organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(2-bromo­ethyl)aniline

aFacultatea de Chimie si Inginerie Chimica, Univesitatea Babes-Bolyai, Cluj-Napoca, Ro-40028, Romania
*Correspondence e-mail: brvilma@chem.ubbcluj.ro

(Received 3 November 2007; accepted 6 November 2007; online 6 December 2007)

The mol­ecule of the title compound, C10H13Br2N, has a twofold rotation axis along the N—Cphen­yl bond. The compound shows a slightly distorted trigonal planar geometry around the N atom. The structural study shows the presence of inter­molecular C—H⋯Br inter­actions, resulting in a three-dimensional supra­molecular architecture.

Related literature

For related literature, see: Bricks et al. (2005[Bricks, J. L., Kovalchuk, A., Trieflinger, Ch., Nofz, M., Büschel, M., Tolmachev, A. I., Daub, J. & Rurack, K. (2005). J. Am. Chem. Soc. 127, 13522-13529.]); Chapman & Triggle (1963[Chapman, N. B. & Triggle, D. J. (1963). J. Chem. Soc. pp. 1385-1400.]); Ross (1949[Ross, W. C. J. (1949). J. Chem. Soc. pp. 183-191.]); Hartley et al. (2000[Hartley, J. H., James, T. D. & Christopher, J. W. (2000). J. Chem. Soc., Perkin Trans. 1, pp. 3155-3184.]); Palmer et al. (1990[Palmer, B. D., Wilson, W. R., Pullen, S. M. & Denny, W. A. (1990). J. Med. Chem. 33, 112-121.]); Panthananickal et al. (1978[Panthananickal, A., Hansch, C., Leo, A. & Quinn, F. R. (1978). J. Med. Chem. 21, 16-26.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13Br2N

  • Mr = 307.03

  • Orthorhombic, F d d 2

  • a = 13.682 (12) Å

  • b = 13.926 (12) Å

  • c = 12.215 (10) Å

  • V = 2327 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.92 mm−1

  • T = 297 (2) K

  • 0.27 × 0.23 × 0.09 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.155, Tmax = 0.534

  • 4145 measured reflections

  • 1191 independent reflections

  • 893 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 0.99

  • 1191 reflections

  • 61 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 564 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯Br1i 0.97 3.05 3.933 (6) 153
Symmetry code: (i) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.10.12, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

N,N-Bis(2-halogenoalkyl)anilines are widely prepared compounds due to their potential pharmacological activity (Ross, 1949; Chapman & Triggle, 1963; Panthananickal et al., 1978; Palmer et al., 1990). The most common preparation method uses the corresponding alcohol, which upon reaction with a halogenating agent gives the desired aniline derivative (Ross, 1949; Chapman & Triggle, 1963). Some derivatives show anti-adrenaline and anti-noradrenalin activities and have also been investigated as anticancer drugs (Palmer et al., 1990). The great variety of obtainable derivatives upon changing the alkyl or the aryl group bonded to the nitrogen atom has made this type of compounds applicable as starting materials in the synthesis of macrocycles (Bricks et al., 2005; Hartley et al., 2000). The title compound was prepared according to a general method described in the literature starting from N,N-bis(2-hydroxyethyl)aniline, which was treated with PBr3 (Ross, 1949).

The isolated N,N-bis(2-bromoethyl)aniline crystallizes from benzene. The molecule has a twofold rotation axis through the N—Cphenyl bond (Fig. 1). The bond angles around the N1 atom [C1—N1—C5 = 120.7 (3)° and C5—N1—C5i 118.6 (6)°; symmetry code: (i) 0.5 - x, 0.5 - y, z] are consistent with a trigonal planar geometry and thus an sp2 nature can be considered due to conjugation with the phenyl ring. The sructural analysis shows the presence of intermolecular C—H···Br interactions in the crystal structure. One molecule of N,N-bis(2-bromoethyl)aniline forms interactions with four neighboring molecules [H5···Br1ii = 3.05 Å; symmetry code: (ii) -x + 3/4, y + 1/4, z - 1/4] (Fig. 2). These interactions result in a three-dimensional supramolecular architecture (Fig. 3).

Related literature top

For related literature, see: Bricks et al. (2005); Chapman & Triggle (1963); Ross (1949); Hartley et al. (2000); Palmer et al. (1990); Panthananickal et al. (1978).

Experimental top

Colourless crystals of N,N-bis(2-bromoethyl)aniline, prepared according to the literature (Ross, 1949), were obtained from benzene. The compound was also characterized by 1H, 13C and two-dimensional NMR spectroscopy in CDCl3 solution. NMR data: 1H NMR (300 MHz): δ 3.47 (t, 4H, CH2Br, 3JHH = 7.4 Hz), 3.79 (t, 4H, CH2N, 3JHH = 7.4 Hz), 6.75 (d, 2H, Ho, 3JHH = 8.3 Hz), 6.84 (t, 1H, Hp, 3JHH = 7.3 Hz), 7.30 (m, 2H, Hm, 3JHH = 7.5 Hz); 13C NMR (75.5 MHz): δ 27.95 (s, CH2Br), 53.47 (s, CH2N), 112.35 (s, Co), 118.43 (s, Cp), 129.80 (s, Cm), 145.14 (s, Ci).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

N,N-Bis(2-halogenoalkyl)anilines are widely prepared compounds due to their potential pharmacological activity (Ross, 1949; Chapman & Triggle, 1963; Panthananickal et al., 1978; Palmer et al., 1990). The most common preparation method uses the corresponding alcohol, which upon reaction with a halogenating agent gives the desired aniline derivative (Ross, 1949; Chapman & Triggle, 1963). Some derivatives show anti-adrenaline and anti-noradrenalin activities and have also been investigated as anticancer drugs (Palmer et al., 1990). The great variety of obtainable derivatives upon changing the alkyl or the aryl group bonded to the nitrogen atom has made this type of compounds applicable as starting materials in the synthesis of macrocycles (Bricks et al., 2005; Hartley et al., 2000). The title compound was prepared according to a general method described in the literature starting from N,N-bis(2-hydroxyethyl)aniline, which was treated with PBr3 (Ross, 1949).

The isolated N,N-bis(2-bromoethyl)aniline crystallizes from benzene. The molecule has a twofold rotation axis through the N—Cphenyl bond (Fig. 1). The bond angles around the N1 atom [C1—N1—C5 = 120.7 (3)° and C5—N1—C5i 118.6 (6)°; symmetry code: (i) 0.5 - x, 0.5 - y, z] are consistent with a trigonal planar geometry and thus an sp2 nature can be considered due to conjugation with the phenyl ring. The sructural analysis shows the presence of intermolecular C—H···Br interactions in the crystal structure. One molecule of N,N-bis(2-bromoethyl)aniline forms interactions with four neighboring molecules [H5···Br1ii = 3.05 Å; symmetry code: (ii) -x + 3/4, y + 1/4, z - 1/4] (Fig. 2). These interactions result in a three-dimensional supramolecular architecture (Fig. 3).

For related literature, see: Bricks et al. (2005); Chapman & Triggle (1963); Ross (1949); Hartley et al. (2000); Palmer et al. (1990); Panthananickal et al. (1978).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus(Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL(Bruker, 2001); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have arbitrary radii. Symmetry code: (i) 0.5 - x, 0.5 - y, z.
[Figure 2] Fig. 2. : Hydrogen-bonded framework (dashed lines) in the title compound. Symmetry codes: (i) 0.5 - x, 0.5 - y, z; (ii) -x + 3/4, y + 1/4, z - 1/4.
[Figure 3] Fig. 3. : The crystal packing of the title compound, with hydrogen bonds shown as dashed lines.
N,N-Bis(2-bromoethyl)aniline top
Crystal data top
C10H13Br2NF(000) = 1200
Mr = 307.03Dx = 1.752 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1908 reflections
a = 13.682 (12) Åθ = 2.7–24.3°
b = 13.926 (12) ŵ = 6.92 mm1
c = 12.215 (10) ÅT = 297 K
V = 2327 (3) Å3Block, colourless
Z = 80.27 × 0.23 × 0.09 mm
Data collection top
Bruker SMART APEX
diffractometer
1191 independent reflections
Radiation source: fine-focus sealed tube893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.155, Tmax = 0.534k = 1717
4145 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1191 reflectionsΔρmax = 0.61 e Å3
61 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 564 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
C10H13Br2NV = 2327 (3) Å3
Mr = 307.03Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 13.682 (12) ŵ = 6.92 mm1
b = 13.926 (12) ÅT = 297 K
c = 12.215 (10) Å0.27 × 0.23 × 0.09 mm
Data collection top
Bruker SMART APEX
diffractometer
1191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
893 reflections with I > 2σ(I)
Tmin = 0.155, Tmax = 0.534Rint = 0.047
4145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.61 e Å3
S = 0.99Δρmin = 0.41 e Å3
1191 reflectionsAbsolute structure: Flack (1983), 564 Friedel pairs
61 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.4227 (4)0.2321 (4)0.3885 (5)0.0665 (14)
H6A0.44580.22500.46320.080*
H6B0.47290.26530.34720.080*
C50.3302 (4)0.2919 (4)0.3884 (4)0.0595 (14)
H5A0.34480.35440.41930.071*
H5B0.30970.30160.31320.071*
Br10.40184 (5)0.10577 (5)0.32538 (10)0.0854 (3)
C10.25000.25000.5638 (6)0.0453 (14)
N10.25000.25000.4487 (4)0.0521 (13)
C20.3190 (3)0.3010 (4)0.6240 (4)0.0569 (13)
H20.36690.33560.58710.068*
C30.3183 (5)0.3014 (4)0.7376 (5)0.0687 (16)
H30.36490.33710.77530.082*
C40.25000.25000.7949 (7)0.074 (2)
H40.25000.25000.87100.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.053 (3)0.067 (3)0.079 (4)0.001 (2)0.012 (3)0.004 (3)
C50.071 (3)0.052 (3)0.056 (3)0.007 (3)0.008 (3)0.008 (2)
Br10.0888 (4)0.0783 (4)0.0891 (4)0.0256 (3)0.0001 (4)0.0161 (4)
C10.047 (3)0.036 (3)0.053 (4)0.012 (3)0.0000.000
N10.044 (3)0.062 (3)0.051 (3)0.000 (3)0.0000.000
C20.045 (3)0.051 (3)0.075 (3)0.004 (2)0.004 (2)0.007 (3)
C30.061 (3)0.069 (4)0.076 (4)0.015 (3)0.025 (3)0.014 (3)
C40.078 (6)0.083 (6)0.062 (5)0.019 (5)0.0000.000
Geometric parameters (Å, º) top
C6—C51.515 (7)C1—C21.391 (6)
C6—Br11.942 (6)C1—N11.406 (9)
C6—H6A0.970C2—C31.388 (8)
C6—H6B0.970C2—H20.930
C5—N11.445 (6)C3—C41.370 (8)
C5—H5A0.970C3—H30.930
C5—H5B0.970C4—H40.930
C5—C6—Br1112.0 (4)C2—C1—N1121.9 (3)
C5—C6—H6A109.2C1—N1—C5120.7 (3)
Br1—C6—H6A109.2C1—N1—C5i120.7 (3)
C5—C6—H6B109.2C5—N1—C5i118.6 (6)
Br1—C6—H6B109.2C3—C2—C1121.7 (5)
H6A—C6—H6B107.9C3—C2—H2119.1
N1—C5—C6114.3 (4)C1—C2—H2119.1
N1—C5—H5A108.7C4—C3—C2120.9 (6)
C6—C5—H5A108.7C4—C3—H3119.6
N1—C5—H5B108.7C2—C3—H3119.6
C6—C5—H5B108.7C3—C4—C3i118.6 (8)
H5A—C5—H5B107.6C3—C4—H4120.7
C2i—C1—C2116.2 (7)C3i—C4—H4120.7
C2i—C1—N1121.9 (3)
Br1—C6—C5—N159.5 (6)C6—C5—N1—C5i105.7 (5)
C2i—C1—N1—C5171.0 (3)C2i—C1—C2—C30.5 (4)
C2—C1—N1—C59.0 (3)N1—C1—C2—C3179.5 (4)
C2i—C1—N1—C5i8.9 (3)C1—C2—C3—C41.1 (7)
C2—C1—N1—C5i171.1 (3)C2—C3—C4—C3i0.5 (4)
C6—C5—N1—C174.3 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Br1ii0.973.053.933 (6)153
Symmetry code: (ii) x+3/4, y+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaC10H13Br2N
Mr307.03
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)297
a, b, c (Å)13.682 (12), 13.926 (12), 12.215 (10)
V3)2327 (3)
Z8
Radiation typeMo Kα
µ (mm1)6.92
Crystal size (mm)0.27 × 0.23 × 0.09
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.155, 0.534
No. of measured, independent and
observed [I > 2σ(I)] reflections
4145, 1191, 893
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 0.99
No. of reflections1191
No. of parameters61
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.41
Absolute structureFlack (1983), 564 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus(Bruker, 2000), SHELXTL (Bruker, 2001), SHELXTL(Bruker, 2001), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Br1i0.973.053.933 (6)153
Symmetry code: (i) x+3/4, y+1/4, z1/4.
 

Acknowledgements

Financial support from CNCSIS 2/397/2007 is gratefully acknowledged. The authors also thank the National Center for X-Ray Diffraction, Cluj-Napoca, for help with the structure determination.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBricks, J. L., Kovalchuk, A., Trieflinger, Ch., Nofz, M., Büschel, M., Tolmachev, A. I., Daub, J. & Rurack, K. (2005). J. Am. Chem. Soc. 127, 13522–13529.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.10.12, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChapman, N. B. & Triggle, D. J. (1963). J. Chem. Soc. pp. 1385–1400.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHartley, J. H., James, T. D. & Christopher, J. W. (2000). J. Chem. Soc., Perkin Trans. 1, pp. 3155–3184.  Google Scholar
First citationPalmer, B. D., Wilson, W. R., Pullen, S. M. & Denny, W. A. (1990). J. Med. Chem. 33, 112–121.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPanthananickal, A., Hansch, C., Leo, A. & Quinn, F. R. (1978). J. Med. Chem. 21, 16–26.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRoss, W. C. J. (1949). J. Chem. Soc. pp. 183–191.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds