organic compounds
5-[(9H-Fluoren-9-ylidene)methyl]furan-2-carbonitrile
aInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic
*Correspondence e-mail: lucia.perasinova@stuba.sk
The title compound, C19H11NO, is stabilized by one intramolecular C—H⋯O hydrogen bond. The compound can be synthesized in good yield (49%), by transformation of functional groups [starting with 5-(fluoren-9-ylidenemethyl)furan-2-carbaldehyde]. The flourene and furan ring systems are nearly coplanar, with a dihedral angle of 6.36 (7)°.
Related literature
For a related structure, see: Britten et al. (2001). For related literature, see: Allen (2002); Leclerc (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536807065798/bx2120sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807065798/bx2120Isup2.hkl
A solution of 5-fluoren-9-ylidenemethyl-furan-2-carbaldehyde (0.0033 mol, 0.91 g), NH2OH.HCl (0.0039 mol, 0.3 g, 1.12 eq.) in N-Methyl-pyrrolidinone (5.5 ml) was heated at 110 - 115°C. Progress of the reaction was followed by TLC and after 8 h the mixture was poured into H2O (100 ml) and extracted with EtOAc (2 x 50 ml). The combined layers EtOAc were dried (Na2SO4) and the solvent was evaporated in vacuo. Crude product could be purified by collumn
using silikagel Merck 60 in toluene as (40% yield) Rf = 0,51 (toluen). M.p.: 167–169°C.1H NMR (300 MHz, DMSO – d6, p.p.m.): δ= 6.78 (d, 1H, J = 3.6 Hz), 7.15 (s, 1H), 7.31 - 7.29 (m, 1H), 7.45 - 7.33 (m, 4H), 7.72 - 7.66 (m, 3H), 8.51 (d, 1H, J = 7.65 Hz).
13C-NMR (75 MHz, DMSO – d6, p.p.m.) δ= 109.99, 111.77, 114.62, 119.80, 119.87, 120.33, 123.91, 125.74, 125.82, 127.20, 127.69, 129.69, 129.23, 129.88, 135.25, 138.06, 139.37, 139.62, 141.75, 156.19.
IR (KBr, cm-1): 3136 (w), 3120 (vw), 3053(w), 2221(s, νC≡N), 1716(s, ν(C=C)), 1633(m), 1611(m), 1600(m, ν(C=C) aromatic), 1494(s, ν(C=C) aromatic), 1469(w), 1448(s), 1354(m), 1297(m), 1290(m), 1274(m, νas (C—O—C)), 1263(m), 1198(w), 1180(m), 1152(m), 1138(w), 1111(m), 1098(w), 1029(s, νs (C—O—C)), 975(m), 966(m), 941(m), 917(m), 882(m), 871(m), 793(νs, γ(CCH)), 781(νs, γ(CCH)), 772(m, γ(CCH)), 737(m, γ(CCH)), 728(νs, γ(CCH)), 724(νs, γ(CCH)), 668(m), 645(m), 625(m), 580(w), 561(w), 524(w), 511(w), 473(m), 455(m), 442(vw), 432(vw), 401(m)
H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).
Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).
In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the
the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).For a related structure, see: Britten et al. (2001).
For related literature, see: Allen (2002); Leclerc (2001).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).C19H11NO | F(000) = 560 |
Mr = 269.29 | Dx = 1.317 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7057 reflections |
a = 15.899 (3) Å | θ = 3.1–29.1° |
b = 5.6109 (11) Å | µ = 0.08 mm−1 |
c = 15.664 (3) Å | T = 293 K |
β = 103.69 (3)° | Block, yellow |
V = 1357.6 (5) Å3 | 0.32 × 0.07 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini R CCD diffractometer | 2746 independent reflections |
Radiation source: fine-focus sealed tube | 1524 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Rotation method data acquisition using ω and phi scans | θmax = 26.4°, θmin = 4.2° |
Absorption correction: analytical (Clark & Reid, 1995) | h = −19→19 |
Tmin = 0.921, Tmax = 0.987 | k = −7→7 |
27628 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 0.94 | w = 1/[σ2(Fo2) + (0.121P)2] where P = (Fo2 + 2Fc2)/3 |
2746 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C19H11NO | V = 1357.6 (5) Å3 |
Mr = 269.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.899 (3) Å | µ = 0.08 mm−1 |
b = 5.6109 (11) Å | T = 293 K |
c = 15.664 (3) Å | 0.32 × 0.07 × 0.05 mm |
β = 103.69 (3)° |
Oxford Diffraction Gemini R CCD diffractometer | 2746 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 1524 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 0.987 | Rint = 0.043 |
27628 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.24 e Å−3 |
2746 reflections | Δρmin = −0.21 e Å−3 |
190 parameters |
Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2007) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17033 (14) | 0.6172 (3) | 0.88196 (13) | 0.0544 (5) | |
C2 | 0.23065 (15) | 0.6471 (4) | 0.96102 (15) | 0.0680 (6) | |
H2A | 0.2259 | 0.7739 | 0.9978 | 0.082* | |
C3 | 0.29834 (16) | 0.4852 (4) | 0.98462 (15) | 0.0737 (7) | |
H3A | 0.3385 | 0.5046 | 1.0380 | 0.088* | |
C4 | 0.30765 (16) | 0.2974 (4) | 0.93141 (16) | 0.0741 (7) | |
H4A | 0.3537 | 0.1919 | 0.9484 | 0.089* | |
C5 | 0.24829 (15) | 0.2672 (4) | 0.85303 (15) | 0.0651 (6) | |
H5A | 0.2536 | 0.1400 | 0.8166 | 0.078* | |
C6 | 0.17991 (13) | 0.4280 (3) | 0.82809 (13) | 0.0538 (5) | |
C7 | 0.10829 (13) | 0.4398 (3) | 0.75032 (13) | 0.0521 (5) | |
C8 | 0.08974 (15) | 0.2931 (4) | 0.67850 (14) | 0.0602 (6) | |
H8A | 0.1248 | 0.1626 | 0.6747 | 0.072* | |
C9 | 0.01799 (15) | 0.3426 (4) | 0.61169 (14) | 0.0660 (6) | |
H9A | 0.0044 | 0.2436 | 0.5627 | 0.079* | |
C10 | −0.03397 (15) | 0.5382 (4) | 0.61677 (14) | 0.0686 (6) | |
H10A | −0.0818 | 0.5685 | 0.5709 | 0.082* | |
C11 | −0.01619 (14) | 0.6875 (4) | 0.68787 (13) | 0.0605 (6) | |
H11A | −0.0512 | 0.8188 | 0.6904 | 0.073* | |
C12 | 0.05522 (13) | 0.6391 (3) | 0.75621 (12) | 0.0518 (5) | |
C13 | 0.09090 (13) | 0.7573 (3) | 0.84099 (13) | 0.0532 (5) | |
C14 | 0.06414 (15) | 0.9425 (3) | 0.88210 (14) | 0.0599 (6) | |
H14A | 0.1013 | 0.9725 | 0.9365 | 0.072* | |
C15 | −0.00743 (14) | 1.1057 (3) | 0.86312 (14) | 0.0577 (6) | |
C16 | −0.02863 (18) | 1.2789 (4) | 0.91496 (15) | 0.0737 (7) | |
H16A | 0.0017 | 1.3139 | 0.9720 | 0.088* | |
C17 | −0.10323 (17) | 1.3964 (4) | 0.86887 (16) | 0.0732 (7) | |
H17A | −0.1314 | 1.5227 | 0.8886 | 0.088* | |
C18 | −0.12551 (15) | 1.2896 (4) | 0.79073 (16) | 0.0647 (6) | |
C19 | −0.19420 (18) | 1.3303 (4) | 0.7165 (2) | 0.0743 (7) | |
N1 | −0.25096 (16) | 1.3660 (4) | 0.65689 (17) | 0.0953 (7) | |
O1 | −0.06784 (9) | 1.1091 (2) | 0.78554 (9) | 0.0624 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0575 (13) | 0.0541 (11) | 0.0489 (12) | −0.0072 (10) | 0.0075 (10) | 0.0027 (9) |
C2 | 0.0730 (15) | 0.0716 (13) | 0.0545 (13) | −0.0084 (12) | 0.0054 (12) | −0.0022 (11) |
C3 | 0.0701 (15) | 0.0820 (15) | 0.0601 (14) | −0.0014 (13) | −0.0021 (12) | 0.0087 (13) |
C4 | 0.0673 (16) | 0.0750 (15) | 0.0735 (16) | 0.0064 (12) | 0.0036 (13) | 0.0144 (13) |
C5 | 0.0609 (14) | 0.0672 (13) | 0.0650 (14) | 0.0063 (11) | 0.0102 (12) | 0.0039 (10) |
C6 | 0.0540 (12) | 0.0550 (11) | 0.0524 (12) | −0.0026 (9) | 0.0126 (10) | 0.0015 (9) |
C7 | 0.0565 (12) | 0.0515 (11) | 0.0487 (11) | −0.0040 (9) | 0.0130 (10) | 0.0011 (9) |
C8 | 0.0649 (14) | 0.0590 (12) | 0.0572 (13) | −0.0001 (10) | 0.0156 (11) | −0.0064 (10) |
C9 | 0.0745 (15) | 0.0676 (13) | 0.0534 (13) | −0.0045 (12) | 0.0101 (12) | −0.0116 (10) |
C10 | 0.0710 (15) | 0.0762 (14) | 0.0521 (13) | 0.0013 (12) | 0.0015 (11) | −0.0044 (11) |
C11 | 0.0613 (14) | 0.0601 (12) | 0.0542 (13) | 0.0058 (10) | 0.0020 (11) | −0.0042 (10) |
C12 | 0.0540 (12) | 0.0518 (11) | 0.0485 (11) | −0.0052 (9) | 0.0099 (10) | 0.0009 (9) |
C13 | 0.0578 (13) | 0.0519 (10) | 0.0478 (11) | −0.0054 (9) | 0.0083 (10) | −0.0021 (9) |
C14 | 0.0685 (14) | 0.0564 (12) | 0.0536 (12) | −0.0046 (10) | 0.0119 (11) | −0.0030 (9) |
C15 | 0.0656 (14) | 0.0555 (11) | 0.0526 (12) | −0.0046 (10) | 0.0154 (11) | −0.0029 (9) |
C16 | 0.0938 (19) | 0.0651 (13) | 0.0619 (14) | 0.0079 (13) | 0.0179 (13) | −0.0055 (11) |
C17 | 0.0869 (18) | 0.0621 (13) | 0.0746 (16) | 0.0074 (12) | 0.0272 (14) | −0.0099 (11) |
C18 | 0.0620 (14) | 0.0586 (12) | 0.0759 (16) | 0.0016 (10) | 0.0211 (13) | −0.0007 (11) |
C19 | 0.0684 (17) | 0.0674 (14) | 0.0895 (19) | 0.0048 (12) | 0.0233 (15) | −0.0074 (13) |
N1 | 0.0808 (16) | 0.0981 (16) | 0.0986 (18) | 0.0118 (13) | 0.0047 (15) | −0.0131 (13) |
O1 | 0.0625 (10) | 0.0616 (9) | 0.0637 (10) | 0.0017 (7) | 0.0162 (8) | −0.0079 (7) |
C1—C2 | 1.386 (3) | C10—C11 | 1.368 (3) |
C1—C6 | 1.386 (3) | C10—H10A | 0.9300 |
C1—C13 | 1.497 (3) | C11—C12 | 1.390 (3) |
C2—C3 | 1.390 (3) | C11—H11A | 0.9300 |
C2—H2A | 0.9300 | C12—C13 | 1.473 (3) |
C3—C4 | 1.373 (3) | C13—C14 | 1.344 (3) |
C3—H3A | 0.9300 | C14—C15 | 1.436 (3) |
C4—C5 | 1.370 (3) | C14—H14A | 0.9300 |
C4—H4A | 0.9300 | C15—O1 | 1.359 (2) |
C5—C6 | 1.396 (3) | C15—C16 | 1.359 (3) |
C5—H5A | 0.9300 | C16—C17 | 1.399 (3) |
C6—C7 | 1.459 (3) | C16—H16A | 0.9300 |
C7—C8 | 1.369 (3) | C17—C18 | 1.333 (3) |
C7—C12 | 1.417 (3) | C17—H17A | 0.9300 |
C8—C9 | 1.381 (3) | C18—O1 | 1.381 (2) |
C8—H8A | 0.9300 | C18—C19 | 1.413 (4) |
C9—C10 | 1.387 (3) | C19—N1 | 1.152 (3) |
C9—H9A | 0.9300 | ||
C2—C1—C6 | 119.0 (2) | C11—C10—H10A | 119.3 |
C2—C1—C13 | 130.90 (19) | C9—C10—H10A | 119.3 |
C6—C1—C13 | 110.13 (18) | C10—C11—C12 | 118.7 (2) |
C1—C2—C3 | 119.1 (2) | C10—C11—H11A | 120.6 |
C1—C2—H2A | 120.4 | C12—C11—H11A | 120.6 |
C3—C2—H2A | 120.4 | C11—C12—C7 | 119.62 (18) |
C4—C3—C2 | 121.9 (2) | C11—C12—C13 | 132.57 (18) |
C4—C3—H3A | 119.1 | C7—C12—C13 | 107.81 (17) |
C2—C3—H3A | 119.1 | C14—C13—C12 | 133.0 (2) |
C5—C4—C3 | 119.2 (2) | C14—C13—C1 | 122.10 (19) |
C5—C4—H4A | 120.4 | C12—C13—C1 | 104.83 (17) |
C3—C4—H4A | 120.4 | C13—C14—C15 | 136.0 (2) |
C4—C5—C6 | 119.8 (2) | C13—C14—H14A | 112.0 |
C4—C5—H5A | 120.1 | C15—C14—H14A | 112.0 |
C6—C5—H5A | 120.1 | O1—C15—C16 | 107.54 (19) |
C1—C6—C5 | 121.0 (2) | O1—C15—C14 | 123.50 (18) |
C1—C6—C7 | 107.29 (17) | C16—C15—C14 | 129.0 (2) |
C5—C6—C7 | 131.70 (19) | C15—C16—C17 | 109.2 (2) |
C8—C7—C12 | 120.82 (19) | C15—C16—H16A | 125.4 |
C8—C7—C6 | 129.27 (19) | C17—C16—H16A | 125.4 |
C12—C7—C6 | 109.90 (17) | C18—C17—C16 | 105.7 (2) |
C7—C8—C9 | 118.7 (2) | C18—C17—H17A | 127.1 |
C7—C8—H8A | 120.6 | C16—C17—H17A | 127.1 |
C9—C8—H8A | 120.6 | C17—C18—O1 | 110.3 (2) |
C8—C9—C10 | 120.78 (19) | C17—C18—C19 | 132.0 (2) |
C8—C9—H9A | 119.6 | O1—C18—C19 | 117.7 (2) |
C10—C9—H9A | 119.6 | N1—C19—C18 | 178.7 (3) |
C11—C10—C9 | 121.3 (2) | C15—O1—C18 | 107.23 (16) |
C6—C1—C2—C3 | −0.8 (3) | C8—C7—C12—C13 | 178.99 (18) |
C13—C1—C2—C3 | 178.4 (2) | C6—C7—C12—C13 | −1.8 (2) |
C1—C2—C3—C4 | 0.6 (3) | C11—C12—C13—C14 | 3.9 (4) |
C2—C3—C4—C5 | −0.5 (4) | C7—C12—C13—C14 | −175.5 (2) |
C3—C4—C5—C6 | 0.5 (3) | C11—C12—C13—C1 | −178.4 (2) |
C2—C1—C6—C5 | 0.9 (3) | C7—C12—C13—C1 | 2.1 (2) |
C13—C1—C6—C5 | −178.45 (18) | C2—C1—C13—C14 | −3.0 (3) |
C2—C1—C6—C7 | −179.96 (18) | C6—C1—C13—C14 | 176.26 (18) |
C13—C1—C6—C7 | 0.7 (2) | C2—C1—C13—C12 | 179.0 (2) |
C4—C5—C6—C1 | −0.8 (3) | C6—C1—C13—C12 | −1.7 (2) |
C4—C5—C6—C7 | −179.6 (2) | C12—C13—C14—C15 | −1.0 (4) |
C1—C6—C7—C8 | 179.8 (2) | C1—C13—C14—C15 | −178.4 (2) |
C5—C6—C7—C8 | −1.2 (4) | C13—C14—C15—O1 | −4.3 (4) |
C1—C6—C7—C12 | 0.7 (2) | C13—C14—C15—C16 | 175.6 (2) |
C5—C6—C7—C12 | 179.7 (2) | O1—C15—C16—C17 | −0.8 (3) |
C12—C7—C8—C9 | −0.1 (3) | C14—C15—C16—C17 | 179.3 (2) |
C6—C7—C8—C9 | −179.15 (19) | C15—C16—C17—C18 | 0.5 (3) |
C7—C8—C9—C10 | 0.5 (3) | C16—C17—C18—O1 | 0.0 (3) |
C8—C9—C10—C11 | −0.2 (3) | C16—C17—C18—C19 | −179.5 (2) |
C9—C10—C11—C12 | −0.5 (3) | C16—C15—O1—C18 | 0.8 (2) |
C10—C11—C12—C7 | 0.8 (3) | C14—C15—O1—C18 | −179.31 (19) |
C10—C11—C12—C13 | −178.6 (2) | C17—C18—O1—C15 | −0.5 (2) |
C8—C7—C12—C11 | −0.5 (3) | C19—C18—O1—C15 | 179.08 (19) |
C6—C7—C12—C11 | 178.63 (17) |
Experimental details
Crystal data | |
Chemical formula | C19H11NO |
Mr | 269.29 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 15.899 (3), 5.6109 (11), 15.664 (3) |
β (°) | 103.69 (3) |
V (Å3) | 1357.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.32 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.921, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27628, 2746, 1524 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.179, 0.94 |
No. of reflections | 2746 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.21 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).
C15—O1 | 1.359 (2) | C18—O1 | 1.381 (2) |
O1—C18—C19 | 117.7 (2) | C15—O1—C18 | 107.23 (16) |
Acknowledgements
The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20-007304), as well as Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Britten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). Inorg. Chem. 40, 6820–6824. Web of Science CSD CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Leclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2867–2873. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).
In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).