organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-3-(4-pyrid­yl)isoxazole

aCollege of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China
*Correspondence e-mail: djcwye@163.com

(Received 22 October 2007; accepted 25 November 2007; online 6 December 2007)

In the title compound, C8H7N3O, there are two independent mol­ecules in the asymmetric unit, in which the angles between the pyridine ring and the isoxazole ring are 35.8 (6) and 10.6 (2)°. The crystal packing is stabilized by N—H⋯N hydrogen bonds, which result in the mol­ecules forming a two-dimensional supra­molecular layer.

Related literature

The title compound was prepared according to a known procedure (Schmidt et al., 1966[Schmidt, P., Eichenberger, K. & Wilhelm, M. (1966). US Patent 3 277 105.]). For hydrogen-bond motif definitions, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O

  • Mr = 161.17

  • Monoclinic, P 21 /c

  • a = 14.6411 (13) Å

  • b = 10.9272 (10) Å

  • c = 10.0060 (9) Å

  • β = 106.9870 (10)°

  • V = 1531.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 187 (2) K

  • 0.42 × 0.18 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.990

  • 8396 measured reflections

  • 3018 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.02

  • 3018 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4 0.88 2.09 2.970 (2) 177
N3—H3B⋯N2i 0.88 2.20 3.077 (2) 169
N6—H6A⋯N1ii 0.88 2.12 2.976 (2) 164
N6—H6B⋯N5iii 0.88 2.09 2.970 (2) 174
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Version 6. Bruker AXS, Inc., Madison, Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsion, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an intermediate for our drug development program. Its structure is shown in Fig. 1. The asymmetric unit was formed by two independent molecules, in which the angles between the pyridine ring and the isoxazole ring are 35.8 (6)° and 10.6 (2)° respectively. Four types of N—H···N hydrogen bonds in the structure are present, which generate two rings, R44(18) and R44(28) (Bernstein et al., 1995). These hydrogen bonds extend the monomer into a two-dimensional supramolecular layer (Fig. 2 and Table 1).

Related literature top

The title compound was prepared according to a known procedure (Schmidt et al., 1966). For hydrogen-bond motif definitions, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to a known procedure (Schmidt et al., 1966). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethanol solution at room temperature.

Refinement top

H atoms were found on difference Fourier maps and refined as riding, with C—H distance of 0.95 Å and N—H distance of 0.88 Å, and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The title compound, (I), is an intermediate for our drug development program. Its structure is shown in Fig. 1. The asymmetric unit was formed by two independent molecules, in which the angles between the pyridine ring and the isoxazole ring are 35.8 (6)° and 10.6 (2)° respectively. Four types of N—H···N hydrogen bonds in the structure are present, which generate two rings, R44(18) and R44(28) (Bernstein et al., 1995). These hydrogen bonds extend the monomer into a two-dimensional supramolecular layer (Fig. 2 and Table 1).

The title compound was prepared according to a known procedure (Schmidt et al., 1966). For hydrogen-bond motif definitions, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the three-dimensional supramolecular structure in (I). Dashed lines indicate hydrogen bonds.
5-amino-3-(4-pyridyl)isoxazole top
Crystal data top
C8H7N3OF(000) = 672
Mr = 161.17Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2830 reflections
a = 14.6411 (13) Åθ = 2.4–25.9°
b = 10.9272 (10) ŵ = 0.10 mm1
c = 10.0060 (9) ÅT = 187 K
β = 106.987 (1)°Block, colourless
V = 1531.0 (2) Å30.42 × 0.18 × 0.10 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
3018 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1814
Tmin = 0.960, Tmax = 0.990k = 1013
8396 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.07P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3018 reflectionsΔρmax = 0.23 e Å3
218 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (10)
Crystal data top
C8H7N3OV = 1531.0 (2) Å3
Mr = 161.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.6411 (13) ŵ = 0.10 mm1
b = 10.9272 (10) ÅT = 187 K
c = 10.0060 (9) Å0.42 × 0.18 × 0.10 mm
β = 106.987 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3018 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2509 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.990Rint = 0.025
8396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3018 reflectionsΔρmin = 0.23 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46333 (7)0.85688 (9)0.20940 (11)0.0346 (3)
O20.00420 (8)0.88480 (9)0.77638 (11)0.0336 (3)
N10.79693 (9)0.83254 (13)0.07659 (13)0.0383 (3)
N20.52225 (9)0.80823 (11)0.13072 (13)0.0337 (3)
N30.44141 (10)1.03237 (12)0.31848 (14)0.0388 (3)
H3A0.39460.99500.34070.047*
H3B0.45581.10860.34470.047*
N40.28672 (10)0.90935 (13)0.40458 (14)0.0398 (3)
N50.06798 (9)0.93321 (11)0.70626 (14)0.0359 (3)
N60.06051 (10)0.70441 (11)0.81376 (14)0.0377 (3)
H6A0.09270.74580.86060.045*
H6B0.06750.62460.80480.045*
C10.72429 (11)0.75481 (15)0.08875 (15)0.0358 (4)
H10.72220.68300.14300.043*
C20.65244 (11)0.77244 (14)0.02749 (15)0.0346 (4)
H20.60260.71410.03980.042*
C30.65383 (10)0.87660 (13)0.05244 (14)0.0271 (3)
C40.72841 (11)0.95824 (14)0.06540 (16)0.0368 (4)
H40.73221.03100.11880.044*
C50.79718 (12)0.93253 (15)0.00027 (18)0.0419 (4)
H50.84770.98960.00960.050*
C60.58040 (10)0.89855 (13)0.12468 (13)0.0270 (3)
C70.49043 (11)0.97363 (13)0.24510 (14)0.0289 (3)
C80.56482 (10)1.00383 (13)0.19470 (14)0.0292 (3)
H80.59841.07930.20490.035*
C90.29569 (12)0.80896 (15)0.48351 (17)0.0399 (4)
H90.34610.75400.48450.048*
C100.23625 (11)0.77991 (14)0.56385 (16)0.0351 (4)
H100.24520.70650.61700.042*
C110.16304 (10)0.86076 (13)0.56504 (14)0.0286 (3)
C120.15291 (11)0.96543 (14)0.48390 (15)0.0331 (4)
H120.10381.02270.48200.040*
C130.21520 (12)0.98536 (15)0.40568 (16)0.0379 (4)
H130.20681.05700.34960.045*
C140.09696 (10)0.83758 (13)0.65003 (14)0.0272 (3)
C150.05754 (11)0.72799 (13)0.67909 (15)0.0310 (3)
H150.06890.64760.65140.037*
C160.00128 (10)0.76260 (13)0.75652 (14)0.0274 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (6)0.0288 (6)0.0488 (6)0.0019 (4)0.0251 (5)0.0016 (5)
O20.0403 (6)0.0237 (5)0.0474 (6)0.0025 (4)0.0294 (5)0.0020 (4)
N10.0352 (7)0.0459 (8)0.0394 (7)0.0043 (6)0.0198 (6)0.0003 (6)
N20.0330 (7)0.0304 (7)0.0443 (7)0.0000 (5)0.0216 (6)0.0034 (5)
N30.0443 (8)0.0306 (7)0.0545 (8)0.0018 (6)0.0347 (7)0.0025 (6)
N40.0369 (8)0.0452 (8)0.0452 (7)0.0045 (6)0.0242 (6)0.0018 (6)
N50.0415 (8)0.0270 (7)0.0502 (8)0.0038 (6)0.0303 (6)0.0000 (6)
N60.0488 (8)0.0247 (7)0.0527 (8)0.0031 (6)0.0353 (7)0.0018 (6)
C10.0382 (9)0.0391 (9)0.0328 (8)0.0022 (7)0.0146 (7)0.0053 (7)
C20.0331 (8)0.0370 (9)0.0361 (8)0.0039 (7)0.0138 (7)0.0038 (7)
C30.0270 (7)0.0287 (8)0.0268 (7)0.0030 (6)0.0098 (6)0.0026 (6)
C40.0364 (9)0.0340 (9)0.0458 (9)0.0031 (7)0.0209 (7)0.0060 (7)
C50.0382 (9)0.0418 (9)0.0538 (10)0.0065 (7)0.0263 (8)0.0063 (8)
C60.0251 (7)0.0283 (7)0.0284 (7)0.0005 (6)0.0088 (6)0.0043 (6)
C70.0321 (8)0.0258 (8)0.0313 (7)0.0020 (6)0.0129 (6)0.0030 (6)
C80.0308 (8)0.0269 (7)0.0343 (7)0.0030 (6)0.0164 (6)0.0006 (6)
C90.0351 (9)0.0421 (10)0.0491 (9)0.0051 (7)0.0225 (7)0.0015 (8)
C100.0353 (8)0.0328 (8)0.0417 (8)0.0037 (7)0.0181 (7)0.0040 (7)
C110.0270 (7)0.0300 (8)0.0312 (7)0.0035 (6)0.0124 (6)0.0026 (6)
C120.0336 (8)0.0314 (8)0.0398 (8)0.0011 (6)0.0193 (7)0.0023 (7)
C130.0431 (9)0.0347 (9)0.0423 (9)0.0030 (7)0.0225 (7)0.0038 (7)
C140.0266 (7)0.0268 (7)0.0301 (7)0.0015 (6)0.0113 (6)0.0017 (6)
C150.0387 (8)0.0223 (7)0.0386 (8)0.0016 (6)0.0214 (7)0.0006 (6)
C160.0309 (7)0.0227 (7)0.0322 (7)0.0010 (6)0.0150 (6)0.0016 (6)
Geometric parameters (Å, º) top
O1—C71.3527 (17)C3—C41.386 (2)
O1—N21.4295 (14)C3—C61.4798 (18)
O2—C161.3490 (17)C4—C51.382 (2)
O2—N51.4237 (14)C4—H40.9500
N1—C51.332 (2)C5—H50.9500
N1—C11.339 (2)C6—C81.3999 (19)
N2—C61.3164 (18)C7—C81.3677 (19)
N3—C71.3319 (18)C8—H80.9500
N3—H3A0.8800C9—C101.383 (2)
N3—H3B0.8800C9—H90.9500
N4—C91.336 (2)C10—C111.392 (2)
N4—C131.339 (2)C10—H100.9500
N5—C141.3145 (17)C11—C121.385 (2)
N6—C161.3322 (18)C11—C141.4847 (18)
N6—H6A0.8800C12—C131.3816 (19)
N6—H6B0.8800C12—H120.9500
C1—C21.377 (2)C13—H130.9500
C1—H10.9500C14—C151.3963 (19)
C2—C31.388 (2)C15—C161.3692 (19)
C2—H20.9500C15—H150.9500
C7—O1—N2108.58 (10)N3—C7—O1115.87 (13)
C16—O2—N5108.34 (10)N3—C7—C8134.62 (14)
C5—N1—C1116.20 (13)O1—C7—C8109.51 (12)
C6—N2—O1104.42 (11)C7—C8—C6104.48 (12)
C7—N3—H3A120.0C7—C8—H8127.8
C7—N3—H3B120.0C6—C8—H8127.8
H3A—N3—H3B120.0N4—C9—C10124.22 (15)
C9—N4—C13116.52 (13)N4—C9—H9117.9
C14—N5—O2104.82 (10)C10—C9—H9117.9
C16—N6—H6A120.0C9—C10—C11118.44 (14)
C16—N6—H6B120.0C9—C10—H10120.8
H6A—N6—H6B120.0C11—C10—H10120.8
N1—C1—C2124.11 (14)C12—C11—C10118.03 (13)
N1—C1—H1117.9C12—C11—C14120.03 (13)
C2—C1—H1117.9C10—C11—C14121.94 (13)
C1—C2—C3119.13 (14)C13—C12—C11119.13 (14)
C1—C2—H2120.4C13—C12—H12120.4
C3—C2—H2120.4C11—C12—H12120.4
C4—C3—C2117.40 (13)N4—C13—C12123.65 (15)
C4—C3—C6120.98 (13)N4—C13—H13118.2
C2—C3—C6121.60 (13)C12—C13—H13118.2
C5—C4—C3119.20 (14)N5—C14—C15112.83 (12)
C5—C4—H4120.4N5—C14—C11117.08 (12)
C3—C4—H4120.4C15—C14—C11130.08 (12)
N1—C5—C4123.96 (15)C16—C15—C14104.33 (12)
N1—C5—H5118.0C16—C15—H15127.8
C4—C5—H5118.0C14—C15—H15127.8
N2—C6—C8113.02 (12)N6—C16—O2115.30 (12)
N2—C6—C3118.22 (13)N6—C16—C15135.03 (14)
C8—C6—C3128.72 (13)O2—C16—C15109.67 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N40.882.092.970 (2)177
N3—H3B···N2i0.882.203.077 (2)169
N6—H6A···N1ii0.882.122.976 (2)164
N6—H6B···N5iii0.882.092.970 (2)174
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z+1; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H7N3O
Mr161.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)187
a, b, c (Å)14.6411 (13), 10.9272 (10), 10.0060 (9)
β (°) 106.987 (1)
V3)1531.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.18 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8396, 3018, 2509
Rint0.025
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.02
No. of reflections3018
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N40.882.092.970 (2)177
N3—H3B···N2i0.882.203.077 (2)169
N6—H6A···N1ii0.882.122.976 (2)164
N6—H6B···N5iii0.882.092.970 (2)174
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z+1; (iii) x, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationBruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2003). SAINT. Version 6. Bruker AXS, Inc., Madison, Wisconsion, USA.  Google Scholar
First citationSchmidt, P., Eichenberger, K. & Wilhelm, M. (1966). US Patent 3 277 105.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds