11.2323 (16)C3—H20.970 (18)
N1—C11.4525 (16)C4—C51.4016 (18)
N2—N31.3540 (15)C5—C61.3783 (18)
N2—C41.3872 (16)C5—H30.956 (18)
N2—H50.853 (18)C6—H40.966 (18)
N3—C71.2897 (16)C7—C81.4958 (19)
O3—C91.2080 (17)C7—C91.4977 (18)
O4—C91.3323 (15)C8—H60.9600
O4—C101.4518 (16)C8—H70.9600
C1—C61.3880 (19)C8—H80.9600
C1—C21.3885 (19)C10—H90.9600
C2—C31.3831 (17)C10—H100.9600
C2—H10.970 (19)C10—H110.9600
O2—N1—O1122.81 (12)C4—C5—H3118.7 (11)
O2—N1—C1118.73 (11)C5—C6—C1119.20 (12)
O1—N1—C1118.46 (12)C5—C6—H4119.5 (10)
N3—N2—C4119.27 (11)C1—C6—H4121.3 (10)
N3—N2—H5123.6 (11)N3—C7—C8126.68 (12)
C4—N2—H5116.0 (11)N3—C7—C9113.23 (11)
C7—N3—N2117.81 (11)C8—C7—C9120.07 (11)
C9—O4—C10116.57 (11)C7—C8—H6109.5
C6—C1—C2121.79 (12)C7—C8—H7109.5
C6—C1—N1118.84 (12)H6—C8—H7109.5
C2—C1—N1119.37 (12)C7—C8—H8109.5
C3—C2—C1118.97 (12)H6—C8—H8109.5
C3—C2—H1119.4 (11)H7—C8—H8109.5
C1—C2—H1121.6 (11)O3—C9—O4123.49 (12)
C2—C3—C4120.02 (12)O3—C9—C7125.70 (12)
C2—C3—H2119.3 (10)O4—C9—C7110.81 (11)
C4—C3—H2120.6 (10)O4—C10—H9109.5
N2—C4—C3121.74 (12)O4—C10—H10109.5
N2—C4—C5118.16 (12)H9—C10—H10109.5
C3—C4—C5120.10 (12)O4—C10—H11109.5
C6—C5—C4119.92 (12)H9—C10—H11109.5
C6—C5—H3121.4 (11)H10—C10—H11109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O3i0.853 (18)2.200 (18)2.9928 (17)154.6 (16)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11N3O4
Mr237.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.836 (3), 6.9260 (14), 11.915 (2)
β (°) 90.11 (3)
V3)1059.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.60 × 0.54 × 0.16
Data collection
DiffractometerRigaku R-AXIS Spider
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9730, 2416, 1997
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.09
No. of reflections2416
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97-2 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O3i0.853 (18)2.200 (18)2.9928 (17)154.6 (16)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Foundations of Fujian Province (No. 2006F5058) and Fuzhou University (No. XRC0527).

References

First citationHumphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875–2911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTietze, L. F., Haunert, F., Feuerstein, T. & Herzig, T. (2003). Eur. J. Org. Chem. pp. 562–566.  CrossRef Google Scholar
First citationVan Order, R. B. & Lindwall, H. G. (1942). Chem. Rev. 30, 69–96.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds