metal-organic compounds
Bis{μ-2,4-di-tert-butyl-6-[3-(1H-imidazol-1-yl)propyliminomethyl]phenolato}bis[acetatocopper(II)]
aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and bDepartment of Chemistry, Ege University, TR-35100, Izmir, Turkey
*Correspondence e-mail: onurs@omu.edu.tr
In the centrosymmetric title compound, [Cu2(C21H30N3O)2(C2H3O2)2], each Cu atom has a distorted tetrahedral coordination geometry defined by N and O atoms in a chelate ring, N of an imidazole ring, and an acetate O atom. The uncoordinated acetate O atom is disordered over two sites with occupancies 0.7:0.3.
Related literature
For related literature, see: Djebbar et al. (1997); Hansen et al. (1996); Huang et al. (2002); Lacroix et al. (2004); Tas et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807063283/cf2164sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063283/cf2164Isup2.hkl
N-[1-(3-Aminopropyl)imidazole]-3,5-di-t-butylsalicylaldimine ligand and its copper(II) complex were synthesized according to the literature procedure (Tas et al., 2004).
Atom O3 shows disorder and was modelled in two different positions as O3a and O3b with refined occupancy factors of 0.30 (4) and 0.70 (4). All H-atoms were refined using a riding model with C—H = 0.93Å [Uiso(H) = 1.2Ueq(parent atom)] for aromatic carbon, C—H = 0.97Å [Uiso(H) = 1.2Ueq(parent atom)] for methylene carbon and C—H = 0.96 Å [Uiso(H) = 1.5Ueq(parent atom)] for methyl carbon atoms.
Considerable attention has been paid to the chemistry of metal complexes of
containing nitrogen and other donors (Djebbar et al., 1997). This may be attributed to their stability, biochemical and analytical uses, and potential applications in fields such as oxidation catalysis, electrochemical and molecular materials with non-linear optical properties, and therapeutic applications (Lacroix et al., 2004). The use of the salen ligand framework in catalytic reactions has been receiving increasing interest due to the aforementioned advantage and its success in many newly discovered processes. Most notable is the asymmetric ring opening of by a Cr(salen)Cl catalyst which was developed by Jacobsen and co-workers in the mid-1990 s (Hansen et al., 1996). A very important reaction in organic synthesis which involves the use of predominantly chromium-based salen complexes is the Diels-Alder reaction. Indeed, there is a report where these catalysts have been employed as part of a lengthy synthetic strategy to afford complex natural products (Huang et al., 2002). In this study, we report the structural characterization of a dinuclear Cu(II) Schiff base complex, which was previously investigated by different techniques (Tas et al., 2004). We envisaged that the free imidazole group of the proposed structure (I) should interact with aliphatic alkyl halides such as n-butyl bromide to give novel copper(II) complexes, leading to ionic liquids. However, all attempts under different and drastic conditions failed. This led us to reconsider the proposed structure (I). Therefore, for detailed information about the coordination mode of the ligands and for full characterization of the complex, a single-crystal X-ray determination has been carried out.The centrosymmetric molecular structure, with the atomic labelling scheme, is presented in Fig.1. The copper atom is in a distorted tetrahedral coordination geometry defined by atoms N1 and O1 in a chelate ring, N3 of an imidazole ring, and an acetate atom O2. Atoms N1 and O1 are bonded to Cu1 to form a six-membered chelate ring (–C1—C2—C7—N1—Cu1—O1-). The dihedral angle between the phenyl ring and this chelate ring is 6.5 (4)°. The significant difference between Cu—L bond distances [Cu—O1 = 1.910 (3) Å, Cu—O2 = 1.966 (3) Å, Cu—N1 = 1.957 (4)Å and Cu—N3 = 1.989 (4) Å] has also been observed in other copper complexes. The longer Cu1···O3 distance and the larger Cu1—O2—C22 angle suggest there is no bonding interaction between atoms Cu1 and O3.
For related literature, see: Djebbar et al. (1997); Hansen et al. (1996); Huang et al. (2002); Lacroix et al. (2004); Tas et al. (2004).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.] |
[Cu2(C21H30N3O)2(C2H3O2)2] | F(000) = 980 |
Mr = 926.13 | Dx = 1.235 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2ybc | Cell parameters from 29181 reflections |
a = 14.1745 (11) Å | θ = 1.6–27.9° |
b = 10.2898 (8) Å | µ = 0.90 mm−1 |
c = 19.0850 (17) Å | T = 296 K |
β = 116.502 (6)° | Prism, black |
V = 2491.1 (4) Å3 | 0.25 × 0.19 × 0.07 mm |
Z = 2 |
STOE IPDSII diffractometer | 4905 independent reflections |
Radiation source: fine-focus sealed tube | 2485 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.167 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.2° |
rotation method scans | h = −17→17 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −12→12 |
Tmin = 0.741, Tmax = 0.914 | l = −23→23 |
34842 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
4905 reflections | (Δ/σ)max < 0.001 |
275 parameters | Δρmax = 0.31 e Å−3 |
12 restraints | Δρmin = −0.24 e Å−3 |
[Cu2(C21H30N3O)2(C2H3O2)2] | V = 2491.1 (4) Å3 |
Mr = 926.13 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.1745 (11) Å | µ = 0.90 mm−1 |
b = 10.2898 (8) Å | T = 296 K |
c = 19.0850 (17) Å | 0.25 × 0.19 × 0.07 mm |
β = 116.502 (6)° |
STOE IPDSII diffractometer | 4905 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2485 reflections with I > 2σ(I) |
Tmin = 0.741, Tmax = 0.914 | Rint = 0.167 |
34842 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 12 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.31 e Å−3 |
4905 reflections | Δρmin = −0.24 e Å−3 |
275 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6847 (4) | 0.6496 (5) | 0.4074 (3) | 0.0479 (12) | |
C2 | 0.6890 (4) | 0.5548 (4) | 0.3558 (3) | 0.0478 (12) | |
C3 | 0.7777 (4) | 0.5428 (5) | 0.3420 (3) | 0.0573 (14) | |
H3 | 0.7789 | 0.4768 | 0.3092 | 0.069* | |
C4 | 0.8623 (4) | 0.6239 (5) | 0.3749 (3) | 0.0570 (14) | |
C5 | 0.8573 (4) | 0.7181 (6) | 0.4260 (3) | 0.0635 (15) | |
H5 | 0.9142 | 0.7745 | 0.4491 | 0.076* | |
C6 | 0.7738 (4) | 0.7346 (5) | 0.4451 (3) | 0.0531 (13) | |
C7 | 0.6028 (4) | 0.4685 (5) | 0.3117 (3) | 0.0556 (13) | |
H7 | 0.6150 | 0.4070 | 0.2810 | 0.067* | |
C8 | 0.9600 (5) | 0.6182 (6) | 0.3599 (4) | 0.0752 (17) | |
C9 | 0.9519 (6) | 0.5078 (8) | 0.3043 (6) | 0.141 (4) | |
H9A | 0.9468 | 0.4264 | 0.3269 | 0.169* | |
H9B | 1.0136 | 0.5074 | 0.2955 | 0.169* | |
H9C | 0.8904 | 0.5200 | 0.2554 | 0.169* | |
C10 | 0.9705 (7) | 0.7427 (8) | 0.3223 (5) | 0.131 (3) | |
H10A | 1.0295 | 0.7362 | 0.3105 | 0.157* | |
H10B | 0.9814 | 0.8139 | 0.3576 | 0.157* | |
H10C | 0.9073 | 0.7573 | 0.2748 | 0.157* | |
C11 | 1.0571 (5) | 0.5926 (11) | 0.4350 (5) | 0.156 (4) | |
H11A | 1.0500 | 0.5106 | 0.4563 | 0.187* | |
H11B | 1.0656 | 0.6605 | 0.4719 | 0.187* | |
H11C | 1.1177 | 0.5902 | 0.4250 | 0.187* | |
C12 | 0.7780 (4) | 0.8338 (6) | 0.5050 (3) | 0.0671 (15) | |
C13 | 0.8787 (5) | 0.9195 (8) | 0.5362 (4) | 0.113 (3) | |
H13A | 0.8786 | 0.9778 | 0.5754 | 0.136* | |
H13B | 0.8796 | 0.9687 | 0.4938 | 0.136* | |
H13C | 0.9400 | 0.8650 | 0.5586 | 0.136* | |
C14 | 0.6846 (5) | 0.9279 (6) | 0.4704 (3) | 0.0811 (17) | |
H14A | 0.6199 | 0.8802 | 0.4537 | 0.097* | |
H14B | 0.6853 | 0.9722 | 0.4264 | 0.097* | |
H14C | 0.6900 | 0.9903 | 0.5094 | 0.097* | |
C15 | 0.7796 (5) | 0.7619 (7) | 0.5764 (3) | 0.0817 (18) | |
H15A | 0.7156 | 0.7132 | 0.5605 | 0.098* | |
H15B | 0.7854 | 0.8240 | 0.6157 | 0.098* | |
H15C | 0.8388 | 0.7039 | 0.5974 | 0.098* | |
C16 | 0.4370 (4) | 0.3671 (5) | 0.2586 (3) | 0.0649 (16) | |
H16A | 0.4696 | 0.3215 | 0.2306 | 0.078* | |
H16B | 0.3740 | 0.4095 | 0.2203 | 0.078* | |
C17 | 0.4064 (5) | 0.2697 (6) | 0.3046 (3) | 0.0698 (17) | |
H17A | 0.3537 | 0.2114 | 0.2679 | 0.084* | |
H17B | 0.3742 | 0.3162 | 0.3326 | 0.084* | |
C18 | 0.5027 (5) | 0.8115 (6) | 0.6368 (4) | 0.0771 (18) | |
H18A | 0.4521 | 0.8271 | 0.6571 | 0.092* | |
H18B | 0.5294 | 0.8949 | 0.6300 | 0.092* | |
C19 | 0.4943 (4) | 0.7166 (5) | 0.5142 (3) | 0.0657 (15) | |
H19 | 0.5638 | 0.7362 | 0.5260 | 0.079* | |
C20 | 0.3381 (4) | 0.6471 (6) | 0.4573 (3) | 0.0665 (15) | |
H20 | 0.2764 | 0.6086 | 0.4207 | 0.080* | |
C21 | 0.3507 (5) | 0.7013 (6) | 0.5248 (4) | 0.0705 (16) | |
H21 | 0.3002 | 0.7066 | 0.5433 | 0.085* | |
C22 | 0.2820 (5) | 0.6256 (6) | 0.2458 (4) | 0.0721 (17) | |
C23 | 0.1666 (5) | 0.6146 (8) | 0.1897 (4) | 0.122 (3) | |
H23A | 0.1251 | 0.6322 | 0.2169 | 0.146* | |
H23B | 0.1518 | 0.5283 | 0.1683 | 0.146* | |
H23C | 0.1493 | 0.6763 | 0.1480 | 0.146* | |
N1 | 0.5106 (3) | 0.4662 (4) | 0.3098 (2) | 0.0543 (11) | |
N2 | 0.4498 (4) | 0.7462 (4) | 0.5607 (3) | 0.0620 (12) | |
N3 | 0.4297 (3) | 0.6572 (4) | 0.4504 (2) | 0.0596 (11) | |
O1 | 0.6027 (2) | 0.6631 (3) | 0.42159 (19) | 0.0557 (9) | |
O2 | 0.3149 (3) | 0.5524 (4) | 0.3042 (2) | 0.0705 (11) | |
O3A | 0.327 (3) | 0.721 (4) | 0.253 (2) | 0.105 (5) | 0.30 (4) |
O3B | 0.3390 (11) | 0.6916 (16) | 0.2238 (13) | 0.105 (5) | 0.70 (4) |
Cu1 | 0.46586 (5) | 0.58707 (6) | 0.36829 (4) | 0.0531 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (3) | 0.061 (3) | 0.044 (3) | 0.006 (2) | 0.014 (2) | 0.010 (2) |
C2 | 0.041 (3) | 0.054 (3) | 0.051 (3) | 0.006 (2) | 0.022 (2) | 0.006 (2) |
C3 | 0.056 (3) | 0.065 (4) | 0.060 (3) | 0.020 (3) | 0.033 (3) | 0.019 (3) |
C4 | 0.040 (3) | 0.064 (4) | 0.069 (3) | 0.011 (2) | 0.026 (3) | 0.020 (3) |
C5 | 0.035 (3) | 0.081 (4) | 0.068 (4) | −0.001 (3) | 0.018 (3) | 0.014 (3) |
C6 | 0.037 (3) | 0.064 (3) | 0.052 (3) | 0.001 (2) | 0.014 (2) | 0.007 (3) |
C7 | 0.058 (3) | 0.066 (4) | 0.046 (3) | 0.005 (3) | 0.026 (3) | 0.001 (2) |
C8 | 0.056 (3) | 0.093 (5) | 0.092 (4) | 0.007 (3) | 0.047 (3) | 0.020 (4) |
C9 | 0.119 (7) | 0.128 (7) | 0.242 (11) | 0.001 (5) | 0.141 (8) | −0.009 (8) |
C10 | 0.145 (7) | 0.129 (7) | 0.175 (8) | −0.003 (6) | 0.121 (7) | 0.028 (6) |
C11 | 0.059 (4) | 0.294 (13) | 0.134 (6) | 0.047 (7) | 0.061 (5) | 0.069 (8) |
C12 | 0.052 (3) | 0.077 (4) | 0.067 (4) | −0.010 (3) | 0.022 (3) | −0.005 (3) |
C13 | 0.090 (5) | 0.139 (7) | 0.117 (5) | −0.054 (5) | 0.052 (4) | −0.053 (5) |
C14 | 0.089 (4) | 0.066 (4) | 0.087 (4) | −0.005 (4) | 0.037 (4) | −0.014 (3) |
C15 | 0.065 (4) | 0.113 (5) | 0.052 (3) | 0.014 (4) | 0.014 (3) | −0.002 (3) |
C16 | 0.063 (4) | 0.077 (4) | 0.055 (3) | −0.008 (3) | 0.026 (3) | −0.023 (3) |
C17 | 0.071 (4) | 0.075 (4) | 0.073 (4) | −0.029 (3) | 0.040 (3) | −0.039 (3) |
C18 | 0.100 (5) | 0.061 (4) | 0.089 (4) | 0.000 (3) | 0.059 (4) | −0.024 (3) |
C19 | 0.053 (3) | 0.085 (4) | 0.070 (4) | −0.011 (3) | 0.036 (3) | −0.020 (3) |
C20 | 0.046 (3) | 0.085 (4) | 0.072 (4) | −0.007 (3) | 0.029 (3) | −0.006 (3) |
C21 | 0.063 (4) | 0.086 (4) | 0.081 (4) | −0.002 (3) | 0.049 (3) | −0.012 (3) |
C22 | 0.054 (4) | 0.067 (5) | 0.092 (5) | 0.001 (3) | 0.029 (4) | 0.002 (4) |
C23 | 0.063 (4) | 0.150 (8) | 0.110 (5) | −0.001 (5) | 0.001 (4) | 0.012 (5) |
N1 | 0.046 (2) | 0.069 (3) | 0.047 (2) | −0.002 (2) | 0.020 (2) | −0.003 (2) |
N2 | 0.063 (3) | 0.064 (3) | 0.070 (3) | −0.002 (2) | 0.039 (3) | −0.014 (2) |
N3 | 0.044 (3) | 0.078 (3) | 0.062 (3) | −0.002 (2) | 0.028 (2) | −0.012 (2) |
O1 | 0.0381 (19) | 0.073 (2) | 0.058 (2) | −0.0021 (16) | 0.0235 (17) | −0.0077 (17) |
O2 | 0.048 (2) | 0.096 (3) | 0.068 (2) | −0.004 (2) | 0.0253 (19) | −0.007 (2) |
O3A | 0.079 (5) | 0.092 (7) | 0.162 (12) | 0.008 (4) | 0.070 (6) | 0.041 (7) |
O3B | 0.079 (5) | 0.092 (7) | 0.162 (12) | 0.008 (4) | 0.070 (6) | 0.041 (7) |
Cu1 | 0.0392 (3) | 0.0685 (4) | 0.0521 (3) | −0.0025 (4) | 0.0207 (2) | −0.0072 (4) |
C1—O1 | 1.313 (5) | C14—H14C | 0.960 |
C1—C2 | 1.407 (6) | C15—H15A | 0.960 |
C1—C6 | 1.439 (7) | C15—H15B | 0.960 |
C2—C3 | 1.399 (6) | C15—H15C | 0.960 |
C2—C7 | 1.440 (7) | C16—N1 | 1.474 (6) |
C3—C4 | 1.363 (7) | C16—C17 | 1.517 (7) |
C3—H3 | 0.930 | C16—H16A | 0.970 |
C4—C5 | 1.400 (7) | C16—H16B | 0.970 |
C4—C8 | 1.535 (7) | C17—C18i | 1.524 (8) |
C5—C6 | 1.395 (7) | C17—H17A | 0.970 |
C5—H5 | 0.930 | C17—H17B | 0.970 |
C6—C12 | 1.514 (7) | C18—N2 | 1.467 (7) |
C7—N1 | 1.291 (6) | C18—C17i | 1.524 (8) |
C7—H7 | 0.930 | C18—H18A | 0.970 |
C8—C11 | 1.503 (9) | C18—H18B | 0.970 |
C8—C10 | 1.508 (9) | C19—N3 | 1.304 (6) |
C8—C9 | 1.524 (10) | C19—N2 | 1.331 (6) |
C9—H9A | 0.960 | C19—H19 | 0.930 |
C9—H9B | 0.960 | C20—C21 | 1.341 (7) |
C9—H9C | 0.960 | C20—N3 | 1.366 (6) |
C10—H10A | 0.960 | C20—H20 | 0.930 |
C10—H10B | 0.960 | C21—N2 | 1.341 (7) |
C10—H10C | 0.960 | C21—H21 | 0.930 |
C11—H11A | 0.960 | C22—O3A | 1.14 (4) |
C11—H11B | 0.960 | C22—O2 | 1.249 (7) |
C11—H11C | 0.960 | C22—O3B | 1.263 (18) |
C12—C14 | 1.532 (8) | C22—C23 | 1.509 (8) |
C12—C15 | 1.541 (8) | C23—H23A | 0.960 |
C12—C13 | 1.552 (8) | C23—H23B | 0.960 |
C13—H13A | 0.960 | C23—H23C | 0.960 |
C13—H13B | 0.960 | N1—Cu1 | 1.957 (4) |
C13—H13C | 0.960 | N3—Cu1 | 1.989 (4) |
C14—H14A | 0.960 | O1—Cu1 | 1.910 (3) |
C14—H14B | 0.960 | O2—Cu1 | 1.966 (3) |
O1—C1—C2 | 122.5 (4) | H14B—C14—H14C | 109.5 |
O1—C1—C6 | 119.5 (4) | C12—C15—H15A | 109.5 |
C2—C1—C6 | 118.0 (4) | C12—C15—H15B | 109.5 |
C3—C2—C1 | 121.1 (5) | H15A—C15—H15B | 109.5 |
C3—C2—C7 | 115.8 (5) | C12—C15—H15C | 109.5 |
C1—C2—C7 | 123.1 (4) | H15A—C15—H15C | 109.5 |
C4—C3—C2 | 122.7 (5) | H15B—C15—H15C | 109.5 |
C4—C3—H3 | 118.7 | N1—C16—C17 | 112.0 (4) |
C2—C3—H3 | 118.7 | N1—C16—H16A | 109.2 |
C3—C4—C5 | 115.9 (5) | C17—C16—H16A | 109.2 |
C3—C4—C8 | 125.0 (5) | N1—C16—H16B | 109.2 |
C5—C4—C8 | 119.2 (5) | C17—C16—H16B | 109.2 |
C6—C5—C4 | 125.4 (5) | H16A—C16—H16B | 107.9 |
C6—C5—H5 | 117.3 | C16—C17—C18i | 114.9 (5) |
C4—C5—H5 | 117.3 | C16—C17—H17A | 108.5 |
C5—C6—C1 | 116.9 (5) | C18i—C17—H17A | 108.5 |
C5—C6—C12 | 121.8 (5) | C16—C17—H17B | 108.5 |
C1—C6—C12 | 121.2 (4) | C18i—C17—H17B | 108.5 |
N1—C7—C2 | 127.8 (5) | H17A—C17—H17B | 107.5 |
N1—C7—H7 | 116.1 | N2—C18—C17i | 111.5 (4) |
C2—C7—H7 | 116.1 | N2—C18—H18A | 109.3 |
C11—C8—C10 | 111.1 (7) | C17i—C18—H18A | 109.3 |
C11—C8—C9 | 106.6 (6) | N2—C18—H18B | 109.3 |
C10—C8—C9 | 107.1 (6) | C17i—C18—H18B | 109.3 |
C11—C8—C4 | 110.3 (5) | H18A—C18—H18B | 108.0 |
C10—C8—C4 | 110.2 (5) | N3—C19—N2 | 112.7 (5) |
C9—C8—C4 | 111.4 (5) | N3—C19—H19 | 123.7 |
C8—C9—H9A | 109.5 | N2—C19—H19 | 123.7 |
C8—C9—H9B | 109.5 | C21—C20—N3 | 109.7 (5) |
H9A—C9—H9B | 109.5 | C21—C20—H20 | 125.2 |
C8—C9—H9C | 109.5 | N3—C20—H20 | 125.2 |
H9A—C9—H9C | 109.5 | C20—C21—N2 | 107.1 (5) |
H9B—C9—H9C | 109.5 | C20—C21—H21 | 126.5 |
C8—C10—H10A | 109.5 | N2—C21—H21 | 126.5 |
C8—C10—H10B | 109.5 | O3A—C22—O2 | 116 (2) |
H10A—C10—H10B | 109.5 | O2—C22—O3B | 125.6 (8) |
C8—C10—H10C | 109.5 | O3A—C22—C23 | 121.2 (19) |
H10A—C10—H10C | 109.5 | O2—C22—C23 | 116.3 (6) |
H10B—C10—H10C | 109.5 | O3B—C22—C23 | 117.1 (9) |
C8—C11—H11A | 109.5 | C22—C23—H23A | 109.5 |
C8—C11—H11B | 109.5 | C22—C23—H23B | 109.5 |
H11A—C11—H11B | 109.5 | H23A—C23—H23B | 109.5 |
C8—C11—H11C | 109.5 | C22—C23—H23C | 109.5 |
H11A—C11—H11C | 109.5 | H23A—C23—H23C | 109.5 |
H11B—C11—H11C | 109.5 | H23B—C23—H23C | 109.5 |
C6—C12—C14 | 111.4 (4) | C7—N1—C16 | 116.1 (4) |
C6—C12—C15 | 108.9 (5) | C7—N1—Cu1 | 123.6 (3) |
C14—C12—C15 | 110.7 (5) | C16—N1—Cu1 | 120.2 (3) |
C6—C12—C13 | 113.1 (5) | C19—N2—C21 | 106.3 (5) |
C14—C12—C13 | 106.0 (5) | C19—N2—C18 | 125.4 (5) |
C15—C12—C13 | 106.6 (5) | C21—N2—C18 | 128.3 (5) |
C12—C13—H13A | 109.5 | C19—N3—C20 | 104.3 (4) |
C12—C13—H13B | 109.5 | C19—N3—Cu1 | 125.8 (4) |
H13A—C13—H13B | 109.5 | C20—N3—Cu1 | 129.7 (4) |
C12—C13—H13C | 109.5 | C1—O1—Cu1 | 128.9 (3) |
H13A—C13—H13C | 109.5 | C22—O2—Cu1 | 108.4 (4) |
H13B—C13—H13C | 109.5 | O1—Cu1—N1 | 93.07 (15) |
C12—C14—H14A | 109.5 | O1—Cu1—O2 | 165.98 (17) |
C12—C14—H14B | 109.5 | N1—Cu1—O2 | 93.98 (16) |
H14A—C14—H14B | 109.5 | O1—Cu1—N3 | 89.40 (16) |
C12—C14—H14C | 109.5 | N1—Cu1—N3 | 160.63 (17) |
H14A—C14—H14C | 109.5 | O2—Cu1—N3 | 87.95 (16) |
O1—C1—C2—C3 | −179.9 (4) | C17—C16—N1—Cu1 | −64.3 (5) |
C6—C1—C2—C3 | 0.5 (6) | N3—C19—N2—C21 | 0.8 (7) |
O1—C1—C2—C7 | 2.7 (7) | N3—C19—N2—C18 | 179.1 (5) |
C6—C1—C2—C7 | −176.9 (4) | C20—C21—N2—C19 | −0.7 (7) |
C1—C2—C3—C4 | −2.5 (7) | C20—C21—N2—C18 | −178.9 (5) |
C7—C2—C3—C4 | 175.1 (4) | C17i—C18—N2—C19 | −62.9 (7) |
C2—C3—C4—C5 | 2.3 (7) | C17i—C18—N2—C21 | 115.0 (6) |
C2—C3—C4—C8 | −177.9 (5) | N2—C19—N3—C20 | −0.7 (6) |
C3—C4—C5—C6 | −0.1 (7) | N2—C19—N3—Cu1 | −176.3 (4) |
C8—C4—C5—C6 | −179.9 (5) | C21—C20—N3—C19 | 0.2 (6) |
C4—C5—C6—C1 | −1.8 (7) | C21—C20—N3—Cu1 | 175.6 (4) |
C4—C5—C6—C12 | 176.1 (5) | C2—C1—O1—Cu1 | −11.4 (6) |
O1—C1—C6—C5 | −178.2 (4) | C6—C1—O1—Cu1 | 168.3 (3) |
C2—C1—C6—C5 | 1.5 (6) | O3A—C22—O2—Cu1 | −26 (2) |
O1—C1—C6—C12 | 4.0 (7) | O3B—C22—O2—Cu1 | 12.5 (16) |
C2—C1—C6—C12 | −176.4 (4) | C23—C22—O2—Cu1 | −179.2 (5) |
C3—C2—C7—N1 | −174.9 (5) | C1—O1—Cu1—N1 | 11.6 (4) |
C1—C2—C7—N1 | 2.6 (8) | C1—O1—Cu1—O2 | −108.6 (7) |
C3—C4—C8—C11 | −119.3 (7) | C1—O1—Cu1—N3 | 172.3 (4) |
C5—C4—C8—C11 | 60.5 (7) | C7—N1—Cu1—O1 | −6.0 (4) |
C3—C4—C8—C10 | 117.7 (6) | C16—N1—Cu1—O1 | 175.3 (4) |
C5—C4—C8—C10 | −62.5 (7) | C7—N1—Cu1—O2 | 161.9 (4) |
C3—C4—C8—C9 | −1.1 (8) | C16—N1—Cu1—O2 | −16.9 (4) |
C5—C4—C8—C9 | 178.7 (6) | C7—N1—Cu1—N3 | −103.0 (6) |
C5—C6—C12—C14 | 123.9 (5) | C16—N1—Cu1—N3 | 78.3 (6) |
C1—C6—C12—C14 | −58.3 (7) | C22—O2—Cu1—O1 | 33.7 (8) |
C5—C6—C12—C15 | −113.7 (5) | C22—O2—Cu1—N1 | −86.3 (4) |
C1—C6—C12—C15 | 64.1 (6) | C22—O2—Cu1—N3 | 113.0 (4) |
C5—C6—C12—C13 | 4.6 (8) | C19—N3—Cu1—O1 | −6.0 (5) |
C1—C6—C12—C13 | −177.6 (5) | C20—N3—Cu1—O1 | 179.6 (5) |
N1—C16—C17—C18i | −63.0 (6) | C19—N3—Cu1—N1 | 91.6 (7) |
N3—C20—C21—N2 | 0.3 (7) | C20—N3—Cu1—N1 | −82.9 (7) |
C2—C7—N1—C16 | 179.6 (5) | C19—N3—Cu1—O2 | −172.2 (5) |
C2—C7—N1—Cu1 | 0.8 (7) | C20—N3—Cu1—O2 | 13.3 (5) |
C17—C16—N1—C7 | 116.9 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C21H30N3O)2(C2H3O2)2] |
Mr | 926.13 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 14.1745 (11), 10.2898 (8), 19.0850 (17) |
β (°) | 116.502 (6) |
V (Å3) | 2491.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.25 × 0.19 × 0.07 |
Data collection | |
Diffractometer | STOE IPDSII |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.741, 0.914 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34842, 4905, 2485 |
Rint | 0.167 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.128, 0.95 |
No. of reflections | 4905 |
No. of parameters | 275 |
No. of restraints | 12 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.24 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).
References
Djebbar, S. S., Benali, B. O. & Deloume, J. P. (1997). Polyhedron, 16, 2175–2182. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hansen, K. B., Leighton, J. L. & Jacobsen, E. N. (1996). J. Am. Chem. Soc. 118, 10924–10925. CSD CrossRef CAS Web of Science Google Scholar
Huang, Y., Iwama, T. & Rawal, V. H. (2002). Org. Lett. 4, 1163–1166. Web of Science CrossRef PubMed CAS Google Scholar
Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tas, E., Aslanoglu, M., Guler, M. & Ulusoy, M. (2004). J. Coord. Chem. 57, 583–589. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Considerable attention has been paid to the chemistry of metal complexes of Schiff bases containing nitrogen and other donors (Djebbar et al., 1997). This may be attributed to their stability, biochemical and analytical uses, and potential applications in fields such as oxidation catalysis, electrochemical and molecular materials with non-linear optical properties, and therapeutic applications (Lacroix et al., 2004). The use of the salen ligand framework in catalytic reactions has been receiving increasing interest due to the aforementioned advantage and its success in many newly discovered processes. Most notable is the asymmetric ring opening of epoxides by a Cr(salen)Cl catalyst which was developed by Jacobsen and co-workers in the mid-1990 s (Hansen et al., 1996). A very important reaction in organic synthesis which involves the use of predominantly chromium-based salen complexes is the Diels-Alder reaction. Indeed, there is a report where these catalysts have been employed as part of a lengthy synthetic strategy to afford complex natural products (Huang et al., 2002). In this study, we report the structural characterization of a dinuclear Cu(II) Schiff base complex, which was previously investigated by different techniques (Tas et al., 2004). We envisaged that the free imidazole group of the proposed structure (I) should interact with aliphatic alkyl halides such as n-butyl bromide to give novel copper(II) complexes, leading to ionic liquids. However, all attempts under different and drastic conditions failed. This led us to reconsider the proposed structure (I). Therefore, for detailed information about the coordination mode of the ligands and for full characterization of the complex, a single-crystal X-ray determination has been carried out.
The centrosymmetric molecular structure, with the atomic labelling scheme, is presented in Fig.1. The copper atom is in a distorted tetrahedral coordination geometry defined by atoms N1 and O1 in a chelate ring, N3 of an imidazole ring, and an acetate atom O2. Atoms N1 and O1 are bonded to Cu1 to form a six-membered chelate ring (–C1—C2—C7—N1—Cu1—O1-). The dihedral angle between the phenyl ring and this chelate ring is 6.5 (4)°. The significant difference between Cu—L bond distances [Cu—O1 = 1.910 (3) Å, Cu—O2 = 1.966 (3) Å, Cu—N1 = 1.957 (4)Å and Cu—N3 = 1.989 (4) Å] has also been observed in other copper complexes. The longer Cu1···O3 distance and the larger Cu1—O2—C22 angle suggest there is no bonding interaction between atoms Cu1 and O3.