organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(S)-1-(3,5-Di­methyl-2-hy­droxy­phenyl)­ethyl]-N-[(R)-2-hydr­­oxy-1-phenyl­ethyl]ammonium chloride

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and bBureau of Education of Liaocheng, Liaocheng City, Shandong Province 252000, People's Republic of China
*Correspondence e-mail: gu_505@163.com

(Received 24 October 2007; accepted 25 November 2007; online 12 December 2007)

In the title compound, C18H24NO2+·Cl, the absolute configuration of the new stereogenic centre (the C atom with a CH2OH substituent) was unambiguously determined to have an R configuration. The dihedral angle between the two aromatic rings is 30.82 (2)°. Inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds and intra­molecular N—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For related literature, see: Cimarelli & Palmieri (1998[Cimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711-15720.], 2000[Cimarelli, C. & Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 2555-2563.]); Cimarelli et al. (2002[Cimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011-2018.]); Demir et al. (1999[Demir, A. S., Akhmedov, I. M. & Sesenoglu, O. (1999). Turk. J. Chem. 23, 123-126.]); Palmieri (1999[Palmieri, G. (1999). Eur. J. Org. Chem. pp. 805-811.], 2000[Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361-3373.]); Rijnberg et al. (1997[Rijnberg, E., Hovestad, N. J., Kleij, A. W., Jastrzebski, J. T. B. H., Boersma, J., Janssen, M. D., Spek, A. L. & van Koten, G. (1997). Organometallics, 16, 2847-2857.]); Sola et al. (1998[Sola, L., Reddy, K. S., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Riera, A., Alvarez-Larena, A. & Piniella, J. F. (1998). J. Org. Chem. 63, 7078-7082.]); Tümerdem et al. (2005[Tümerdem, R., Topal, G. & Turgut, Y. (2005). Tetrahedron Asymmetry, 16, 865-868.]); Tseng & Yang (2004[Tseng, S.-L. & Yang, T.-K. (2004). Tetrahedron Asymmetry, 15, 3375-3380.]); Xu et al. (2002[Xu, Q., Yang, H., Pan, X. & Chan, A. S. C. (2002). Tetrahedron Asymmetry, 13, 945-951.]); Zhang et al. (2006a[Zhang, G.-Y., Wang, X.-B., Zhao, J.-Y., Wang, W.-H. & Yang, X.-F. (2006a). Acta Cryst. E62, o2239-o2241.],b[Zhang, G.-Y., Wang, X.-B., Zhao, J.-Y., Wang, W.-H. & Yang, X.-F. (2006b). Acta Cryst. E62, o3035-o3037.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24NO2+·Cl

  • Mr = 321.83

  • Orthorhombic, P 21 21 21

  • a = 7.6500 (15) Å

  • b = 13.764 (3) Å

  • c = 16.420 (3) Å

  • V = 1728.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.44 × 0.32 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.955

  • 8842 measured reflections

  • 3202 independent reflections

  • 2738 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.02

  • 3202 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1204 Friedel pairs

  • Flack parameter: −0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1i 0.82 2.44 3.249 (2) 169
O1—H1⋯Cl1ii 0.82 2.28 3.0417 (18) 156
N1—H1A⋯Cl1iii 0.90 2.25 3.125 (2) 165
N1—H1B⋯O1 0.90 2.07 2.732 (2) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of new chiral ligands is widespread in asymmetric synthesis (Cimarelli & Palmieri, 1998, 2000; Tseng & Yang, 2004; Tümerdem et al., 2005). Among them, enantiopure amino alcohols have recently found application in asymmetric synthesis as chiral bases, auxiliaries and ligands (Cimarelli et al., 2002). Chiral amino phenols, which are similar to amino alcohols, are important building blocks in organic synthesis and have attracted increasing attention in recent years, owing to their effect in asymmetric synthesis and asymmetric induction (Palmieri, 1999, 2000; Cimarelli & Palmieri, 2000; Rijnberg et al., 1997; Sola et al., 1998; Xu et al., 2002).

We previously reported the preparation and the structure of several chiral aminophenols including two chiral ligands, which derived from (R)-(-)2-phenylglycine (Zhang et al., 2006a,b). As part of our continuing research on chiral aminophenols, we prepared a new aminoalkylphenol, namely, 2-[(1S)-1-{[(1R)-2-hydroxy-1-phenylethyl]amino}ethyl]-4,6-dimethylphenol. In order to determine its structure, the corresponding hydrochloride derivative, (I), was synthesized. Herein we report the crystal structure of (I), the title compound.

As shown in Fig. 1, the absolute configuration of (I) is (R,S), its geometric parameters are similar to those found in our previously reported relevant aminophenylphenols (Zhang et al., 2006a,b), at the same time, selected bond lengths and angles of (I), including those of new stereogenic carbon center (C9), are reported in Table S1, so we can infer the absolute configuration of the aminoalkylphenol is also (R,S). The dihedral angle of the two aromatic rings (C1–C6 and C11–C18) is 30.82 (2)°.

The molecular strcture of compound is linked by intermolecular N—H···Cl and O—H···Cl (Fig.2) and intromolecular N—H···O hydrogen bonds, with N···O = 2.732 (2) Å (Table 2), which indicates a comparatively strong intramolecular hydrogen bond within the asymmetric unit.

Related literature top

For related literature, see: Cimarelli & Palmieri (1998, 2000); Cimarelli et al. (2002); Demir et al. (1999); Palmieri (1999, 2000); Rijnberg et al. (1997); Sola et al. (1998); Tümerdem et al. (2005); Tseng & Yang (2004); Xu et al. (2002); Zhang et al. (2006a,b).

Experimental top

The title compound was prepared according to the procedure of Zhang et al. R-(-)-2-Phenylglycinol was prepared by the reduction of R-(-)2-phenylglycine with NaBH4 in tetrahydronfuran (THF) {80.2% yield, [α]D 24 = -25.5 (c6, MeOH)} (Demir et al., 1999). R-(-)-Phenylglycinol (0.27 g, 2 mmol) and 1-(2-hydroxy-3,5-dimethylphenyl)ethanone (0.33 g, 2 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 24 h. After removal of solvent, 10 ml THF was introduced and NaBH4 (0.15 g, 4 mmol) was added at 273 K, the mixture was stirred at the temperature until the solution became colourless. The reaction was quenched with 5 M HCl and then neutralized with NaOH solution. The aqueous solution was extracted with chloroform, the organic layer was dried with anhydrous Na2SO4 and then filtered. The organic solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography [first run: chloroform/methanol (30:1 v/v); second run: hexane:ethyl acetate (3:1 v/v)] to give chiral aminophenylphenol [75.8% yield; [α]D24 = -57.8(c0.5, CHCl3)]. The compound (28.5 mg, 0.1 mmol) was dissolved in methanol (10 ml) and concentrated HCl (0.1 ml) was added at room temperature, a white solid was precipitated. The corresponding HCl salt was crystallized from a 2-propanol/benzene mixture (1:20 v/v) (75% yield).

Refinement top

All H atoms were placed in idealized positions and treated as riding on their parent atoms, with N—H = 0.90 Å, O—H = 0.82 Å and CH(methyl) = 0.96 Å, CH(methylene) = 0.97 Å, C—H(methine) = 0.98 Å, C—H(aromatic) = 0.93 Å, and with Uiso(H) = 1.2Ueq(C,N,O) or 1.5Ueq(CH3).

Structure description top

The synthesis of new chiral ligands is widespread in asymmetric synthesis (Cimarelli & Palmieri, 1998, 2000; Tseng & Yang, 2004; Tümerdem et al., 2005). Among them, enantiopure amino alcohols have recently found application in asymmetric synthesis as chiral bases, auxiliaries and ligands (Cimarelli et al., 2002). Chiral amino phenols, which are similar to amino alcohols, are important building blocks in organic synthesis and have attracted increasing attention in recent years, owing to their effect in asymmetric synthesis and asymmetric induction (Palmieri, 1999, 2000; Cimarelli & Palmieri, 2000; Rijnberg et al., 1997; Sola et al., 1998; Xu et al., 2002).

We previously reported the preparation and the structure of several chiral aminophenols including two chiral ligands, which derived from (R)-(-)2-phenylglycine (Zhang et al., 2006a,b). As part of our continuing research on chiral aminophenols, we prepared a new aminoalkylphenol, namely, 2-[(1S)-1-{[(1R)-2-hydroxy-1-phenylethyl]amino}ethyl]-4,6-dimethylphenol. In order to determine its structure, the corresponding hydrochloride derivative, (I), was synthesized. Herein we report the crystal structure of (I), the title compound.

As shown in Fig. 1, the absolute configuration of (I) is (R,S), its geometric parameters are similar to those found in our previously reported relevant aminophenylphenols (Zhang et al., 2006a,b), at the same time, selected bond lengths and angles of (I), including those of new stereogenic carbon center (C9), are reported in Table S1, so we can infer the absolute configuration of the aminoalkylphenol is also (R,S). The dihedral angle of the two aromatic rings (C1–C6 and C11–C18) is 30.82 (2)°.

The molecular strcture of compound is linked by intermolecular N—H···Cl and O—H···Cl (Fig.2) and intromolecular N—H···O hydrogen bonds, with N···O = 2.732 (2) Å (Table 2), which indicates a comparatively strong intramolecular hydrogen bond within the asymmetric unit.

For related literature, see: Cimarelli & Palmieri (1998, 2000); Cimarelli et al. (2002); Demir et al. (1999); Palmieri (1999, 2000); Rijnberg et al. (1997); Sola et al. (1998); Tümerdem et al. (2005); Tseng & Yang (2004); Xu et al. (2002); Zhang et al. (2006a,b).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view in (I), viewed down the c axis. All H atoms not involved in hydrogen bonding have been omitted.
N-[(S)-1-(3,5-Dimethyl-2-hydroxyphenyl)ethyl]-N-[(R)-2-hydroxy-1- phenylethyl]ammonium chloride top
Crystal data top
C18H24NO2+·ClF(000) = 688
Mr = 321.83Dx = 1.236 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 2408 reflections
a = 7.6500 (15) Åθ = 2.5–22.3°
b = 13.764 (3) ŵ = 0.23 mm1
c = 16.420 (3) ÅT = 298 K
V = 1728.9 (6) Å3Block, colourless
Z = 40.44 × 0.32 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.906, Tmax = 0.955k = 1616
8842 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1178P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3202 reflectionsΔρmax = 0.21 e Å3
204 parametersΔρmin = 0.12 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C18H24NO2+·ClV = 1728.9 (6) Å3
Mr = 321.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6500 (15) ŵ = 0.23 mm1
b = 13.764 (3) ÅT = 298 K
c = 16.420 (3) Å0.44 × 0.32 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2738 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.955Rint = 0.034
8842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.12 e Å3
3202 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
204 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1767 (4)0.09660 (19)0.63609 (17)0.0640 (8)
H1C0.19160.13120.58790.077*
C20.1117 (5)0.1430 (2)0.7031 (2)0.0778 (10)
H2A0.08250.20850.69980.093*
C30.0893 (4)0.0945 (2)0.77455 (17)0.0644 (8)
H30.04580.12630.82020.077*
C40.1318 (4)0.0016 (2)0.77788 (15)0.0597 (7)
H40.11720.03540.82650.072*
C50.1958 (4)0.04971 (18)0.71078 (14)0.0507 (7)
H50.22250.11550.71420.061*
C60.2206 (3)0.00047 (17)0.63832 (13)0.0393 (5)
C70.2868 (3)0.04882 (17)0.56183 (13)0.0417 (6)
H70.31560.00230.52260.050*
C80.1534 (3)0.1151 (2)0.52276 (15)0.0537 (7)
H8A0.12270.16730.55980.064*
H8B0.04820.07900.50980.064*
C90.5988 (3)0.05219 (16)0.61594 (12)0.0368 (5)
H90.55520.02240.66620.044*
C100.7415 (3)0.1235 (2)0.63911 (15)0.0502 (6)
H10A0.69540.17060.67650.075*
H10B0.83630.08910.66440.075*
H10C0.78310.15590.59110.075*
C110.6644 (3)0.02824 (16)0.56161 (13)0.0369 (5)
C120.6896 (3)0.12039 (17)0.59373 (15)0.0442 (6)
H120.65270.13330.64660.053*
C130.7678 (3)0.19304 (18)0.54931 (15)0.0467 (6)
C140.7978 (4)0.29279 (19)0.58643 (18)0.0665 (8)
H14A0.71110.33720.56640.100*
H14B0.91200.31570.57170.100*
H14C0.78920.28850.64460.100*
C150.8203 (4)0.17215 (17)0.47075 (15)0.0491 (7)
H150.87470.22080.44070.059*
C160.7957 (3)0.08221 (16)0.43472 (13)0.0423 (6)
C170.8537 (4)0.0637 (2)0.34898 (14)0.0615 (8)
H17A0.88750.12390.32410.092*
H17B0.75920.03530.31870.092*
H17C0.95140.01990.34920.092*
C180.7165 (3)0.01038 (16)0.48159 (13)0.0389 (5)
Cl10.60116 (9)0.19629 (5)0.83115 (4)0.0548 (2)
N10.4501 (2)0.10661 (13)0.57750 (11)0.0371 (4)
H1A0.42250.15700.61000.044*
H1B0.48740.13130.52980.044*
O10.6813 (2)0.08114 (12)0.45252 (9)0.0517 (5)
H10.75310.09540.41740.078*
O20.2279 (3)0.15362 (19)0.45100 (12)0.0837 (7)
H20.15190.15910.41600.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (2)0.0547 (16)0.0531 (16)0.0138 (16)0.0037 (16)0.0089 (13)
C20.103 (3)0.0589 (17)0.072 (2)0.0279 (18)0.001 (2)0.0061 (16)
C30.0637 (18)0.0781 (19)0.0514 (16)0.0197 (17)0.0026 (15)0.0144 (14)
C40.0643 (19)0.0749 (18)0.0398 (13)0.0120 (16)0.0072 (13)0.0048 (13)
C50.0531 (17)0.0521 (14)0.0468 (14)0.0073 (13)0.0037 (13)0.0062 (11)
C60.0308 (12)0.0480 (13)0.0391 (12)0.0000 (11)0.0009 (10)0.0018 (11)
C70.0373 (14)0.0512 (14)0.0367 (12)0.0033 (11)0.0014 (11)0.0071 (10)
C80.0357 (15)0.0822 (19)0.0431 (14)0.0022 (13)0.0044 (11)0.0101 (13)
C90.0322 (12)0.0499 (13)0.0282 (10)0.0036 (11)0.0016 (10)0.0064 (9)
C100.0377 (14)0.0660 (15)0.0470 (14)0.0032 (12)0.0022 (11)0.0041 (12)
C110.0275 (12)0.0459 (13)0.0373 (12)0.0011 (9)0.0012 (10)0.0018 (10)
C120.0403 (14)0.0504 (14)0.0419 (13)0.0001 (12)0.0007 (11)0.0106 (11)
C130.0419 (14)0.0435 (13)0.0546 (15)0.0024 (12)0.0026 (12)0.0037 (12)
C140.073 (2)0.0509 (16)0.0755 (19)0.0086 (15)0.0006 (17)0.0123 (14)
C150.0480 (16)0.0439 (15)0.0554 (16)0.0025 (12)0.0001 (13)0.0095 (11)
C160.0401 (14)0.0469 (13)0.0400 (13)0.0018 (11)0.0016 (12)0.0057 (11)
C170.075 (2)0.0663 (16)0.0430 (14)0.0121 (14)0.0128 (14)0.0065 (12)
C180.0346 (13)0.0432 (13)0.0388 (12)0.0016 (11)0.0004 (10)0.0041 (10)
Cl10.0623 (4)0.0520 (4)0.0501 (3)0.0092 (3)0.0014 (3)0.0007 (3)
N10.0323 (11)0.0466 (11)0.0323 (9)0.0016 (8)0.0035 (8)0.0002 (8)
O10.0625 (12)0.0517 (10)0.0410 (9)0.0134 (9)0.0150 (9)0.0109 (8)
O20.0571 (14)0.142 (2)0.0522 (12)0.0003 (13)0.0057 (11)0.0414 (12)
Geometric parameters (Å, º) top
C1—C21.366 (4)C10—H10B0.9600
C1—C61.378 (3)C10—H10C0.9600
C1—H1C0.9300C11—C121.387 (3)
C2—C31.361 (4)C11—C181.395 (3)
C2—H2A0.9300C12—C131.375 (3)
C3—C41.363 (4)C12—H120.9300
C3—H30.9300C13—C151.381 (3)
C4—C51.375 (3)C13—C141.520 (3)
C4—H40.9300C14—H14A0.9600
C5—C61.382 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C71.509 (3)C15—C161.385 (3)
C7—N11.503 (3)C15—H150.9300
C7—C81.512 (3)C16—C181.392 (3)
C7—H70.9800C16—C171.498 (3)
C8—O21.412 (3)C17—H17A0.9600
C8—H8A0.9700C17—H17B0.9600
C8—H8B0.9700C17—H17C0.9600
C9—N11.501 (3)C18—O11.374 (3)
C9—C111.508 (3)N1—H1A0.9000
C9—C101.516 (3)N1—H1B0.9000
C9—H90.9800O1—H10.8200
C10—H10A0.9600O2—H20.8200
C2—C1—C6121.4 (3)H10A—C10—H10C109.5
C2—C1—H1C119.3H10B—C10—H10C109.5
C6—C1—H1C119.3C12—C11—C18118.7 (2)
C3—C2—C1120.7 (3)C12—C11—C9119.52 (19)
C3—C2—H2A119.6C18—C11—C9121.54 (19)
C1—C2—H2A119.6C13—C12—C11121.6 (2)
C2—C3—C4118.7 (3)C13—C12—H12119.2
C2—C3—H3120.6C11—C12—H12119.2
C4—C3—H3120.6C12—C13—C15118.1 (2)
C3—C4—C5121.3 (2)C12—C13—C14120.7 (2)
C3—C4—H4119.3C15—C13—C14121.2 (2)
C5—C4—H4119.3C13—C14—H14A109.5
C4—C5—C6120.2 (2)C13—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
C6—C5—H5119.9C13—C14—H14C109.5
C1—C6—C5117.7 (2)H14A—C14—H14C109.5
C1—C6—C7119.2 (2)H14B—C14—H14C109.5
C5—C6—C7123.1 (2)C13—C15—C16123.1 (2)
N1—C7—C6111.72 (18)C13—C15—H15118.5
N1—C7—C8108.31 (18)C16—C15—H15118.5
C6—C7—C8113.11 (19)C15—C16—C18117.3 (2)
N1—C7—H7107.8C15—C16—C17120.9 (2)
C6—C7—H7107.8C18—C16—C17121.8 (2)
C8—C7—H7107.8C16—C17—H17A109.5
O2—C8—C7108.0 (2)C16—C17—H17B109.5
O2—C8—H8A110.1H17A—C17—H17B109.5
C7—C8—H8A110.1C16—C17—H17C109.5
O2—C8—H8B110.1H17A—C17—H17C109.5
C7—C8—H8B110.1H17B—C17—H17C109.5
H8A—C8—H8B108.4O1—C18—C16123.0 (2)
N1—C9—C11111.72 (17)O1—C18—C11115.65 (19)
N1—C9—C10109.15 (18)C16—C18—C11121.3 (2)
C11—C9—C10112.58 (19)C9—N1—C7115.96 (16)
N1—C9—H9107.7C9—N1—H1A108.3
C11—C9—H9107.7C7—N1—H1A108.3
C10—C9—H9107.7C9—N1—H1B108.3
C9—C10—H10A109.5C7—N1—H1B108.3
C9—C10—H10B109.5H1A—N1—H1B107.4
H10A—C10—H10B109.5C18—O1—H1109.5
C9—C10—H10C109.5C8—O2—H2109.5
C6—C1—C2—C30.4 (6)C9—C11—C12—C13172.5 (2)
C1—C2—C3—C40.4 (5)C11—C12—C13—C150.4 (4)
C2—C3—C4—C50.2 (5)C11—C12—C13—C14178.6 (2)
C3—C4—C5—C60.9 (4)C12—C13—C15—C160.9 (4)
C2—C1—C6—C50.3 (4)C14—C13—C15—C16179.9 (3)
C2—C1—C6—C7178.2 (3)C13—C15—C16—C181.0 (4)
C4—C5—C6—C10.9 (4)C13—C15—C16—C17179.4 (2)
C4—C5—C6—C7178.7 (2)C15—C16—C18—O1178.6 (2)
C1—C6—C7—N1131.7 (2)C17—C16—C18—O11.8 (4)
C5—C6—C7—N150.5 (3)C15—C16—C18—C110.2 (3)
C1—C6—C7—C8105.8 (3)C17—C16—C18—C11179.4 (2)
C5—C6—C7—C872.0 (3)C12—C11—C18—O1177.4 (2)
N1—C7—C8—O257.3 (3)C9—C11—C18—O18.7 (3)
C6—C7—C8—O2178.3 (2)C12—C11—C18—C161.4 (3)
N1—C9—C11—C12131.8 (2)C9—C11—C18—C16172.5 (2)
C10—C9—C11—C12105.0 (2)C11—C9—N1—C763.3 (2)
N1—C9—C11—C1854.4 (3)C10—C9—N1—C7171.52 (17)
C10—C9—C11—C1868.8 (3)C6—C7—N1—C955.1 (2)
C18—C11—C12—C131.5 (3)C8—C7—N1—C9179.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.443.249 (2)169
O1—H1···Cl1ii0.822.283.0417 (18)156
N1—H1A···Cl1iii0.902.253.125 (2)165
N1—H1B···O10.902.072.732 (2)129
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H24NO2+·Cl
Mr321.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.6500 (15), 13.764 (3), 16.420 (3)
V3)1728.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.44 × 0.32 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.906, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
8842, 3202, 2738
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.02
No. of reflections3202
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.12
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.01 (7)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl1i0.822.443.249 (2)168.9
O1—H1···Cl1ii0.822.283.0417 (18)155.8
N1—H1A···Cl1iii0.902.253.125 (2)165.2
N1—H1B···O10.902.072.732 (2)129.4
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y1/2, z+3/2.
 

Footnotes

Visting student from Liaocheng Bureau of Education of Liaocheng.

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University of China.

References

First citationBruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimarelli, C. & Palmieri, G. (1998). Tetrahedron, 54, 15711–15720.  Web of Science CrossRef CAS Google Scholar
First citationCimarelli, C. & Palmieri, G. (2000). Tetrahedron Asymmetry, 11, 2555–2563.  Web of Science CrossRef CAS Google Scholar
First citationCimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.  Web of Science CrossRef CAS Google Scholar
First citationDemir, A. S., Akhmedov, I. M. & Sesenoglu, O. (1999). Turk. J. Chem. 23, 123–126.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalmieri, G. (1999). Eur. J. Org. Chem. pp. 805–811.  CrossRef Google Scholar
First citationPalmieri, G. (2000). Tetrahedron Asymmetry, 11, 3361–3373.  Web of Science CrossRef CAS Google Scholar
First citationRijnberg, E., Hovestad, N. J., Kleij, A. W., Jastrzebski, J. T. B. H., Boersma, J., Janssen, M. D., Spek, A. L. & van Koten, G. (1997). Organometallics, 16, 2847–2857.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSola, L., Reddy, K. S., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Riera, A., Alvarez-Larena, A. & Piniella, J. F. (1998). J. Org. Chem. 63, 7078–7082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTseng, S.-L. & Yang, T.-K. (2004). Tetrahedron Asymmetry, 15, 3375–3380.  CrossRef CAS Google Scholar
First citationTümerdem, R., Topal, G. & Turgut, Y. (2005). Tetrahedron Asymmetry, 16, 865–868.  CrossRef Google Scholar
First citationXu, Q., Yang, H., Pan, X. & Chan, A. S. C. (2002). Tetrahedron Asymmetry, 13, 945–951.  Web of Science CrossRef CAS Google Scholar
First citationZhang, G.-Y., Wang, X.-B., Zhao, J.-Y., Wang, W.-H. & Yang, X.-F. (2006a). Acta Cryst. E62, o2239–o2241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G.-Y., Wang, X.-B., Zhao, J.-Y., Wang, W.-H. & Yang, X.-F. (2006b). Acta Cryst. E62, o3035–o3037.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds