metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,4-di-tert-butyl-6-[3-(1H-imidazol-1-yl)propyl­imino­meth­yl]phenolato}bis­­[acetatocopper(II)]

aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and bDepartment of Chemistry, Ege University, TR-35100, Izmir, Turkey
*Correspondence e-mail: onurs@omu.edu.tr

(Received 30 October 2007; accepted 26 November 2007; online 6 December 2007)

In the centrosymmetric title compound, [Cu2(C21H30N3O)2(C2H3O2)2], each Cu atom has a distorted tetra­hedral coordination geometry defined by N and O atoms in a chelate ring, N of an imidazole ring, and an acetate O atom. The uncoordinated acetate O atom is disordered over two sites with occupancies 0.7:0.3.

Related literature

For related literature, see: Djebbar et al. (1997[Djebbar, S. S., Benali, B. O. & Deloume, J. P. (1997). Polyhedron, 16, 2175-2182.]); Hansen et al. (1996[Hansen, K. B., Leighton, J. L. & Jacobsen, E. N. (1996). J. Am. Chem. Soc. 118, 10924-10925.]); Huang et al. (2002[Huang, Y., Iwama, T. & Rawal, V. H. (2002). Org. Lett. 4, 1163-1166.]); Lacroix et al. (2004[Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825-3835.]); Tas et al. (2004[Tas, E., Aslanoglu, M., Guler, M. & Ulusoy, M. (2004). J. Coord. Chem. 57, 583-589.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C21H30N3O)2(C2H3O2)2]

  • Mr = 926.13

  • Monoclinic, P 21 /c

  • a = 14.1745 (11) Å

  • b = 10.2898 (8) Å

  • c = 19.0850 (17) Å

  • β = 116.502 (6)°

  • V = 2491.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 296 K

  • 0.25 × 0.19 × 0.07 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.741, Tmax = 0.914

  • 34842 measured reflections

  • 4905 independent reflections

  • 2485 reflections with I > 2σ(I)

  • Rint = 0.167

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.128

  • S = 0.95

  • 4905 reflections

  • 275 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 1.957 (4)
N3—Cu1 1.989 (4)
O1—Cu1 1.910 (3)
O2—Cu1 1.966 (3)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Considerable attention has been paid to the chemistry of metal complexes of Schiff bases containing nitrogen and other donors (Djebbar et al., 1997). This may be attributed to their stability, biochemical and analytical uses, and potential applications in fields such as oxidation catalysis, electrochemical and molecular materials with non-linear optical properties, and therapeutic applications (Lacroix et al., 2004). The use of the salen ligand framework in catalytic reactions has been receiving increasing interest due to the aforementioned advantage and its success in many newly discovered processes. Most notable is the asymmetric ring opening of epoxides by a Cr(salen)Cl catalyst which was developed by Jacobsen and co-workers in the mid-1990 s (Hansen et al., 1996). A very important reaction in organic synthesis which involves the use of predominantly chromium-based salen complexes is the Diels-Alder reaction. Indeed, there is a report where these catalysts have been employed as part of a lengthy synthetic strategy to afford complex natural products (Huang et al., 2002). In this study, we report the structural characterization of a dinuclear Cu(II) Schiff base complex, which was previously investigated by different techniques (Tas et al., 2004). We envisaged that the free imidazole group of the proposed structure (I) should interact with aliphatic alkyl halides such as n-butyl bromide to give novel copper(II) complexes, leading to ionic liquids. However, all attempts under different and drastic conditions failed. This led us to reconsider the proposed structure (I). Therefore, for detailed information about the coordination mode of the ligands and for full characterization of the complex, a single-crystal X-ray determination has been carried out.

The centrosymmetric molecular structure, with the atomic labelling scheme, is presented in Fig.1. The copper atom is in a distorted tetrahedral coordination geometry defined by atoms N1 and O1 in a chelate ring, N3 of an imidazole ring, and an acetate atom O2. Atoms N1 and O1 are bonded to Cu1 to form a six-membered chelate ring (–C1—C2—C7—N1—Cu1—O1-). The dihedral angle between the phenyl ring and this chelate ring is 6.5 (4)°. The significant difference between Cu—L bond distances [Cu—O1 = 1.910 (3) Å, Cu—O2 = 1.966 (3) Å, Cu—N1 = 1.957 (4)Å and Cu—N3 = 1.989 (4) Å] has also been observed in other copper complexes. The longer Cu1···O3 distance and the larger Cu1—O2—C22 angle suggest there is no bonding interaction between atoms Cu1 and O3.

Related literature top

For related literature, see: Djebbar et al. (1997); Hansen et al. (1996); Huang et al. (2002); Lacroix et al. (2004); Tas et al. (2004).

Experimental top

N-[1-(3-Aminopropyl)imidazole]-3,5-di-t-butylsalicylaldimine ligand and its copper(II) complex were synthesized according to the literature procedure (Tas et al., 2004).

Refinement top

Atom O3 shows disorder and was modelled in two different positions as O3a and O3b with refined occupancy factors of 0.30 (4) and 0.70 (4). All H-atoms were refined using a riding model with C—H = 0.93Å [Uiso(H) = 1.2Ueq(parent atom)] for aromatic carbon, C—H = 0.97Å [Uiso(H) = 1.2Ueq(parent atom)] for methylene carbon and C—H = 0.96 Å [Uiso(H) = 1.5Ueq(parent atom)] for methyl carbon atoms.

Structure description top

Considerable attention has been paid to the chemistry of metal complexes of Schiff bases containing nitrogen and other donors (Djebbar et al., 1997). This may be attributed to their stability, biochemical and analytical uses, and potential applications in fields such as oxidation catalysis, electrochemical and molecular materials with non-linear optical properties, and therapeutic applications (Lacroix et al., 2004). The use of the salen ligand framework in catalytic reactions has been receiving increasing interest due to the aforementioned advantage and its success in many newly discovered processes. Most notable is the asymmetric ring opening of epoxides by a Cr(salen)Cl catalyst which was developed by Jacobsen and co-workers in the mid-1990 s (Hansen et al., 1996). A very important reaction in organic synthesis which involves the use of predominantly chromium-based salen complexes is the Diels-Alder reaction. Indeed, there is a report where these catalysts have been employed as part of a lengthy synthetic strategy to afford complex natural products (Huang et al., 2002). In this study, we report the structural characterization of a dinuclear Cu(II) Schiff base complex, which was previously investigated by different techniques (Tas et al., 2004). We envisaged that the free imidazole group of the proposed structure (I) should interact with aliphatic alkyl halides such as n-butyl bromide to give novel copper(II) complexes, leading to ionic liquids. However, all attempts under different and drastic conditions failed. This led us to reconsider the proposed structure (I). Therefore, for detailed information about the coordination mode of the ligands and for full characterization of the complex, a single-crystal X-ray determination has been carried out.

The centrosymmetric molecular structure, with the atomic labelling scheme, is presented in Fig.1. The copper atom is in a distorted tetrahedral coordination geometry defined by atoms N1 and O1 in a chelate ring, N3 of an imidazole ring, and an acetate atom O2. Atoms N1 and O1 are bonded to Cu1 to form a six-membered chelate ring (–C1—C2—C7—N1—Cu1—O1-). The dihedral angle between the phenyl ring and this chelate ring is 6.5 (4)°. The significant difference between Cu—L bond distances [Cu—O1 = 1.910 (3) Å, Cu—O2 = 1.966 (3) Å, Cu—N1 = 1.957 (4)Å and Cu—N3 = 1.989 (4) Å] has also been observed in other copper complexes. The longer Cu1···O3 distance and the larger Cu1—O2—C22 angle suggest there is no bonding interaction between atoms Cu1 and O3.

For related literature, see: Djebbar et al. (1997); Hansen et al. (1996); Huang et al. (2002); Lacroix et al. (2004); Tas et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
Bis{µ-2,4-di-tert-butyl-6-[3-(1H-imidazol-1- yl)propyliminomethyl]phenolato}bis[acetatocopper(II)] top
Crystal data top
[Cu2(C21H30N3O)2(C2H3O2)2]F(000) = 980
Mr = 926.13Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 29181 reflections
a = 14.1745 (11) Åθ = 1.6–27.9°
b = 10.2898 (8) ŵ = 0.90 mm1
c = 19.0850 (17) ÅT = 296 K
β = 116.502 (6)°Prism, black
V = 2491.1 (4) Å30.25 × 0.19 × 0.07 mm
Z = 2
Data collection top
STOE IPDSII
diffractometer
4905 independent reflections
Radiation source: fine-focus sealed tube2485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.167
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
rotation method scansh = 1717
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.741, Tmax = 0.914l = 2323
34842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0447P)2]
where P = (Fo2 + 2Fc2)/3
4905 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.31 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cu2(C21H30N3O)2(C2H3O2)2]V = 2491.1 (4) Å3
Mr = 926.13Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.1745 (11) ŵ = 0.90 mm1
b = 10.2898 (8) ÅT = 296 K
c = 19.0850 (17) Å0.25 × 0.19 × 0.07 mm
β = 116.502 (6)°
Data collection top
STOE IPDSII
diffractometer
4905 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2485 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.914Rint = 0.167
34842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06712 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.95Δρmax = 0.31 e Å3
4905 reflectionsΔρmin = 0.24 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6847 (4)0.6496 (5)0.4074 (3)0.0479 (12)
C20.6890 (4)0.5548 (4)0.3558 (3)0.0478 (12)
C30.7777 (4)0.5428 (5)0.3420 (3)0.0573 (14)
H30.77890.47680.30920.069*
C40.8623 (4)0.6239 (5)0.3749 (3)0.0570 (14)
C50.8573 (4)0.7181 (6)0.4260 (3)0.0635 (15)
H50.91420.77450.44910.076*
C60.7738 (4)0.7346 (5)0.4451 (3)0.0531 (13)
C70.6028 (4)0.4685 (5)0.3117 (3)0.0556 (13)
H70.61500.40700.28100.067*
C80.9600 (5)0.6182 (6)0.3599 (4)0.0752 (17)
C90.9519 (6)0.5078 (8)0.3043 (6)0.141 (4)
H9A0.94680.42640.32690.169*
H9B1.01360.50740.29550.169*
H9C0.89040.52000.25540.169*
C100.9705 (7)0.7427 (8)0.3223 (5)0.131 (3)
H10A1.02950.73620.31050.157*
H10B0.98140.81390.35760.157*
H10C0.90730.75730.27480.157*
C111.0571 (5)0.5926 (11)0.4350 (5)0.156 (4)
H11A1.05000.51060.45630.187*
H11B1.06560.66050.47190.187*
H11C1.11770.59020.42500.187*
C120.7780 (4)0.8338 (6)0.5050 (3)0.0671 (15)
C130.8787 (5)0.9195 (8)0.5362 (4)0.113 (3)
H13A0.87860.97780.57540.136*
H13B0.87960.96870.49380.136*
H13C0.94000.86500.55860.136*
C140.6846 (5)0.9279 (6)0.4704 (3)0.0811 (17)
H14A0.61990.88020.45370.097*
H14B0.68530.97220.42640.097*
H14C0.69000.99030.50940.097*
C150.7796 (5)0.7619 (7)0.5764 (3)0.0817 (18)
H15A0.71560.71320.56050.098*
H15B0.78540.82400.61570.098*
H15C0.83880.70390.59740.098*
C160.4370 (4)0.3671 (5)0.2586 (3)0.0649 (16)
H16A0.46960.32150.23060.078*
H16B0.37400.40950.22030.078*
C170.4064 (5)0.2697 (6)0.3046 (3)0.0698 (17)
H17A0.35370.21140.26790.084*
H17B0.37420.31620.33260.084*
C180.5027 (5)0.8115 (6)0.6368 (4)0.0771 (18)
H18A0.45210.82710.65710.092*
H18B0.52940.89490.63000.092*
C190.4943 (4)0.7166 (5)0.5142 (3)0.0657 (15)
H190.56380.73620.52600.079*
C200.3381 (4)0.6471 (6)0.4573 (3)0.0665 (15)
H200.27640.60860.42070.080*
C210.3507 (5)0.7013 (6)0.5248 (4)0.0705 (16)
H210.30020.70660.54330.085*
C220.2820 (5)0.6256 (6)0.2458 (4)0.0721 (17)
C230.1666 (5)0.6146 (8)0.1897 (4)0.122 (3)
H23A0.12510.63220.21690.146*
H23B0.15180.52830.16830.146*
H23C0.14930.67630.14800.146*
N10.5106 (3)0.4662 (4)0.3098 (2)0.0543 (11)
N20.4498 (4)0.7462 (4)0.5607 (3)0.0620 (12)
N30.4297 (3)0.6572 (4)0.4504 (2)0.0596 (11)
O10.6027 (2)0.6631 (3)0.42159 (19)0.0557 (9)
O20.3149 (3)0.5524 (4)0.3042 (2)0.0705 (11)
O3A0.327 (3)0.721 (4)0.253 (2)0.105 (5)0.30 (4)
O3B0.3390 (11)0.6916 (16)0.2238 (13)0.105 (5)0.70 (4)
Cu10.46586 (5)0.58707 (6)0.36829 (4)0.0531 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (3)0.061 (3)0.044 (3)0.006 (2)0.014 (2)0.010 (2)
C20.041 (3)0.054 (3)0.051 (3)0.006 (2)0.022 (2)0.006 (2)
C30.056 (3)0.065 (4)0.060 (3)0.020 (3)0.033 (3)0.019 (3)
C40.040 (3)0.064 (4)0.069 (3)0.011 (2)0.026 (3)0.020 (3)
C50.035 (3)0.081 (4)0.068 (4)0.001 (3)0.018 (3)0.014 (3)
C60.037 (3)0.064 (3)0.052 (3)0.001 (2)0.014 (2)0.007 (3)
C70.058 (3)0.066 (4)0.046 (3)0.005 (3)0.026 (3)0.001 (2)
C80.056 (3)0.093 (5)0.092 (4)0.007 (3)0.047 (3)0.020 (4)
C90.119 (7)0.128 (7)0.242 (11)0.001 (5)0.141 (8)0.009 (8)
C100.145 (7)0.129 (7)0.175 (8)0.003 (6)0.121 (7)0.028 (6)
C110.059 (4)0.294 (13)0.134 (6)0.047 (7)0.061 (5)0.069 (8)
C120.052 (3)0.077 (4)0.067 (4)0.010 (3)0.022 (3)0.005 (3)
C130.090 (5)0.139 (7)0.117 (5)0.054 (5)0.052 (4)0.053 (5)
C140.089 (4)0.066 (4)0.087 (4)0.005 (4)0.037 (4)0.014 (3)
C150.065 (4)0.113 (5)0.052 (3)0.014 (4)0.014 (3)0.002 (3)
C160.063 (4)0.077 (4)0.055 (3)0.008 (3)0.026 (3)0.023 (3)
C170.071 (4)0.075 (4)0.073 (4)0.029 (3)0.040 (3)0.039 (3)
C180.100 (5)0.061 (4)0.089 (4)0.000 (3)0.059 (4)0.024 (3)
C190.053 (3)0.085 (4)0.070 (4)0.011 (3)0.036 (3)0.020 (3)
C200.046 (3)0.085 (4)0.072 (4)0.007 (3)0.029 (3)0.006 (3)
C210.063 (4)0.086 (4)0.081 (4)0.002 (3)0.049 (3)0.012 (3)
C220.054 (4)0.067 (5)0.092 (5)0.001 (3)0.029 (4)0.002 (4)
C230.063 (4)0.150 (8)0.110 (5)0.001 (5)0.001 (4)0.012 (5)
N10.046 (2)0.069 (3)0.047 (2)0.002 (2)0.020 (2)0.003 (2)
N20.063 (3)0.064 (3)0.070 (3)0.002 (2)0.039 (3)0.014 (2)
N30.044 (3)0.078 (3)0.062 (3)0.002 (2)0.028 (2)0.012 (2)
O10.0381 (19)0.073 (2)0.058 (2)0.0021 (16)0.0235 (17)0.0077 (17)
O20.048 (2)0.096 (3)0.068 (2)0.004 (2)0.0253 (19)0.007 (2)
O3A0.079 (5)0.092 (7)0.162 (12)0.008 (4)0.070 (6)0.041 (7)
O3B0.079 (5)0.092 (7)0.162 (12)0.008 (4)0.070 (6)0.041 (7)
Cu10.0392 (3)0.0685 (4)0.0521 (3)0.0025 (4)0.0207 (2)0.0072 (4)
Geometric parameters (Å, º) top
C1—O11.313 (5)C14—H14C0.960
C1—C21.407 (6)C15—H15A0.960
C1—C61.439 (7)C15—H15B0.960
C2—C31.399 (6)C15—H15C0.960
C2—C71.440 (7)C16—N11.474 (6)
C3—C41.363 (7)C16—C171.517 (7)
C3—H30.930C16—H16A0.970
C4—C51.400 (7)C16—H16B0.970
C4—C81.535 (7)C17—C18i1.524 (8)
C5—C61.395 (7)C17—H17A0.970
C5—H50.930C17—H17B0.970
C6—C121.514 (7)C18—N21.467 (7)
C7—N11.291 (6)C18—C17i1.524 (8)
C7—H70.930C18—H18A0.970
C8—C111.503 (9)C18—H18B0.970
C8—C101.508 (9)C19—N31.304 (6)
C8—C91.524 (10)C19—N21.331 (6)
C9—H9A0.960C19—H190.930
C9—H9B0.960C20—C211.341 (7)
C9—H9C0.960C20—N31.366 (6)
C10—H10A0.960C20—H200.930
C10—H10B0.960C21—N21.341 (7)
C10—H10C0.960C21—H210.930
C11—H11A0.960C22—O3A1.14 (4)
C11—H11B0.960C22—O21.249 (7)
C11—H11C0.960C22—O3B1.263 (18)
C12—C141.532 (8)C22—C231.509 (8)
C12—C151.541 (8)C23—H23A0.960
C12—C131.552 (8)C23—H23B0.960
C13—H13A0.960C23—H23C0.960
C13—H13B0.960N1—Cu11.957 (4)
C13—H13C0.960N3—Cu11.989 (4)
C14—H14A0.960O1—Cu11.910 (3)
C14—H14B0.960O2—Cu11.966 (3)
O1—C1—C2122.5 (4)H14B—C14—H14C109.5
O1—C1—C6119.5 (4)C12—C15—H15A109.5
C2—C1—C6118.0 (4)C12—C15—H15B109.5
C3—C2—C1121.1 (5)H15A—C15—H15B109.5
C3—C2—C7115.8 (5)C12—C15—H15C109.5
C1—C2—C7123.1 (4)H15A—C15—H15C109.5
C4—C3—C2122.7 (5)H15B—C15—H15C109.5
C4—C3—H3118.7N1—C16—C17112.0 (4)
C2—C3—H3118.7N1—C16—H16A109.2
C3—C4—C5115.9 (5)C17—C16—H16A109.2
C3—C4—C8125.0 (5)N1—C16—H16B109.2
C5—C4—C8119.2 (5)C17—C16—H16B109.2
C6—C5—C4125.4 (5)H16A—C16—H16B107.9
C6—C5—H5117.3C16—C17—C18i114.9 (5)
C4—C5—H5117.3C16—C17—H17A108.5
C5—C6—C1116.9 (5)C18i—C17—H17A108.5
C5—C6—C12121.8 (5)C16—C17—H17B108.5
C1—C6—C12121.2 (4)C18i—C17—H17B108.5
N1—C7—C2127.8 (5)H17A—C17—H17B107.5
N1—C7—H7116.1N2—C18—C17i111.5 (4)
C2—C7—H7116.1N2—C18—H18A109.3
C11—C8—C10111.1 (7)C17i—C18—H18A109.3
C11—C8—C9106.6 (6)N2—C18—H18B109.3
C10—C8—C9107.1 (6)C17i—C18—H18B109.3
C11—C8—C4110.3 (5)H18A—C18—H18B108.0
C10—C8—C4110.2 (5)N3—C19—N2112.7 (5)
C9—C8—C4111.4 (5)N3—C19—H19123.7
C8—C9—H9A109.5N2—C19—H19123.7
C8—C9—H9B109.5C21—C20—N3109.7 (5)
H9A—C9—H9B109.5C21—C20—H20125.2
C8—C9—H9C109.5N3—C20—H20125.2
H9A—C9—H9C109.5C20—C21—N2107.1 (5)
H9B—C9—H9C109.5C20—C21—H21126.5
C8—C10—H10A109.5N2—C21—H21126.5
C8—C10—H10B109.5O3A—C22—O2116 (2)
H10A—C10—H10B109.5O2—C22—O3B125.6 (8)
C8—C10—H10C109.5O3A—C22—C23121.2 (19)
H10A—C10—H10C109.5O2—C22—C23116.3 (6)
H10B—C10—H10C109.5O3B—C22—C23117.1 (9)
C8—C11—H11A109.5C22—C23—H23A109.5
C8—C11—H11B109.5C22—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C8—C11—H11C109.5C22—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
C6—C12—C14111.4 (4)C7—N1—C16116.1 (4)
C6—C12—C15108.9 (5)C7—N1—Cu1123.6 (3)
C14—C12—C15110.7 (5)C16—N1—Cu1120.2 (3)
C6—C12—C13113.1 (5)C19—N2—C21106.3 (5)
C14—C12—C13106.0 (5)C19—N2—C18125.4 (5)
C15—C12—C13106.6 (5)C21—N2—C18128.3 (5)
C12—C13—H13A109.5C19—N3—C20104.3 (4)
C12—C13—H13B109.5C19—N3—Cu1125.8 (4)
H13A—C13—H13B109.5C20—N3—Cu1129.7 (4)
C12—C13—H13C109.5C1—O1—Cu1128.9 (3)
H13A—C13—H13C109.5C22—O2—Cu1108.4 (4)
H13B—C13—H13C109.5O1—Cu1—N193.07 (15)
C12—C14—H14A109.5O1—Cu1—O2165.98 (17)
C12—C14—H14B109.5N1—Cu1—O293.98 (16)
H14A—C14—H14B109.5O1—Cu1—N389.40 (16)
C12—C14—H14C109.5N1—Cu1—N3160.63 (17)
H14A—C14—H14C109.5O2—Cu1—N387.95 (16)
O1—C1—C2—C3179.9 (4)C17—C16—N1—Cu164.3 (5)
C6—C1—C2—C30.5 (6)N3—C19—N2—C210.8 (7)
O1—C1—C2—C72.7 (7)N3—C19—N2—C18179.1 (5)
C6—C1—C2—C7176.9 (4)C20—C21—N2—C190.7 (7)
C1—C2—C3—C42.5 (7)C20—C21—N2—C18178.9 (5)
C7—C2—C3—C4175.1 (4)C17i—C18—N2—C1962.9 (7)
C2—C3—C4—C52.3 (7)C17i—C18—N2—C21115.0 (6)
C2—C3—C4—C8177.9 (5)N2—C19—N3—C200.7 (6)
C3—C4—C5—C60.1 (7)N2—C19—N3—Cu1176.3 (4)
C8—C4—C5—C6179.9 (5)C21—C20—N3—C190.2 (6)
C4—C5—C6—C11.8 (7)C21—C20—N3—Cu1175.6 (4)
C4—C5—C6—C12176.1 (5)C2—C1—O1—Cu111.4 (6)
O1—C1—C6—C5178.2 (4)C6—C1—O1—Cu1168.3 (3)
C2—C1—C6—C51.5 (6)O3A—C22—O2—Cu126 (2)
O1—C1—C6—C124.0 (7)O3B—C22—O2—Cu112.5 (16)
C2—C1—C6—C12176.4 (4)C23—C22—O2—Cu1179.2 (5)
C3—C2—C7—N1174.9 (5)C1—O1—Cu1—N111.6 (4)
C1—C2—C7—N12.6 (8)C1—O1—Cu1—O2108.6 (7)
C3—C4—C8—C11119.3 (7)C1—O1—Cu1—N3172.3 (4)
C5—C4—C8—C1160.5 (7)C7—N1—Cu1—O16.0 (4)
C3—C4—C8—C10117.7 (6)C16—N1—Cu1—O1175.3 (4)
C5—C4—C8—C1062.5 (7)C7—N1—Cu1—O2161.9 (4)
C3—C4—C8—C91.1 (8)C16—N1—Cu1—O216.9 (4)
C5—C4—C8—C9178.7 (6)C7—N1—Cu1—N3103.0 (6)
C5—C6—C12—C14123.9 (5)C16—N1—Cu1—N378.3 (6)
C1—C6—C12—C1458.3 (7)C22—O2—Cu1—O133.7 (8)
C5—C6—C12—C15113.7 (5)C22—O2—Cu1—N186.3 (4)
C1—C6—C12—C1564.1 (6)C22—O2—Cu1—N3113.0 (4)
C5—C6—C12—C134.6 (8)C19—N3—Cu1—O16.0 (5)
C1—C6—C12—C13177.6 (5)C20—N3—Cu1—O1179.6 (5)
N1—C16—C17—C18i63.0 (6)C19—N3—Cu1—N191.6 (7)
N3—C20—C21—N20.3 (7)C20—N3—Cu1—N182.9 (7)
C2—C7—N1—C16179.6 (5)C19—N3—Cu1—O2172.2 (5)
C2—C7—N1—Cu10.8 (7)C20—N3—Cu1—O213.3 (5)
C17—C16—N1—C7116.9 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C21H30N3O)2(C2H3O2)2]
Mr926.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.1745 (11), 10.2898 (8), 19.0850 (17)
β (°) 116.502 (6)
V3)2491.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.25 × 0.19 × 0.07
Data collection
DiffractometerSTOE IPDSII
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.741, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
34842, 4905, 2485
Rint0.167
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.128, 0.95
No. of reflections4905
No. of parameters275
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—Cu11.957 (4)O1—Cu11.910 (3)
N3—Cu11.989 (4)O2—Cu11.966 (3)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationDjebbar, S. S., Benali, B. O. & Deloume, J. P. (1997). Polyhedron, 16, 2175–2182.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansen, K. B., Leighton, J. L. & Jacobsen, E. N. (1996). J. Am. Chem. Soc. 118, 10924–10925.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuang, Y., Iwama, T. & Rawal, V. H. (2002). Org. Lett. 4, 1163–1166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTas, E., Aslanoglu, M., Guler, M. & Ulusoy, M. (2004). J. Coord. Chem. 57, 583–589.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds