organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(9H-Fluoren-9-yl­­idene)meth­yl]furan-2-carbo­nitrile

aInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic
*Correspondence e-mail: lucia.perasinova@stuba.sk

(Received 6 November 2007; accepted 5 December 2007; online 18 December 2007)

The title compound, C19H11NO, is stabilized by one intra­molecular C—H⋯O hydrogen bond. The compound can be synthesized in good yield (49%), by transformation of functional groups [starting with 5-(fluoren-9-ylidenemeth­yl)furan-2-carbaldehyde]. The flourene and furan ring systems are nearly coplanar, with a dihedral angle of 6.36 (7)°.

Related literature

For a related structure, see: Britten et al. (2001[Britten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). Inorg. Chem. 40, 6820-6824.]). For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Leclerc (2001[Leclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2867-2873.]).

[Scheme 1]

Experimental

Crystal data
  • C19H11NO

  • Mr = 269.29

  • Monoclinic, P 21 /n

  • a = 15.899 (3) Å

  • b = 5.6109 (11) Å

  • c = 15.664 (3) Å

  • β = 103.69 (3)°

  • V = 1357.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.07 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.921, Tmax = 0.987

  • 27628 measured reflections

  • 2746 independent reflections

  • 1524 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.179

  • S = 0.94

  • 2746 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.93 2.27 3.034 (3) 140

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).

In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).

Related literature top

For a related structure, see: Britten et al. (2001).

For related literature, see: Allen (2002); Leclerc (2001).

Experimental top

A solution of 5-fluoren-9-ylidenemethyl-furan-2-carbaldehyde (0.0033 mol, 0.91 g), NH2OH.HCl (0.0039 mol, 0.3 g, 1.12 eq.) in N-Methyl-pyrrolidinone (5.5 ml) was heated at 110 - 115°C. Progress of the reaction was followed by TLC and after 8 h the mixture was poured into H2O (100 ml) and extracted with EtOAc (2 x 50 ml). The combined layers EtOAc were dried (Na2SO4) and the solvent was evaporated in vacuo. Crude product could be purified by collumn chromatography using silikagel Merck 60 in toluene as eluent (40% yield) Rf = 0,51 (toluen). M.p.: 167–169°C.

1H NMR (300 MHz, DMSO – d6, p.p.m.): δ= 6.78 (d, 1H, J = 3.6 Hz), 7.15 (s, 1H), 7.31 - 7.29 (m, 1H), 7.45 - 7.33 (m, 4H), 7.72 - 7.66 (m, 3H), 8.51 (d, 1H, J = 7.65 Hz).

13C-NMR (75 MHz, DMSO – d6, p.p.m.) δ= 109.99, 111.77, 114.62, 119.80, 119.87, 120.33, 123.91, 125.74, 125.82, 127.20, 127.69, 129.69, 129.23, 129.88, 135.25, 138.06, 139.37, 139.62, 141.75, 156.19.

IR (KBr, cm-1): 3136 (w), 3120 (vw), 3053(w), 2221(s, νCN), 1716(s, ν(C=C)), 1633(m), 1611(m), 1600(m, ν(C=C) aromatic), 1494(s, ν(C=C) aromatic), 1469(w), 1448(s), 1354(m), 1297(m), 1290(m), 1274(m, νas (C—O—C)), 1263(m), 1198(w), 1180(m), 1152(m), 1138(w), 1111(m), 1098(w), 1029(s, νs (C—O—C)), 975(m), 966(m), 941(m), 917(m), 882(m), 871(m), 793(νs, γ(CCH)), 781(νs, γ(CCH)), 772(m, γ(CCH)), 737(m, γ(CCH)), 728(νs, γ(CCH)), 724(νs, γ(CCH)), 668(m), 645(m), 625(m), 580(w), 561(w), 524(w), 511(w), 473(m), 455(m), 442(vw), 432(vw), 401(m)

Refinement top

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).

In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).

For a related structure, see: Britten et al. (2001).

For related literature, see: Allen (2002); Leclerc (2001).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1]
Fig. 1.

The numbering scheme of 5-((9H-fluoren-9-ylidene) methyl) furan-2-carbonitrile. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen-bond interactions are indicated by dashed lines.
5-[(9H-Fluoren-9-ylidene)methyl]furan-2-carbonitrile top
Crystal data top
C19H11NOF(000) = 560
Mr = 269.29Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7057 reflections
a = 15.899 (3) Åθ = 3.1–29.1°
b = 5.6109 (11) ŵ = 0.08 mm1
c = 15.664 (3) ÅT = 293 K
β = 103.69 (3)°Block, yellow
V = 1357.6 (5) Å30.32 × 0.07 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2746 independent reflections
Radiation source: fine-focus sealed tube1524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 4.2°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 1919
Tmin = 0.921, Tmax = 0.987k = 77
27628 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.121P)2]
where P = (Fo2 + 2Fc2)/3
2746 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H11NOV = 1357.6 (5) Å3
Mr = 269.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.899 (3) ŵ = 0.08 mm1
b = 5.6109 (11) ÅT = 293 K
c = 15.664 (3) Å0.32 × 0.07 × 0.05 mm
β = 103.69 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2746 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1524 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.987Rint = 0.043
27628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 0.94Δρmax = 0.24 e Å3
2746 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2007)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17033 (14)0.6172 (3)0.88196 (13)0.0544 (5)
C20.23065 (15)0.6471 (4)0.96102 (15)0.0680 (6)
H2A0.22590.77390.99780.082*
C30.29834 (16)0.4852 (4)0.98462 (15)0.0737 (7)
H3A0.33850.50461.03800.088*
C40.30765 (16)0.2974 (4)0.93141 (16)0.0741 (7)
H4A0.35370.19190.94840.089*
C50.24829 (15)0.2672 (4)0.85303 (15)0.0651 (6)
H5A0.25360.14000.81660.078*
C60.17991 (13)0.4280 (3)0.82809 (13)0.0538 (5)
C70.10829 (13)0.4398 (3)0.75032 (13)0.0521 (5)
C80.08974 (15)0.2931 (4)0.67850 (14)0.0602 (6)
H8A0.12480.16260.67470.072*
C90.01799 (15)0.3426 (4)0.61169 (14)0.0660 (6)
H9A0.00440.24360.56270.079*
C100.03397 (15)0.5382 (4)0.61677 (14)0.0686 (6)
H10A0.08180.56850.57090.082*
C110.01619 (14)0.6875 (4)0.68787 (13)0.0605 (6)
H11A0.05120.81880.69040.073*
C120.05522 (13)0.6391 (3)0.75621 (12)0.0518 (5)
C130.09090 (13)0.7573 (3)0.84099 (13)0.0532 (5)
C140.06414 (15)0.9425 (3)0.88210 (14)0.0599 (6)
H14A0.10130.97250.93650.072*
C150.00743 (14)1.1057 (3)0.86312 (14)0.0577 (6)
C160.02863 (18)1.2789 (4)0.91496 (15)0.0737 (7)
H16A0.00171.31390.97200.088*
C170.10323 (17)1.3964 (4)0.86887 (16)0.0732 (7)
H17A0.13141.52270.88860.088*
C180.12551 (15)1.2896 (4)0.79073 (16)0.0647 (6)
C190.19420 (18)1.3303 (4)0.7165 (2)0.0743 (7)
N10.25096 (16)1.3660 (4)0.65689 (17)0.0953 (7)
O10.06784 (9)1.1091 (2)0.78554 (9)0.0624 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0575 (13)0.0541 (11)0.0489 (12)0.0072 (10)0.0075 (10)0.0027 (9)
C20.0730 (15)0.0716 (13)0.0545 (13)0.0084 (12)0.0054 (12)0.0022 (11)
C30.0701 (15)0.0820 (15)0.0601 (14)0.0014 (13)0.0021 (12)0.0087 (13)
C40.0673 (16)0.0750 (15)0.0735 (16)0.0064 (12)0.0036 (13)0.0144 (13)
C50.0609 (14)0.0672 (13)0.0650 (14)0.0063 (11)0.0102 (12)0.0039 (10)
C60.0540 (12)0.0550 (11)0.0524 (12)0.0026 (9)0.0126 (10)0.0015 (9)
C70.0565 (12)0.0515 (11)0.0487 (11)0.0040 (9)0.0130 (10)0.0011 (9)
C80.0649 (14)0.0590 (12)0.0572 (13)0.0001 (10)0.0156 (11)0.0064 (10)
C90.0745 (15)0.0676 (13)0.0534 (13)0.0045 (12)0.0101 (12)0.0116 (10)
C100.0710 (15)0.0762 (14)0.0521 (13)0.0013 (12)0.0015 (11)0.0044 (11)
C110.0613 (14)0.0601 (12)0.0542 (13)0.0058 (10)0.0020 (11)0.0042 (10)
C120.0540 (12)0.0518 (11)0.0485 (11)0.0052 (9)0.0099 (10)0.0009 (9)
C130.0578 (13)0.0519 (10)0.0478 (11)0.0054 (9)0.0083 (10)0.0021 (9)
C140.0685 (14)0.0564 (12)0.0536 (12)0.0046 (10)0.0119 (11)0.0030 (9)
C150.0656 (14)0.0555 (11)0.0526 (12)0.0046 (10)0.0154 (11)0.0029 (9)
C160.0938 (19)0.0651 (13)0.0619 (14)0.0079 (13)0.0179 (13)0.0055 (11)
C170.0869 (18)0.0621 (13)0.0746 (16)0.0074 (12)0.0272 (14)0.0099 (11)
C180.0620 (14)0.0586 (12)0.0759 (16)0.0016 (10)0.0211 (13)0.0007 (11)
C190.0684 (17)0.0674 (14)0.0895 (19)0.0048 (12)0.0233 (15)0.0074 (13)
N10.0808 (16)0.0981 (16)0.0986 (18)0.0118 (13)0.0047 (15)0.0131 (13)
O10.0625 (10)0.0616 (9)0.0637 (10)0.0017 (7)0.0162 (8)0.0079 (7)
Geometric parameters (Å, º) top
C1—C21.386 (3)C10—C111.368 (3)
C1—C61.386 (3)C10—H10A0.9300
C1—C131.497 (3)C11—C121.390 (3)
C2—C31.390 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.473 (3)
C3—C41.373 (3)C13—C141.344 (3)
C3—H3A0.9300C14—C151.436 (3)
C4—C51.370 (3)C14—H14A0.9300
C4—H4A0.9300C15—O11.359 (2)
C5—C61.396 (3)C15—C161.359 (3)
C5—H5A0.9300C16—C171.399 (3)
C6—C71.459 (3)C16—H16A0.9300
C7—C81.369 (3)C17—C181.333 (3)
C7—C121.417 (3)C17—H17A0.9300
C8—C91.381 (3)C18—O11.381 (2)
C8—H8A0.9300C18—C191.413 (4)
C9—C101.387 (3)C19—N11.152 (3)
C9—H9A0.9300
C2—C1—C6119.0 (2)C11—C10—H10A119.3
C2—C1—C13130.90 (19)C9—C10—H10A119.3
C6—C1—C13110.13 (18)C10—C11—C12118.7 (2)
C1—C2—C3119.1 (2)C10—C11—H11A120.6
C1—C2—H2A120.4C12—C11—H11A120.6
C3—C2—H2A120.4C11—C12—C7119.62 (18)
C4—C3—C2121.9 (2)C11—C12—C13132.57 (18)
C4—C3—H3A119.1C7—C12—C13107.81 (17)
C2—C3—H3A119.1C14—C13—C12133.0 (2)
C5—C4—C3119.2 (2)C14—C13—C1122.10 (19)
C5—C4—H4A120.4C12—C13—C1104.83 (17)
C3—C4—H4A120.4C13—C14—C15136.0 (2)
C4—C5—C6119.8 (2)C13—C14—H14A112.0
C4—C5—H5A120.1C15—C14—H14A112.0
C6—C5—H5A120.1O1—C15—C16107.54 (19)
C1—C6—C5121.0 (2)O1—C15—C14123.50 (18)
C1—C6—C7107.29 (17)C16—C15—C14129.0 (2)
C5—C6—C7131.70 (19)C15—C16—C17109.2 (2)
C8—C7—C12120.82 (19)C15—C16—H16A125.4
C8—C7—C6129.27 (19)C17—C16—H16A125.4
C12—C7—C6109.90 (17)C18—C17—C16105.7 (2)
C7—C8—C9118.7 (2)C18—C17—H17A127.1
C7—C8—H8A120.6C16—C17—H17A127.1
C9—C8—H8A120.6C17—C18—O1110.3 (2)
C8—C9—C10120.78 (19)C17—C18—C19132.0 (2)
C8—C9—H9A119.6O1—C18—C19117.7 (2)
C10—C9—H9A119.6N1—C19—C18178.7 (3)
C11—C10—C9121.3 (2)C15—O1—C18107.23 (16)
C6—C1—C2—C30.8 (3)C8—C7—C12—C13178.99 (18)
C13—C1—C2—C3178.4 (2)C6—C7—C12—C131.8 (2)
C1—C2—C3—C40.6 (3)C11—C12—C13—C143.9 (4)
C2—C3—C4—C50.5 (4)C7—C12—C13—C14175.5 (2)
C3—C4—C5—C60.5 (3)C11—C12—C13—C1178.4 (2)
C2—C1—C6—C50.9 (3)C7—C12—C13—C12.1 (2)
C13—C1—C6—C5178.45 (18)C2—C1—C13—C143.0 (3)
C2—C1—C6—C7179.96 (18)C6—C1—C13—C14176.26 (18)
C13—C1—C6—C70.7 (2)C2—C1—C13—C12179.0 (2)
C4—C5—C6—C10.8 (3)C6—C1—C13—C121.7 (2)
C4—C5—C6—C7179.6 (2)C12—C13—C14—C151.0 (4)
C1—C6—C7—C8179.8 (2)C1—C13—C14—C15178.4 (2)
C5—C6—C7—C81.2 (4)C13—C14—C15—O14.3 (4)
C1—C6—C7—C120.7 (2)C13—C14—C15—C16175.6 (2)
C5—C6—C7—C12179.7 (2)O1—C15—C16—C170.8 (3)
C12—C7—C8—C90.1 (3)C14—C15—C16—C17179.3 (2)
C6—C7—C8—C9179.15 (19)C15—C16—C17—C180.5 (3)
C7—C8—C9—C100.5 (3)C16—C17—C18—O10.0 (3)
C8—C9—C10—C110.2 (3)C16—C17—C18—C19179.5 (2)
C9—C10—C11—C120.5 (3)C16—C15—O1—C180.8 (2)
C10—C11—C12—C70.8 (3)C14—C15—O1—C18179.31 (19)
C10—C11—C12—C13178.6 (2)C17—C18—O1—C150.5 (2)
C8—C7—C12—C110.5 (3)C19—C18—O1—C15179.08 (19)
C6—C7—C12—C11178.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.932.273.034 (3)140

Experimental details

Crystal data
Chemical formulaC19H11NO
Mr269.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.899 (3), 5.6109 (11), 15.664 (3)
β (°) 103.69 (3)
V3)1357.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.921, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
27628, 2746, 1524
Rint0.043
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.179, 0.94
No. of reflections2746
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
C15—O11.359 (2)C18—O11.381 (2)
O1—C18—C19117.7 (2)C15—O1—C18107.23 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.932.273.034 (3)139.68
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20-007304), as well as Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBritten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). Inorg. Chem. 40, 6820–6824.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLeclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2867–2873.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds