metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua(μ2-3-carboxypyrazine-2-carboxylato)(μ2-pyrazine-2,3-di­carboxylic acid)potassium(I)]

aDepartment of Chemistry, Faculty of Arts and Science, University of Kirikkale, Campus Yahsihan, 71450 Kirikkale, Turkey, bDepartment of Physics, Faculty of Arts and Science, University of Kirikkale, Campus Yahsihan, 71450 Kirikkale, Turkey, and cStructural Research, Materials Science, Darmstadt University of Technology, Petersen Strasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: mustafatombul38@gmail.com

(Received 17 October 2007; accepted 8 December 2007; online 15 December 2007)

The structural unit of the title compound, [K(C6H3N2O4)(C6H4N2O4)(H2O)2]n, consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxyl­ate anion, one pyrazine-2,3-dicarboxylic acid mol­ecule and two water mol­ecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid mol­ecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water mol­ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H⋯O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O—H⋯O and O—H⋯N hydrogen bonds in which water acts as the donor.

Related literature

For related literature, see: Clegg & Liddle (2004[Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1495-m1497.]); Cuesta et al. (2003[Cuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315-m318.]); Ptasiewicz-Bak & Leciejewicz (1997a[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500.],b[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.]); Starosta & Leciejewicz (2005[Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.]); Takusagawa & Shimada (1973[Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121-1126.]); Tombul et al. (2006[Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.], 2007[Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783-m1784.]). Richard et al. (1973[Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.]). Nepveu et al. (1993[Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465-1466.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C6H3N2O4)(C6H4N2O4)(H2O)2]

  • Mr = 410.35

  • Triclinic, [P \overline 1]

  • a = 7.4171 (11) Å

  • b = 8.0252 (12) Å

  • c = 8.1153 (13) Å

  • α = 68.39 (2)°

  • β = 81.18 (1)°

  • γ = 64.24 (2)°

  • V = 404.43 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 303 (2) K

  • 0.40 × 0.36 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: numerical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.858, Tmax = 0.947

  • 4541 measured reflections

  • 1639 independent reflections

  • 1357 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.089

  • S = 0.82

  • 1639 reflections

  • 141 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

N1—K1 2.8655 (15)
O1—K1 2.8995 (12)
O3—K1 2.8771 (15)
K1—N1i 2.8655 (15)
K1—O3i 2.8771 (15)
K1—O1i 2.8995 (12)
K1—O2ii 3.0897 (13)
K1—O2iii 3.0897 (13)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4iv 0.85 (2) 1.899 (10) 2.7334 (17) 167 (2)
O3—H3B⋯N2ii 0.848 (9) 2.035 (10) 2.8701 (19) 168 (2)
O5—H5⋯O3v 0.86 (3) 1.76 (3) 2.5994 (17) 168 (2)
O1—H1⋯O1iv 0.80 (4) 1.68 (4) 2.480 (2) 171 (5)
Symmetry codes: (ii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x+1, y-1, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis CCD. Versions 1.171.31.4 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis CCD. Versions 1.171.31.4 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).; software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. These include the calcium (Ptasiewicz-Bak- & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak- H. & Leciejewicz, 1997b), sodium (Tombul et al., 2006) and caesium (Tombul et al., 2007) complexes. We present here the synthesis and crystal structure of the hydrated potassium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

The structural unit of the title compound, (I), contains one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, as the potassium ion lies on an inversion centre. Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups (O1) and together with the symmetry-related oxygen atom (O1v) which is also half deprotonated, completes the charge balance of the cation. In the crystal structure, the anion or acid molecule is linked to two potassium cations, while the K+ cation is surrounded by four organic ligands, two of which are coordinated by utilizing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each potassium cation is coordinated by two water molecules, achieving a coordination number of eight. The primary coordination comprises six oxygen atoms, together with two nitrogen atoms. The planes of the carboxylic/carboxylate groups (O4/C5/O1) and (O2/C6/O5) form dihedral angles with the ring plane of 54.33 (14) and 53.75 (14)°, respectively. The K—O distances are in the range 2.877 (2) Å to 3.089 (2) Å, in accordance with the corresponding values reported for other potassium complexes (Clegg & Liddle, 2004; Cuesta et al., 2003).

In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms (Table 2). Atom H1 is involved in this bond and maintains the charge balance within the structure. The ordered carboxyl group forms a hydrogen bond in which water serves as acceptor. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring.

Related literature top

For related literature, see: Clegg & Liddle (2004); Cuesta et al. (2003); Ptasiewicz-Bak & Leciejewicz (1997a,b); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul et al. (2006, 2007). Richard et al. (1973). Nepveu et al. (1993).

Experimental top

K2CO3 (346 mg, 2.5 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine-2,3-dicarboxylic acid (1680 mg, 10 mmol), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 333 K for 2.5 h, until it solidified. The solid product was redissolved in water (10 ml) and allowed to stand for a week at room temperature, after which transparent fine crystals were harvested.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically and treated as riding, with C—H in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). O-bound H atoms were refined freely.

Structure description top

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. These include the calcium (Ptasiewicz-Bak- & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak- H. & Leciejewicz, 1997b), sodium (Tombul et al., 2006) and caesium (Tombul et al., 2007) complexes. We present here the synthesis and crystal structure of the hydrated potassium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

The structural unit of the title compound, (I), contains one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, as the potassium ion lies on an inversion centre. Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups (O1) and together with the symmetry-related oxygen atom (O1v) which is also half deprotonated, completes the charge balance of the cation. In the crystal structure, the anion or acid molecule is linked to two potassium cations, while the K+ cation is surrounded by four organic ligands, two of which are coordinated by utilizing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each potassium cation is coordinated by two water molecules, achieving a coordination number of eight. The primary coordination comprises six oxygen atoms, together with two nitrogen atoms. The planes of the carboxylic/carboxylate groups (O4/C5/O1) and (O2/C6/O5) form dihedral angles with the ring plane of 54.33 (14) and 53.75 (14)°, respectively. The K—O distances are in the range 2.877 (2) Å to 3.089 (2) Å, in accordance with the corresponding values reported for other potassium complexes (Clegg & Liddle, 2004; Cuesta et al., 2003).

In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms (Table 2). Atom H1 is involved in this bond and maintains the charge balance within the structure. The ordered carboxyl group forms a hydrogen bond in which water serves as acceptor. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring.

For related literature, see: Clegg & Liddle (2004); Cuesta et al. (2003); Ptasiewicz-Bak & Leciejewicz (1997a,b); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul et al. (2006, 2007). Richard et al. (1973). Nepveu et al. (1993).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006).; software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A segment of the structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry Codes: (ii) -x + 1, -y, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x - 1, y + 1, z.]
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate hydrogen bonds. (H1A and H2 are omitted for clarity). [Symmetry Codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y - 1, z + 1.]
Poly[diaqua(µ2-3-carboxypyrazine-2-carboxylato)(µ2-pyrazine- 2,3-dicarboxylic acid)potassium(I)] top
Crystal data top
[K(C6H3N2O4)(C6H4N2O4)(H2O)2]Z = 1
Mr = 410.35F(000) = 210
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4171 (11) ÅCell parameters from 2574 reflections
b = 8.0252 (12) Åθ = 2.7–27.5°
c = 8.1153 (13) ŵ = 0.40 mm1
α = 68.39 (2)°T = 303 K
β = 81.18 (1)°Prism, colorless
γ = 64.24 (2)°0.40 × 0.36 × 0.14 mm
V = 404.43 (13) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
1639 independent reflections
Radiation source: Enhance (Mo) X-ray Source1357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.4012 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω and φ scansh = 99
Absorption correction: numerical
[using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 99
Tmin = 0.858, Tmax = 0.947l = 1010
4541 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1925P]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
1639 reflectionsΔρmax = 0.30 e Å3
141 parametersΔρmin = 0.24 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (8)
Crystal data top
[K(C6H3N2O4)(C6H4N2O4)(H2O)2]γ = 64.24 (2)°
Mr = 410.35V = 404.43 (13) Å3
Triclinic, P1Z = 1
a = 7.4171 (11) ÅMo Kα radiation
b = 8.0252 (12) ŵ = 0.40 mm1
c = 8.1153 (13) ÅT = 303 K
α = 68.39 (2)°0.40 × 0.36 × 0.14 mm
β = 81.18 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
1639 independent reflections
Absorption correction: numerical
[using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
1357 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.947Rint = 0.017
4541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.30 e Å3
1639 reflectionsΔρmin = 0.24 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2243 (2)0.0442 (2)0.6857 (2)0.0317 (4)
H1A0.09510.01400.65520.038*
C20.3500 (2)0.2386 (2)0.7694 (2)0.0335 (4)
H20.30460.33580.79050.040*
C30.5925 (2)0.1443 (2)0.78702 (18)0.0249 (3)
C40.4681 (2)0.0507 (2)0.69820 (18)0.0236 (3)
C50.5421 (2)0.2104 (2)0.6487 (2)0.0289 (3)
C60.8033 (2)0.2156 (2)0.8493 (2)0.0277 (3)
N10.28268 (17)0.10040 (18)0.64756 (16)0.0281 (3)
N20.53451 (18)0.28984 (18)0.82048 (17)0.0310 (3)
O10.41860 (17)0.38402 (16)0.56448 (17)0.0394 (3)
H10.476 (7)0.455 (6)0.533 (5)0.039 (11)*0.50
O20.94651 (16)0.29530 (18)0.77161 (16)0.0392 (3)
O30.14687 (17)0.66521 (18)0.15762 (17)0.0407 (3)
H3A0.195 (3)0.727 (3)0.190 (3)0.057 (6)*
H3B0.245 (2)0.563 (2)0.149 (3)0.057 (6)*
O40.71570 (17)0.16296 (17)0.68558 (19)0.0476 (4)
O50.80518 (19)0.1943 (2)1.00104 (17)0.0504 (4)
H50.925 (4)0.241 (4)1.038 (3)0.065 (7)*
K10.00000.50000.50000.0471 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (7)0.0376 (8)0.0396 (8)0.0125 (6)0.0024 (6)0.0137 (7)
C20.0279 (8)0.0336 (8)0.0424 (9)0.0165 (6)0.0010 (6)0.0120 (7)
C30.0220 (7)0.0276 (7)0.0250 (7)0.0091 (6)0.0002 (5)0.0101 (5)
C40.0213 (7)0.0259 (7)0.0239 (7)0.0076 (6)0.0016 (5)0.0107 (5)
C50.0255 (7)0.0271 (7)0.0356 (8)0.0088 (6)0.0030 (6)0.0134 (6)
C60.0236 (7)0.0241 (7)0.0329 (8)0.0082 (6)0.0042 (6)0.0075 (6)
N10.0210 (6)0.0293 (6)0.0322 (7)0.0067 (5)0.0031 (5)0.0116 (5)
N20.0253 (6)0.0274 (6)0.0377 (7)0.0107 (5)0.0017 (5)0.0079 (5)
O10.0301 (6)0.0261 (6)0.0558 (8)0.0121 (5)0.0066 (5)0.0039 (5)
O20.0221 (5)0.0465 (7)0.0535 (7)0.0108 (5)0.0004 (5)0.0257 (6)
O30.0316 (6)0.0372 (7)0.0555 (8)0.0072 (5)0.0149 (5)0.0206 (6)
O40.0308 (6)0.0333 (6)0.0824 (10)0.0118 (5)0.0192 (6)0.0174 (6)
O50.0297 (6)0.0743 (9)0.0417 (7)0.0057 (6)0.0116 (5)0.0282 (6)
K10.0338 (3)0.0339 (3)0.0456 (3)0.0005 (2)0.0012 (2)0.0006 (2)
Geometric parameters (Å, º) top
C1—N11.327 (2)N1—K12.8655 (15)
C1—C21.383 (2)O1—K12.8995 (12)
C1—H1A0.9300O1—H10.80 (4)
C2—N21.331 (2)O3—K12.8771 (15)
C2—H20.9300O3—H3A0.85 (2)
C3—N21.3381 (19)O3—H3B0.848 (9)
C3—C41.392 (2)O5—H50.86 (3)
C3—C61.5097 (19)K1—N1i2.8655 (15)
C4—N11.3397 (18)K1—O3i2.8771 (15)
C4—C51.507 (2)K1—O1i2.8995 (12)
C5—O41.2248 (18)K1—O2ii3.0897 (13)
C5—O11.2760 (19)K1—O2iii3.0897 (13)
C6—O21.1983 (19)K1—H3A3.09 (2)
C6—O51.3073 (19)
N1—C1—C2121.91 (13)N1i—K1—O372.84 (4)
N1—C1—H1A119.0N1—K1—O3107.16 (4)
C2—C1—H1A119.0O3i—K1—O3180.0
N2—C2—C1121.64 (14)N1i—K1—O1i55.92 (4)
N2—C2—H2119.2N1—K1—O1i124.08 (4)
C1—C2—H2119.2O3i—K1—O1i76.02 (4)
N2—C3—C4121.58 (13)O3—K1—O1i103.98 (4)
N2—C3—C6113.19 (12)N1i—K1—O1124.08 (4)
C4—C3—C6125.20 (13)N1—K1—O155.92 (4)
N1—C4—C3121.03 (13)O3i—K1—O1103.98 (4)
N1—C4—C5118.15 (13)O3—K1—O176.02 (4)
C3—C4—C5120.76 (13)O1i—K1—O1180.000 (1)
O4—C5—O1125.67 (14)N1i—K1—O2ii107.44 (4)
O4—C5—C4118.05 (13)N1—K1—O2ii72.56 (4)
O1—C5—C4116.21 (13)O3i—K1—O2ii116.00 (3)
O2—C6—O5126.25 (14)O3—K1—O2ii64.00 (3)
O2—C6—C3121.86 (13)O1i—K1—O2ii81.35 (3)
O5—C6—C3111.63 (13)O1—K1—O2ii98.65 (4)
C1—N1—C4117.01 (13)N1i—K1—O2iii72.56 (4)
C1—N1—K1119.50 (9)N1—K1—O2iii107.44 (4)
C4—N1—K1123.12 (9)O3i—K1—O2iii64.00 (3)
C2—N2—C3116.78 (13)O3—K1—O2iii116.00 (3)
C5—O1—K1125.42 (10)O1i—K1—O2iii98.65 (4)
C5—O1—H1109 (3)O1—K1—O2iii81.35 (4)
K1—O1—H1126 (3)O2ii—K1—O2iii180.00 (2)
C6—O2—K1iv132.38 (10)N1i—K1—H3A70.6 (3)
K1—O3—H3A96.3 (15)N1—K1—H3A109.4 (3)
K1—O3—H3B99.8 (15)O3i—K1—H3A164.1 (2)
H3A—O3—H3B106.6 (13)O3—K1—H3A15.9 (2)
C6—O5—H5111.0 (16)O1i—K1—H3A112.9 (3)
N1i—K1—N1180.0O1—K1—H3A67.1 (3)
N1i—K1—O3i107.16 (4)O2ii—K1—H3A79.1 (2)
N1—K1—O3i72.84 (4)O2iii—K1—H3A100.9 (2)
N1—C1—C2—N21.9 (2)O4—C5—O1—K1175.29 (12)
N2—C3—C4—N12.1 (2)C4—C5—O1—K17.78 (19)
C6—C3—C4—N1179.87 (13)O5—C6—O2—K1iv154.68 (13)
N2—C3—C4—C5174.99 (13)C3—C6—O2—K1iv19.1 (2)
C6—C3—C4—C52.8 (2)C1—N1—K1—O3i61.01 (11)
N1—C4—C5—O4175.63 (14)C4—N1—K1—O3i111.76 (11)
C3—C4—C5—O41.5 (2)C1—N1—K1—O3118.99 (11)
N1—C4—C5—O11.5 (2)C4—N1—K1—O368.24 (11)
C3—C4—C5—O1178.67 (13)C1—N1—K1—O1i1.94 (12)
N2—C3—C6—O274.92 (18)C4—N1—K1—O1i170.83 (10)
C4—C3—C6—O2103.06 (18)C1—N1—K1—O1178.06 (12)
N2—C3—C6—O599.65 (16)C4—N1—K1—O19.17 (10)
C4—C3—C6—O582.37 (18)C1—N1—K1—O2ii64.29 (11)
C2—C1—N1—C41.8 (2)C4—N1—K1—O2ii122.94 (11)
C2—C1—N1—K1174.99 (12)C1—N1—K1—O2iii115.71 (11)
C3—C4—N1—C10.1 (2)C4—N1—K1—O2iii57.06 (11)
C5—C4—N1—C1177.00 (12)C5—O1—K1—N1i171.23 (11)
C3—C4—N1—K1172.82 (10)C5—O1—K1—N18.77 (11)
C5—C4—N1—K110.06 (17)C5—O1—K1—O3i48.85 (13)
C1—C2—N2—C30.0 (2)C5—O1—K1—O3131.15 (13)
C4—C3—N2—C21.9 (2)C5—O1—K1—O2ii70.80 (13)
C6—C3—N2—C2179.99 (12)C5—O1—K1—O2iii109.20 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y+1, z; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4v0.85 (2)1.90 (1)2.7334 (17)167 (2)
O3—H3B···N2ii0.85 (1)2.04 (1)2.8701 (19)168 (2)
O5—H5···O3vi0.86 (3)1.76 (3)2.5994 (17)168 (2)
O1—H1···O1v0.80 (4)1.68 (4)2.480 (2)171 (5)
Symmetry codes: (ii) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula[K(C6H3N2O4)(C6H4N2O4)(H2O)2]
Mr410.35
Crystal system, space groupTriclinic, P1
Temperature (K)303
a, b, c (Å)7.4171 (11), 8.0252 (12), 8.1153 (13)
α, β, γ (°)68.39 (2), 81.18 (1), 64.24 (2)
V3)404.43 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.36 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionNumerical
[using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.858, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
4541, 1639, 1357
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.089, 0.82
No. of reflections1639
No. of parameters141
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Mercury (Macrae et al., 2006)., publCIF (Westrip, 2008).

Selected bond lengths (Å) top
N1—K12.8655 (15)K1—O3i2.8771 (15)
O1—K12.8995 (12)K1—O1i2.8995 (12)
O3—K12.8771 (15)K1—O2ii3.0897 (13)
K1—N1i2.8655 (15)K1—O2iii3.0897 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4iv0.85 (2)1.899 (10)2.7334 (17)167 (2)
O3—H3B···N2ii0.848 (9)2.035 (10)2.8701 (19)168 (2)
O5—H5···O3v0.86 (3)1.76 (3)2.5994 (17)168 (2)
O1—H1···O1iv0.80 (4)1.68 (4)2.480 (2)171 (5)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Kırıkkale University for the financial support of this research and Professor Dr Hartmut Fuess, Darmstadt University of Technology, for use of the diffractometer.

References

First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1495–m1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315–m318.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis CCD. Versions 1.171.31.4 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610.  CAS Google Scholar
First citationRichard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.  CrossRef Web of Science Google Scholar
First citationTombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds