organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-methyl-5-oxo-4-(phenyl­hydrazono)-4,5-di­hydro-1H-pyrazole-1-carbodi­thio­ate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China, and bTianshui Institute for Drug Control, Tianshui 741018, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 30 October 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, C12H11N4OS2, has been synthesized by the condensation reaction of 3-oxo-2-(phenyl­hydrazono)butanate and S-methyl­dithio­carbazate. The hydrazine unit and the pyrazole ring are coplanar [dihedral angle 3.8 (4)°] due to extensive conjugation and the N—H⋯O=C intra­molecular hydrogen bond. Two adjacent mol­ecules form dimers due to short C—H⋯O=C [R22 (18)] and C—H⋯S=C [R22 (22)] inter­molecular inter­actions. C—H⋯S—C [R22 (14)] inter­actions link these dimers into ribbons in the [011] direction.

Related literature

For related literature, see: Bao et al. (2006[Bao, F., Lu, X., Kang, B. & Wu, Q. (2006). Eur. Polym. J. 42, 928-934.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Bose et al. (2005[Bose, R., Murty, D. S. R. & Chakrapani, G. J. (2005). Radioanal. Nucl. Chem. 265, 115-122.]); Brassy et al. (1974[Brassy, C., Renaud, A., Delettré, J. & Mornon, J.-P. (1974). Acta Cryst. B30, 2246-2248.]); Liu et al. (2007[Liu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.]); Shi et al. (2005[Shi, M., Li, F., Yi, T., Zhang, D., Hu, H. & Huang, C. (2005). Inorg. Chem. 44, 8929-8936.]); Yang et al. (2003[Yang, X.-P., Kang, B.-S., Wong, W.-K., Su, Ch.-Y. & Liu, H.-Q. (2003). Inorg. Chem. 42, 169-174.]); Zelenak et al. (1999[Zelenak, V., Gyoryova, K. & Vargova, S. (1999). Main Group Met. Chem. 22, 179-184.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N4OS2

  • Mr = 292.40

  • Triclinic, [P \overline 1]

  • a = 5.0915 (8) Å

  • b = 10.9705 (16) Å

  • c = 11.9398 (18) Å

  • α = 93.770 (2)°

  • β = 97.947 (2)°

  • γ = 91.422 (2)°

  • V = 658.69 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 (2) K

  • 0.26 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.816, Tmax = 0.874 (expected range = 0.872–0.934)

  • 4799 measured reflections

  • 2304 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.02

  • 2304 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.06 2.751 (2) 137
C4—H4⋯O1i 0.93 2.49 3.244 (3) 139
C4—H4⋯S2i 0.93 2.99 3.842 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Pyrazolones compounds are finding increasing numbers of applications as ligands in coordination chemistry (Brassy et al., 1974; Zelenak et al., 1999; Yang et al.,2003). For example, they have been applied to the solvent extraction of metal ions (Bose et al., 2005) as ligands in complexes with catalytic activity (Bao et al., 2006) and in the synthesis of rare earth metal complexes with interesting photophysical properties (Shi et al. 2005). A related compound, (II), has already been studied (Liu et al., 2007).

Similar to (II), the title compound, (I), has been shown by UV spectroscopy to have extensive conjugation involving four carbon atoms (C2—C5), four nitrogen atoms (N1—N4) and one oxygen (O1). And this has been further confirmed by the determination of its crystal structure (Fig. 1) The bond lengths and angles of the large conjugated system in (I) are similar to the corresponding values in (II). The dihedral angle between the conjugated system and with plane of C1–S1–C2=S2 in (I) is 3.8 (4)° while the value in (II) is 13.1 (3)°. The bond distances of C11—N4 is 1.392 (2) in (I), and the value in (II) is the same with (I), which is shorter than the range of C—N single bonds (1.47–1.40 Å) and might be attributed to a nonclassical sp2-hybrid nitrogen atom and the conjugated system.

Two adjacent molecules form dimers due to short C—H···O=C [R22 (18)] and C—H···S=C [R22 (22)] (Bernstein et al., 1995) intermolecular interactions. C—H···S—C [R22 (14)] interactions link these dimers into ribbons in the (011) direction (Table 1).

Related literature top

For related literature, see: Bao et al. (2006); Bernstein et al. (1995); Bose et al. (2005); Brassy et al. (1974); Liu et al. (2007); Shi et al. (2005); Yang et al. (2003); Zelenak et al. (1999).

Experimental top

The title compound was synthesized by refluxing an ethanol solution of ethyl 3-oxo-2-(phenylhydrazono)butanate and S-methyldithiocarbazate (1:1) for 24 h. After 12 h at room temperature, the precipitate was collected by filtration and recrystallized from ethanol (yield 86.7%).The yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution at 293 K (m.p. 396.2–397.7 K). Analysis calculated for C12H11N4OS2: C49.47, H 3.81, N 19.23%; found: C 49.63, H 3.56, N 19.14%. IR (KBr,cm-1): 3250(w, NH), 1630 (vs, O?C), 1520 (s, N?C), 1275(S?C). UV (λmax, in CHCl3, nm): 396 (K-band, 1.87× 104). 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 9.64 (m, 5H, ArH), 6.91 (s, H, NH), 3.96 (s, 3H, SCH3), 1.13 (s, 3H, CH3).

Refinement top

The H atoms were placed in calculated positions and refined as riding, with C—H=0.93–0.97 Å and N—H=0.91 Å, and refined using a riding model, with Uiso(H) =1.2Ueq(C, N) and 1.5Ueq(methyl C).

Structure description top

Pyrazolones compounds are finding increasing numbers of applications as ligands in coordination chemistry (Brassy et al., 1974; Zelenak et al., 1999; Yang et al.,2003). For example, they have been applied to the solvent extraction of metal ions (Bose et al., 2005) as ligands in complexes with catalytic activity (Bao et al., 2006) and in the synthesis of rare earth metal complexes with interesting photophysical properties (Shi et al. 2005). A related compound, (II), has already been studied (Liu et al., 2007).

Similar to (II), the title compound, (I), has been shown by UV spectroscopy to have extensive conjugation involving four carbon atoms (C2—C5), four nitrogen atoms (N1—N4) and one oxygen (O1). And this has been further confirmed by the determination of its crystal structure (Fig. 1) The bond lengths and angles of the large conjugated system in (I) are similar to the corresponding values in (II). The dihedral angle between the conjugated system and with plane of C1–S1–C2=S2 in (I) is 3.8 (4)° while the value in (II) is 13.1 (3)°. The bond distances of C11—N4 is 1.392 (2) in (I), and the value in (II) is the same with (I), which is shorter than the range of C—N single bonds (1.47–1.40 Å) and might be attributed to a nonclassical sp2-hybrid nitrogen atom and the conjugated system.

Two adjacent molecules form dimers due to short C—H···O=C [R22 (18)] and C—H···S=C [R22 (22)] (Bernstein et al., 1995) intermolecular interactions. C—H···S—C [R22 (14)] interactions link these dimers into ribbons in the (011) direction (Table 1).

For related literature, see: Bao et al. (2006); Bernstein et al. (1995); Bose et al. (2005); Brassy et al. (1974); Liu et al. (2007); Shi et al. (2005); Yang et al. (2003); Zelenak et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular of (I) structure of the title compound, showing 50% probability ellipsoids. The C — H ··· N intramolecular hydrogen bond is shown dashed.
[Figure 2] Fig. 2. Packing diagram of (I), showing the formation of R22 (18), and R22 (22) and R22 (14) ring via the short intermolecular interaction of C—H···O=C and C—H···S=C, and C—H···S—C, respectively, viewed along a axis. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The structures of (I) and (II).
Methyl 3-methyl-5-oxo-4-(phenylhydrazono)-4,5-dihydro-1H-pyrazole-1-carbodithioate top
Crystal data top
C12H12N4OS2Z = 2
Mr = 292.40F(000) = 304.0
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Melting point: 397 K
a = 5.0915 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9705 (16) ÅCell parameters from 3332 reflections
c = 11.9398 (18) Åθ = 2.4–28.2°
α = 93.770 (2)°µ = 0.40 mm1
β = 97.947 (2)°T = 293 K
γ = 91.422 (2)°Block, yellow
V = 658.69 (17) Å30.26 × 0.23 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2304 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 56
Tmin = 0.816, Tmax = 0.874k = 1213
4799 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.115P]
where P = (Fo2 + 2Fc2)/3
2304 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H12N4OS2γ = 91.422 (2)°
Mr = 292.40V = 658.69 (17) Å3
Triclinic, P1Z = 2
a = 5.0915 (8) ÅMo Kα radiation
b = 10.9705 (16) ŵ = 0.40 mm1
c = 11.9398 (18) ÅT = 293 K
α = 93.770 (2)°0.26 × 0.23 × 0.17 mm
β = 97.947 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2035 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.874Rint = 0.033
4799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
2304 reflectionsΔρmin = 0.30 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.11220 (9)0.25831 (4)0.01602 (4)0.02887 (16)
S21.21824 (9)0.06971 (4)0.15622 (4)0.03043 (16)
O10.8212 (2)0.13832 (11)0.32205 (10)0.0297 (3)
N20.4418 (3)0.33971 (12)0.35801 (12)0.0232 (3)
N10.4384 (3)0.25235 (13)0.42827 (12)0.0257 (3)
H10.54300.19250.42330.031*
N30.7936 (3)0.36637 (13)0.12557 (13)0.0248 (3)
N40.8960 (3)0.25697 (13)0.16941 (12)0.0237 (3)
C80.6255 (3)0.40665 (15)0.19108 (14)0.0230 (4)
C60.2679 (3)0.25469 (15)0.51098 (14)0.0235 (4)
C100.7816 (3)0.22690 (15)0.26553 (14)0.0229 (4)
C111.0712 (3)0.19198 (15)0.11056 (14)0.0232 (4)
C50.2180 (4)0.14648 (16)0.56018 (16)0.0310 (4)
H50.30120.07550.53970.037*
C70.6034 (3)0.32719 (15)0.28113 (14)0.0225 (4)
C90.4760 (4)0.51969 (16)0.16867 (16)0.0289 (4)
H9A0.52740.55420.10280.043*
H9B0.51530.57790.23280.043*
H9C0.28910.49980.15600.043*
C10.1473 (4)0.36136 (16)0.54284 (15)0.0283 (4)
H1A0.18270.43410.51100.034*
C20.0262 (4)0.35827 (17)0.62250 (16)0.0325 (4)
H20.10790.42930.64400.039*
C30.0791 (4)0.25008 (17)0.67044 (15)0.0315 (4)
H30.19740.24850.72320.038*
C121.3501 (4)0.15958 (18)0.06889 (16)0.0328 (4)
H12A1.50660.15990.01390.049*
H12B1.39580.18820.13820.049*
H12C1.27510.07790.08290.049*
C40.0444 (4)0.14470 (17)0.63963 (16)0.0326 (4)
H40.01070.07240.67240.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0259 (3)0.0330 (3)0.0306 (3)0.00503 (19)0.01298 (19)0.00305 (19)
S20.0270 (3)0.0285 (3)0.0381 (3)0.00935 (19)0.0109 (2)0.0028 (2)
O10.0298 (7)0.0309 (7)0.0310 (7)0.0109 (5)0.0090 (5)0.0079 (6)
N20.0242 (8)0.0215 (7)0.0241 (8)0.0028 (6)0.0040 (6)0.0016 (6)
N10.0289 (8)0.0239 (8)0.0274 (8)0.0102 (6)0.0110 (6)0.0060 (6)
N30.0239 (8)0.0216 (7)0.0305 (8)0.0047 (6)0.0081 (6)0.0032 (6)
N40.0205 (8)0.0248 (8)0.0274 (8)0.0068 (6)0.0076 (6)0.0028 (6)
C80.0211 (9)0.0240 (9)0.0245 (9)0.0017 (7)0.0058 (7)0.0000 (7)
C60.0240 (9)0.0262 (9)0.0213 (8)0.0053 (7)0.0049 (7)0.0029 (7)
C100.0186 (9)0.0273 (9)0.0230 (9)0.0022 (7)0.0033 (7)0.0013 (7)
C110.0168 (9)0.0251 (9)0.0278 (9)0.0009 (7)0.0058 (7)0.0034 (7)
C50.0372 (11)0.0253 (9)0.0334 (10)0.0102 (8)0.0113 (8)0.0058 (8)
C70.0214 (9)0.0238 (9)0.0234 (9)0.0022 (7)0.0068 (7)0.0013 (7)
C90.0334 (10)0.0244 (9)0.0316 (10)0.0074 (8)0.0124 (8)0.0037 (7)
C10.0320 (10)0.0273 (9)0.0281 (9)0.0062 (8)0.0103 (8)0.0060 (7)
C20.0358 (11)0.0339 (10)0.0310 (10)0.0125 (8)0.0134 (8)0.0042 (8)
C30.0301 (10)0.0410 (11)0.0265 (10)0.0069 (8)0.0116 (8)0.0077 (8)
C120.0268 (10)0.0398 (11)0.0339 (10)0.0033 (8)0.0136 (8)0.0034 (8)
C40.0370 (11)0.0304 (10)0.0333 (10)0.0041 (8)0.0113 (8)0.0096 (8)
Geometric parameters (Å, º) top
S1—C111.7555 (18)C10—C71.462 (2)
S1—C121.7960 (18)C5—C41.384 (3)
S2—C111.6403 (17)C5—H50.9300
O1—C101.224 (2)C9—H9A0.9600
N2—N11.3159 (19)C9—H9B0.9600
N2—C71.318 (2)C9—H9C0.9600
N1—C61.401 (2)C1—C21.386 (3)
N1—H10.8600C1—H1A0.9300
N3—C81.303 (2)C2—C31.387 (3)
N3—N41.4227 (19)C2—H20.9300
N4—C111.392 (2)C3—C41.383 (3)
N4—C101.411 (2)C3—H30.9300
C8—C71.442 (2)C12—H12A0.9600
C8—C91.491 (2)C12—H12B0.9600
C6—C11.390 (2)C12—H12C0.9600
C6—C51.392 (2)C4—H40.9300
C11—S1—C12100.91 (8)C8—C7—C10106.59 (15)
N1—N2—C7116.78 (14)C8—C9—H9A109.5
N2—N1—C6121.45 (14)C8—C9—H9B109.5
N2—N1—H1119.3H9A—C9—H9B109.5
C6—N1—H1119.3C8—C9—H9C109.5
C8—N3—N4107.13 (14)H9A—C9—H9C109.5
C11—N4—C10129.66 (14)H9B—C9—H9C109.5
C11—N4—N3118.47 (14)C2—C1—C6119.35 (17)
C10—N4—N3111.69 (13)C2—C1—H1A120.3
N3—C8—C7111.47 (15)C6—C1—H1A120.3
N3—C8—C9121.65 (16)C1—C2—C3120.54 (17)
C7—C8—C9126.86 (15)C1—C2—H2119.7
C1—C6—C5120.19 (17)C3—C2—H2119.7
C1—C6—N1121.47 (16)C4—C3—C2119.84 (18)
C5—C6—N1118.34 (15)C4—C3—H3120.1
O1—C10—N4128.54 (16)C2—C3—H3120.1
O1—C10—C7128.36 (16)S1—C12—H12A109.5
N4—C10—C7103.10 (14)S1—C12—H12B109.5
N4—C11—S2123.30 (13)H12A—C12—H12B109.5
N4—C11—S1111.28 (12)S1—C12—H12C109.5
S2—C11—S1125.42 (10)H12A—C12—H12C109.5
C4—C5—C6119.86 (17)H12B—C12—H12C109.5
C4—C5—H5120.1C3—C4—C5120.22 (17)
C6—C5—H5120.1C3—C4—H4119.9
N2—C7—C8126.19 (15)C5—C4—H4119.9
N2—C7—C10127.11 (15)
C7—N2—N1—C6178.00 (16)N1—C6—C5—C4178.05 (17)
C8—N3—N4—C11176.70 (14)N1—N2—C7—C8175.26 (16)
C8—N3—N4—C101.18 (19)N1—N2—C7—C100.4 (3)
N4—N3—C8—C70.49 (19)N3—C8—C7—N2176.75 (16)
N4—N3—C8—C9178.93 (15)C9—C8—C7—N21.6 (3)
N2—N1—C6—C117.1 (3)N3—C8—C7—C100.3 (2)
N2—N1—C6—C5162.07 (16)C9—C8—C7—C10178.02 (17)
C11—N4—C10—O13.6 (3)O1—C10—C7—N22.5 (3)
N3—N4—C10—O1178.51 (16)N4—C10—C7—N2177.36 (16)
C11—N4—C10—C7176.20 (16)O1—C10—C7—C8178.85 (17)
N3—N4—C10—C71.32 (18)N4—C10—C7—C80.97 (18)
C10—N4—C11—S29.6 (3)C5—C6—C1—C21.1 (3)
N3—N4—C11—S2175.85 (12)N1—C6—C1—C2178.01 (17)
C10—N4—C11—S1170.68 (14)C6—C1—C2—C30.2 (3)
N3—N4—C11—S13.90 (19)C1—C2—C3—C40.8 (3)
C12—S1—C11—N4178.32 (12)C2—C3—C4—C50.8 (3)
C12—S1—C11—S21.43 (14)C6—C5—C4—C30.1 (3)
C1—C6—C5—C41.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.062.751 (2)137
C4—H4···O1i0.932.493.244 (3)139
C4—H4···S2i0.932.993.842 (2)152
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N4OS2
Mr292.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0915 (8), 10.9705 (16), 11.9398 (18)
α, β, γ (°)93.770 (2), 97.947 (2), 91.422 (2)
V3)658.69 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.26 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.816, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
4799, 2304, 2035
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.02
No. of reflections2304
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.062.751 (2)137
C4—H4···O1i0.932.493.244 (3)139
C4—H4···S2i0.932.993.842 (2)152
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Yangzhou University (grant No. 2006XJJ03) for financial support.

References

First citationBao, F., Lu, X., Kang, B. & Wu, Q. (2006). Eur. Polym. J. 42, 928–934.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBose, R., Murty, D. S. R. & Chakrapani, G. J. (2005). Radioanal. Nucl. Chem. 265, 115–122.  Web of Science CrossRef CAS Google Scholar
First citationBrassy, C., Renaud, A., Delettré, J. & Mornon, J.-P. (1974). Acta Cryst. B30, 2246–2248.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationShi, M., Li, F., Yi, T., Zhang, D., Hu, H. & Huang, C. (2005). Inorg. Chem. 44, 8929–8936.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-P., Kang, B.-S., Wong, W.-K., Su, Ch.-Y. & Liu, H.-Q. (2003). Inorg. Chem. 42, 169–174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZelenak, V., Gyoryova, K. & Vargova, S. (1999). Main Group Met. Chem. 22, 179–184.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds