organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(phen­oxy­meth­yl)buta-1,3-diene

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, and bSchool of Biotechnology, Devi Ahilya University, Indore 452 001, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 14 November 2007; accepted 26 November 2007; online 6 December 2007)

The mol­ecule of the title compound, C18H18O2, a symmetrically phenol-substituted divinyl analog, exhibits crystallographically imposed C2 symmetry. The phenolic and divinyl planar groups inter­sect each other orthogonally, with a dihedral angle of 82.7 (1)°. The structure is stabilized by a short intra­molecular C—H⋯O contact. The mol­ecules are held together by C—H⋯π inter­actions, forming a sheet structure parallel to the (201) plane.

Related literature

The crystal structures of three analogous compounds have been published thus far (Alcock et al., 2006[Alcock, N. W., Leigh, D. A. & Lacy, S. M. (2006). Private communication (refcode XAVTIY). CCDC, Union Road, Cambridge, England.]; Sathiyanarayanan et al., 2007[Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2007). Acta Cryst. E63, o2504-o2505.], 2008[Sathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008). Acta Cryst. E64, o123.]). For mol­ecular and crystal symmetry, see Yao et al. (2002[Yao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 640-646.]); Pidcock et al. (2003[Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2003). Acta Cryst. B59, 634-640.]); Narasegowda et al. (2005[Narasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. & Rathore, R. S. (2005). Acta Cryst. E61, o843-o845.]); Schmidt et al. (2006[Schmidt, M. U., Schmiermund, T. & Bolte, M. (2006). Acta Cryst. C62, m37-m40.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O2

  • Mr = 266.32

  • Monoclinic, P 21 /c

  • a = 10.7575 (5) Å

  • b = 7.0750 (3) Å

  • c = 9.7939 (5) Å

  • β = 109.180 (2)°

  • V = 704.03 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.981

  • 9151 measured reflections

  • 2065 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.02

  • 2065 reflections

  • 127 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1 0.98 (2) 2.41 (2) 2.770 (2) 101 (1)
C4—H4ACg1i 0.97 (2) 2.92 (2) 3.727 (2) 142 (1)
C9—H9ACg1ii 0.99 (2) 2.73 (2) 3.591 (1) 146 (1)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) x, y+1, z. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Previously, we had reported a benzenethiol-substituted divinyl analog, ({2-methylidene-3-[(phenylsulfanyl)methyl]but-3-en-1-yl}sulfanyl)benzene, (I), possessing a C2 point-group symmetry at the center of divinyl group. In this series, the title compound {[2-methylidene-3-(phenoxymethyl)but-3-en-1-yl]oxy}benzene, (III), is a symmetrically phenol-substituted divinyl analog and discussed in the present report. The molecular structure with atom numbering scheme is shown in Fig 1. Three similar compounds have been reported so far. They are: (a) (I) in space group Pbca (Sathiyanarayanan et al., 2007); (b) 2-methylphenol-substituted divinyl analog i.e., 1-methyl-2-({2-methylidene-3-[(2-methylphenoxy)methyl] but-3-en-1-yl}oxy)benzene, (II), in space group P21/n (Sathiyanarayanan et al., 2008); and (c) 4-(3-hydroxy-3-methoxypropyl)phenol-substituted analog, namely, 2,3-bis(4-(2-(methoxycarbonyl)ethyl)phenoxymethyl)buta-1,3-diene, (IV), in space group P 21/c (Alcock et al. 2006; CCDC 277599, private communication).

The molecular symmetry (C2) is retained in the crystal of (III) and the asymmetric unit is composed of one-half of the molecule (Z' = 1/2) as observed in (I), (II) and (IV). The database analysis has revealed that among organic molecules, there is a persistent tendency for molecular symmetry to be retained in the crystal (Yao et al., 2002), although exceptions to this general trend have also been reported even in the case of inversion center that is mostly conserved (Narasegowda et al., 2005; Schmidt et al., 2006). Recent work (Pidcock et al., 2003) has led to the conclusion that the C2 point group symmetry is conserved in about 60% of ther reported cases.

Selected bond distances and angles are provided in Table. 1. The least square planes in (III) are defined by phenol (O1/C1—C6) and divinyl [C7/C8/C9/C7i/C8i/C9i; symmetry code (i): 1 - x, 1 - y, -z] groups. These planar groups intersect each other orthogonally [inclination angle is 82.7 (1)°], as also observed in (I). In contrast, (II) is essentially planar and in (IV), the corresponding adjacent groups are coplanar. The torsion angles describing molecular conformation namely, C2—C1—O1—C7, C8—C7—O1—C1 and O1—C7—C8—C8i are trans, gauche- and trans, respectively (Table 1).

Hydrogen bond parameters are provided in Table 1. The structure is stabilized by a short intermolecular contact C9—H9B···O1. (III) lacks any conventional hydrogen-bonding donors. As a result of that, the crystal packing is determined purely by weak intermolecular forces. The molecules form a sheet structure in (2 0 1) plane that are held together by C4—H4A···Cg1ii [symmetry code (ii): -x, -1/2 + y, -1/2 - z] and C9—H9A···Cg1iii [symmetry code (iii): x, 1 + y, z]. Cg1 is the centroid of (C1—C6) ring. The crystal packing view is shown in Fig. 2.

Related literature top

The crystal structures of three analogous compounds have been published so far, see: Alcock et al., (2006); Sathiyanarayanan et al., (2007, 2008). For molecular and crystal symmetry, see Yao et al. (2002); Pidcock et al. (2003); Narasegowda et al. (2005); Schmidt et al. (2006). Cg1 is the centroid of the C1–C6 ring.

Experimental top

One mole of 2,3-bis(iodomethyl)buta-1,3-diene in DMF was added to two moles of sodium phenoxide in DMF dropwise with cooling. The reaction mixture was stirred overnight at room temperature and poured into crushed ice. The solids were filtered and dissolved in ether. The ether extract was washed with sodium thiosulfate and 10% sodium hydroxide and finally with water. The solid product was obtained by removal of ether after drying, which was recrystallized from hexane at room temperature (m.p. 364° K).

Refinement top

The positions of all the H atoms were freely refined. The distances with H-atoms are in ranges:- Caromatic—H = 0.94 (1)–1.00 (2); Csp2—H = 0.98 (2)–0.99 (2); and Cmethylene—H = 0.96 (2)–1.00 (2) Å.

Structure description top

Previously, we had reported a benzenethiol-substituted divinyl analog, ({2-methylidene-3-[(phenylsulfanyl)methyl]but-3-en-1-yl}sulfanyl)benzene, (I), possessing a C2 point-group symmetry at the center of divinyl group. In this series, the title compound {[2-methylidene-3-(phenoxymethyl)but-3-en-1-yl]oxy}benzene, (III), is a symmetrically phenol-substituted divinyl analog and discussed in the present report. The molecular structure with atom numbering scheme is shown in Fig 1. Three similar compounds have been reported so far. They are: (a) (I) in space group Pbca (Sathiyanarayanan et al., 2007); (b) 2-methylphenol-substituted divinyl analog i.e., 1-methyl-2-({2-methylidene-3-[(2-methylphenoxy)methyl] but-3-en-1-yl}oxy)benzene, (II), in space group P21/n (Sathiyanarayanan et al., 2008); and (c) 4-(3-hydroxy-3-methoxypropyl)phenol-substituted analog, namely, 2,3-bis(4-(2-(methoxycarbonyl)ethyl)phenoxymethyl)buta-1,3-diene, (IV), in space group P 21/c (Alcock et al. 2006; CCDC 277599, private communication).

The molecular symmetry (C2) is retained in the crystal of (III) and the asymmetric unit is composed of one-half of the molecule (Z' = 1/2) as observed in (I), (II) and (IV). The database analysis has revealed that among organic molecules, there is a persistent tendency for molecular symmetry to be retained in the crystal (Yao et al., 2002), although exceptions to this general trend have also been reported even in the case of inversion center that is mostly conserved (Narasegowda et al., 2005; Schmidt et al., 2006). Recent work (Pidcock et al., 2003) has led to the conclusion that the C2 point group symmetry is conserved in about 60% of ther reported cases.

Selected bond distances and angles are provided in Table. 1. The least square planes in (III) are defined by phenol (O1/C1—C6) and divinyl [C7/C8/C9/C7i/C8i/C9i; symmetry code (i): 1 - x, 1 - y, -z] groups. These planar groups intersect each other orthogonally [inclination angle is 82.7 (1)°], as also observed in (I). In contrast, (II) is essentially planar and in (IV), the corresponding adjacent groups are coplanar. The torsion angles describing molecular conformation namely, C2—C1—O1—C7, C8—C7—O1—C1 and O1—C7—C8—C8i are trans, gauche- and trans, respectively (Table 1).

Hydrogen bond parameters are provided in Table 1. The structure is stabilized by a short intermolecular contact C9—H9B···O1. (III) lacks any conventional hydrogen-bonding donors. As a result of that, the crystal packing is determined purely by weak intermolecular forces. The molecules form a sheet structure in (2 0 1) plane that are held together by C4—H4A···Cg1ii [symmetry code (ii): -x, -1/2 + y, -1/2 - z] and C9—H9A···Cg1iii [symmetry code (iii): x, 1 + y, z]. Cg1 is the centroid of (C1—C6) ring. The crystal packing view is shown in Fig. 2.

The crystal structures of three analogous compounds have been published so far, see: Alcock et al., (2006); Sathiyanarayanan et al., (2007, 2008). For molecular and crystal symmetry, see Yao et al. (2002); Pidcock et al. (2003); Narasegowda et al. (2005); Schmidt et al. (2006). Cg1 is the centroid of the C1–C6 ring.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 andSAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. C—H···π mediated molecular association into a sheet structure in (2 0 1) plane shown in a crystal packing view. Cg1 is the centroid of (C1—C6) ring. Dashed lines represent hydrogen bonds. For clarity, only the selected H atoms, involved in the interactions, are shown.
2,3-Bis(phenoxymethyl)buta-1,3-diene top
Crystal data top
C18H18O2F(000) = 284
Mr = 266.32Dx = 1.256 Mg m3
Monoclinic, P21/cMelting point: 364 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7575 (5) ÅCell parameters from 3326 reflections
b = 7.0750 (3) Åθ = 3.5–29.4°
c = 9.7939 (5) ŵ = 0.08 mm1
β = 109.180 (2)°T = 295 K
V = 704.03 (6) Å3Prism, colourless
Z = 20.30 × 0.20 × 0.16 mm
Data collection top
Bruker Kappa
diffractometer
2065 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ–scanθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1514
Tmin = 0.958, Tmax = 0.981k = 99
9151 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.126All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.069P)2 + 0.0874P]
where P = (Fo2 + 2Fc2)/3
2065 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H18O2V = 704.03 (6) Å3
Mr = 266.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7575 (5) ŵ = 0.08 mm1
b = 7.0750 (3) ÅT = 295 K
c = 9.7939 (5) Å0.30 × 0.20 × 0.16 mm
β = 109.180 (2)°
Data collection top
Bruker Kappa
diffractometer
2065 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1558 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.981Rint = 0.026
9151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126All H-atom parameters refined
S = 1.02Δρmax = 0.19 e Å3
2065 reflectionsΔρmin = 0.23 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.70263(0.00094) m2 = -0.43813(0.00092) m3 = 0.56068(0.00161) D = -5.31928(0.00495) Atom d s d/s (d/s)**2 C7 * 0.0000 0.0013 0.000 0.000 C8 * 0.0000 0.0010 0.000 0.000 C9 * 0.0000 0.0013 0.000 0.000 O1 0.0945 0.0009 108.132 11692.442 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 2 m1 = -0.52237(0.00027) m2 = 0.81703(0.00021) m3 = -0.24412(0.00046) D = -0.87330(0.00135) Atom d s d/s (d/s)**2 O1 * -0.0015 0.0009 - 1.703 2.900 C1 * -0.0008 0.0010 - 0.726 0.527 C2 * 0.0022 0.0012 1.889 3.567 C3 * 0.0011 0.0012 0.877 0.769 C4 * -0.0031 0.0013 - 2.359 5.563 C5 * -0.0023 0.0013 - 1.742 3.035 C6 * 0.0048 0.0012 4.058 16.471 C7 - 0.2091 0.0013 - 164.276 26986.654 ============ Sum((d/s)**2) for starred atoms 32.831 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 82.66 (0.06) 97.34 (0.06)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27879 (10)0.09878 (14)0.21059 (11)0.0352 (2)
C20.19476 (11)0.00566 (16)0.33013 (11)0.0406 (3)
H2A0.2117 (13)0.011 (2)0.4223 (16)0.053 (4)*
C30.08982 (12)0.09532 (17)0.31788 (13)0.0453 (3)
H3A0.0324 (14)0.158 (2)0.4013 (17)0.056 (4)*
C40.06662 (13)0.10558 (18)0.18746 (14)0.0486 (3)
H4A0.0079 (17)0.176 (2)0.1799 (18)0.068 (5)*
C50.15010 (13)0.01250 (18)0.06949 (13)0.0475 (3)
H5A0.1334 (14)0.017 (2)0.0254 (17)0.060 (4)*
C60.25622 (12)0.09092 (16)0.07924 (11)0.0398 (3)
H6A0.3116 (13)0.158 (2)0.0011 (15)0.048 (3)*
C70.48149 (11)0.26949 (18)0.11341 (14)0.0445 (3)
H7A0.5603 (15)0.277 (2)0.1465 (17)0.064 (4)*
H7B0.5038 (14)0.180 (2)0.0351 (15)0.046 (3)*
C80.45057 (9)0.46076 (14)0.06518 (10)0.0344 (2)
O10.38019 (8)0.19483 (12)0.23461 (9)0.0474 (2)
C90.34154 (12)0.55102 (19)0.13827 (14)0.0472 (3)
H9B0.2789 (14)0.496 (2)0.2264 (16)0.053 (4)*
H9A0.3180 (16)0.677 (2)0.1096 (18)0.068 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (5)0.0316 (5)0.0387 (5)0.0011 (4)0.0112 (4)0.0036 (4)
C20.0431 (6)0.0404 (6)0.0355 (5)0.0012 (5)0.0089 (4)0.0049 (4)
C30.0402 (6)0.0406 (6)0.0470 (6)0.0019 (5)0.0033 (5)0.0059 (5)
C40.0407 (6)0.0438 (7)0.0612 (7)0.0051 (5)0.0166 (5)0.0018 (5)
C50.0531 (7)0.0475 (7)0.0459 (6)0.0000 (5)0.0215 (5)0.0025 (5)
C60.0441 (6)0.0384 (6)0.0350 (5)0.0006 (5)0.0103 (4)0.0043 (4)
C70.0338 (6)0.0431 (6)0.0546 (7)0.0031 (5)0.0119 (5)0.0096 (5)
C80.0316 (5)0.0335 (5)0.0377 (5)0.0036 (4)0.0110 (4)0.0026 (4)
O10.0453 (5)0.0537 (5)0.0464 (4)0.0140 (4)0.0194 (4)0.0128 (4)
C90.0408 (6)0.0432 (6)0.0481 (6)0.0011 (5)0.0019 (5)0.0026 (5)
Geometric parameters (Å, º) top
C1—O11.3695 (13)C5—H5A1.003 (16)
C1—C61.3865 (14)C6—H6A0.944 (14)
C1—C21.3880 (14)C7—O11.4232 (14)
C2—C31.3741 (17)C7—C81.5060 (15)
C2—H2A0.979 (15)C7—H7A1.003 (16)
C3—C41.3816 (18)C7—H7B0.961 (15)
C3—H3A0.958 (16)C8—C91.3206 (16)
C4—C51.3759 (18)C8—C8i1.476 (2)
C4—H4A0.967 (17)C9—H9B0.983 (15)
C5—C61.3854 (17)C9—H9A0.991 (17)
O1—C1—C6124.85 (9)C5—C6—H6A121.1 (8)
O1—C1—C2115.18 (9)C1—C6—H6A119.8 (8)
C6—C1—C2119.97 (10)O1—C7—C8114.05 (10)
C3—C2—C1119.95 (10)O1—C7—H7A104.4 (9)
C3—C2—H2A120.5 (8)C8—C7—H7A110.4 (9)
C1—C2—H2A119.6 (8)O1—C7—H7B110.1 (8)
C2—C3—C4120.75 (11)C8—C7—H7B111.3 (8)
C2—C3—H3A119.1 (9)H7A—C7—H7B106.1 (13)
C4—C3—H3A120.2 (9)C9—C8—C8i123.11 (13)
C5—C4—C3119.00 (11)C9—C8—C7120.85 (10)
C5—C4—H4A120.8 (10)C8i—C8—C7116.03 (11)
C3—C4—H4A120.2 (10)C1—O1—C7118.41 (9)
C4—C5—C6121.34 (11)C8—C9—H9B121.1 (8)
C4—C5—H5A119.8 (9)C8—C9—H9A123.0 (10)
C6—C5—H5A118.9 (9)H9B—C9—H9A115.9 (13)
C5—C6—C1118.99 (10)
O1—C1—C2—C3179.90 (10)C2—C1—C6—C50.74 (17)
C6—C1—C2—C30.46 (16)O1—C7—C8—C94.17 (16)
C1—C2—C3—C40.00 (17)C6—C1—O1—C79.79 (16)
C2—C3—C4—C50.18 (19)C2—C1—O1—C7170.59 (10)
C3—C4—C5—C60.11 (19)C8—C7—O1—C184.83 (13)
C4—C5—C6—C10.57 (18)O1—C7—C8—C8i176.68 (10)
O1—C1—C6—C5179.66 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.98 (2)2.41 (2)2.770 (2)101 (1)
C4—H4A···Cg1ii0.97 (2)2.92 (2)3.727 (2)142 (1)
C9—H9A···Cg1iii0.99 (2)2.73 (2)3.591 (1)146 (1)
Symmetry codes: (ii) x, y1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H18O2
Mr266.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.7575 (5), 7.0750 (3), 9.7939 (5)
β (°) 109.180 (2)
V3)704.03 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.958, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9151, 2065, 1558
Rint0.026
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.02
No. of reflections2065
No. of parameters127
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 andSAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 and PLATON.

Selected geometric parameters (Å, º) top
C1—O11.3695 (13)C8—C91.3206 (16)
C7—O11.4232 (14)C8—C8i1.476 (2)
C7—C81.5060 (15)
O1—C1—C2115.18 (9)C8i—C8—C7116.03 (11)
O1—C7—C8114.05 (10)C1—O1—C7118.41 (9)
C9—C8—C7120.85 (10)
C2—C1—O1—C7170.59 (10)O1—C7—C8—C8i176.68 (10)
C8—C7—O1—C184.83 (13)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.98 (2)2.41 (2)2.770 (2)101 (1)
C4—H4A···Cg1ii0.97 (2)2.92 (2)3.727 (2)142 (1)
C9—H9A···Cg1iii0.99 (2)2.73 (2)3.591 (1)146 (1)
Symmetry codes: (ii) x, y1/2, z1/2; (iii) x, y+1, z.
 

Acknowledgements

We thank the DRDO, India, for financial support (Grant No. ERIP/ER/0403461/M/01). RSR acknowledges the Science & Engineering Research Council (DST), Government of India, for providing a Fast-Track grant and the Bioinformatics Center of the School of Biotechnology, Devi Ahilya University, Indore, India, for the use of computational facilities.

References

First citationAlcock, N. W., Leigh, D. A. & Lacy, S. M. (2006). Private communication (refcode XAVTIY). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.08), SAINT (Version 7.23A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNarasegowda, R. S., Malathy Sony, S. M., Mondal, S., Nagaraj, B., Yathirajan, H. S., Narasimhamurthy, T., Charles, P., Ponnuswamy, M. N., Nethaji, M. & Rathore, R. S. (2005). Acta Cryst. E61, o843–o845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPidcock, E., Motherwell, W. D. S. & Cole, J. C. (2003). Acta Cryst. B59, 634–640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2007). Acta Cryst. E63, o2504–o2505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiyanarayanan, K., George Fernand, A., Dhanasekaran, V. & Rathore, R. S. (2008). Acta Cryst. E64, o123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, M. U., Schmiermund, T. & Bolte, M. (2006). Acta Cryst. C62, m37–m40.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, J. W., Cole, J. C., Pidcock, E., Allen, F. H., Howard, J. A. K. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 640–646.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds