metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: μ-Oxido-bis­­{chlorido[tris­­(2-pyridylmethyl)amine]manganese(III)} bis­­(hexa­fluorido­phosphate)

aCollege of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: qgmeng_weifang@yahoo.cn

(Received 11 November 2007; accepted 11 December 2007; online 18 December 2007)

In the title compound, [Mn2O(C18H18ClN4)2](PF6)2, the Mn atom is chelated by a tetra­dentate ligand via four N atoms, and further bonded to one chloride ion and one bridging oxide, to give a centrosymmetric cation and distorted octa­hedral coordination geometry.

Related literature

For related literature, see: Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.]); Okabe et al. (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-658.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2O(C18H18ClN4)2](PF6)2

  • Mr = 1067.45

  • Triclinic, [P \overline 1]

  • a = 8.5517 (12) Å

  • b = 11.3128 (18) Å

  • c = 12.914 (2) Å

  • α = 115.51 (2)°

  • β = 107.44 (2)°

  • γ = 91.49 (2)°

  • V = 1058.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 293 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.856

  • 9180 measured reflections

  • 4125 independent reflections

  • 3801 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.00

  • 4125 reflections

  • 287 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, many symmetrical polypyridine ligands and their coordination complexes have been synthesized (Scapin et al., 1997; Okabe et al., 2000; Serre et al., 2005). In this paper, we report the structure of the title compound, (I), containing an unsymmetrical polypyridine ligand.

As shown in Fig. 1, the Mn atom is chelated by the tetradentate ligand via four N atoms, and further bonded to one chloride ion and one bridging oxide, to give a centrosymmetric cation and distorted octahedral coordination geometry.

Related literature top

For related literature, see: Scapin et al. (1997); Okabe et al. (2000); Serre et al. (2005).

Experimental top

A mixture of manganese(III) acetate (1 mmol) and tris(2-pyridylmethyl)amine (1 mmol) in 20 ml me thanol was refluxed for two hours. The cooled solution was filtered and the filtrate allowed to evaporate at room temperature. Two days later, pink blocks of (I) were obtained with a yield of 30%. Anal. Calc. for C36H36Cl2F12Mn2N8OP2: C 40.48, H 3.37, N 10.50%; Found: C 40.42, H 3.38, N 10.44%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

In recent years, many symmetrical polypyridine ligands and their coordination complexes have been synthesized (Scapin et al., 1997; Okabe et al., 2000; Serre et al., 2005). In this paper, we report the structure of the title compound, (I), containing an unsymmetrical polypyridine ligand.

As shown in Fig. 1, the Mn atom is chelated by the tetradentate ligand via four N atoms, and further bonded to one chloride ion and one bridging oxide, to give a centrosymmetric cation and distorted octahedral coordination geometry.

For related literature, see: Scapin et al. (1997); Okabe et al. (2000); Serre et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
µ-Oxido-bis{chlorido[tris(2-pyridylmethyl)amine]manganese(III)} bis(hexafluoridophosphate) top
Crystal data top
[Mn2O(C18H18ClN4)2](PF6)2Z = 1
Mr = 1067.45F(000) = 538
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5517 (12) ÅCell parameters from 4125 reflections
b = 11.3128 (18) Åθ = 3.0–26.0°
c = 12.914 (2) ŵ = 0.89 mm1
α = 115.51 (2)°T = 293 K
β = 107.44 (2)°Block, pink
γ = 91.49 (2)°0.28 × 0.22 × 0.18 mm
V = 1058.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4125 independent reflections
Radiation source: fine-focus sealed tube3801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 810
Tmin = 0.788, Tmax = 0.856k = 1313
9180 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.508P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4125 reflectionsΔρmax = 0.27 e Å3
287 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0273 (16)
Crystal data top
[Mn2O(C18H18ClN4)2](PF6)2γ = 91.49 (2)°
Mr = 1067.45V = 1058.1 (3) Å3
Triclinic, P1Z = 1
a = 8.5517 (12) ÅMo Kα radiation
b = 11.3128 (18) ŵ = 0.89 mm1
c = 12.914 (2) ÅT = 293 K
α = 115.51 (2)°0.28 × 0.22 × 0.18 mm
β = 107.44 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4125 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3801 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.856Rint = 0.021
9180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
4125 reflectionsΔρmin = 0.31 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.03744 (3)0.34680 (2)0.39271 (2)0.0591 (3)
C160.9137 (3)0.5294 (2)0.15470 (19)0.0579 (6)
H160.81440.54730.11470.070*
C151.0631 (4)0.5736 (2)0.1515 (2)0.0698 (7)
H151.06560.62400.11090.084*
C120.7465 (3)0.1753 (2)0.14497 (19)0.0547 (5)
H12A0.74510.20110.08220.066*
H12B0.63700.12550.12120.066*
C141.2072 (4)0.5437 (3)0.2077 (2)0.0693 (7)
H141.30800.57230.20480.083*
C131.2008 (3)0.4705 (2)0.2687 (2)0.0586 (5)
H131.29890.44970.30700.070*
C90.9549 (3)0.1237 (2)0.0608 (2)0.0591 (6)
H90.93330.21160.00070.071*
C71.1344 (3)0.0604 (2)0.2403 (2)0.0506 (5)
H71.23760.09590.30260.061*
C100.8352 (3)0.0448 (2)0.05877 (19)0.0503 (5)
H100.73120.07890.00270.060*
C81.1067 (3)0.0700 (2)0.1531 (2)0.0589 (6)
H81.18970.12110.15670.071*
C60.6719 (2)0.2876 (2)0.33136 (19)0.0473 (5)
H6A0.56320.23590.27400.057*
H6B0.65640.37600.38210.057*
C30.7291 (3)0.1172 (2)0.5339 (2)0.0583 (5)
H30.66600.07770.56190.070*
C10.9874 (2)0.18989 (19)0.53077 (17)0.0432 (4)
H11.10280.19890.55750.052*
C170.9146 (3)0.45733 (19)0.21901 (16)0.0442 (4)
C20.8988 (3)0.1304 (2)0.57405 (19)0.0509 (5)
H20.95300.09980.62920.061*
C40.6514 (3)0.1631 (2)0.4512 (2)0.0528 (5)
H40.53590.15360.42270.063*
C180.7604 (3)0.41495 (19)0.23735 (18)0.0450 (4)
H18A0.74280.48830.30540.054*
H18B0.66410.39180.16470.054*
C50.7463 (2)0.22291 (18)0.41146 (17)0.0400 (4)
C110.8713 (2)0.08589 (18)0.14917 (16)0.0398 (4)
Cl11.31393 (6)0.35086 (5)0.48444 (5)0.05319 (15)
F30.5826 (2)0.6606 (2)0.1912 (2)0.1062 (6)
F50.6040 (2)0.71991 (18)0.04862 (16)0.0904 (5)
F20.4876 (2)0.84879 (19)0.27957 (14)0.0865 (5)
F10.73275 (18)0.8610 (2)0.24889 (16)0.0976 (6)
F60.5112 (2)0.90781 (15)0.13872 (16)0.0796 (4)
F40.36039 (17)0.71075 (14)0.08069 (13)0.0705 (4)
N31.0566 (2)0.42831 (16)0.27464 (15)0.0455 (4)
N10.77789 (18)0.29832 (15)0.26229 (14)0.0395 (3)
N41.01895 (19)0.13923 (15)0.23967 (14)0.0415 (3)
N20.91299 (18)0.23567 (15)0.45101 (14)0.0386 (3)
O11.00000.50000.50000.0399 (4)
P10.54877 (7)0.78428 (6)0.16552 (5)0.05074 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0639 (6)0.0610 (6)0.0547 (6)0.0008 (4)0.0176 (5)0.0068 (4)
C160.0825 (17)0.0485 (11)0.0445 (11)0.0145 (11)0.0199 (11)0.0241 (9)
C150.109 (2)0.0528 (13)0.0546 (13)0.0012 (13)0.0329 (14)0.0282 (11)
C120.0490 (12)0.0473 (11)0.0438 (11)0.0091 (9)0.0021 (9)0.0119 (9)
C140.0823 (18)0.0680 (15)0.0664 (15)0.0023 (13)0.0354 (14)0.0328 (13)
C130.0575 (13)0.0637 (13)0.0599 (13)0.0039 (10)0.0251 (11)0.0302 (11)
C90.0717 (15)0.0427 (11)0.0615 (13)0.0130 (10)0.0313 (12)0.0171 (10)
C70.0432 (11)0.0545 (11)0.0568 (12)0.0165 (9)0.0196 (9)0.0259 (10)
C100.0524 (12)0.0457 (10)0.0480 (11)0.0023 (9)0.0171 (9)0.0179 (9)
C80.0620 (14)0.0535 (12)0.0700 (14)0.0251 (10)0.0329 (12)0.0285 (11)
C60.0285 (9)0.0554 (11)0.0601 (12)0.0089 (8)0.0103 (8)0.0316 (10)
C30.0582 (13)0.0635 (13)0.0647 (14)0.0047 (10)0.0273 (11)0.0360 (11)
C10.0405 (10)0.0443 (10)0.0450 (10)0.0095 (8)0.0116 (8)0.0226 (8)
C170.0552 (12)0.0401 (9)0.0348 (9)0.0102 (8)0.0153 (8)0.0152 (8)
C20.0555 (12)0.0529 (11)0.0510 (11)0.0101 (9)0.0184 (9)0.0297 (10)
C40.0355 (10)0.0582 (12)0.0680 (13)0.0054 (9)0.0189 (9)0.0314 (11)
C180.0469 (11)0.0461 (10)0.0402 (10)0.0158 (8)0.0092 (8)0.0218 (8)
C50.0315 (9)0.0392 (9)0.0446 (10)0.0053 (7)0.0113 (7)0.0164 (8)
C110.0410 (10)0.0412 (9)0.0388 (9)0.0051 (7)0.0143 (7)0.0197 (8)
Cl10.0309 (2)0.0587 (3)0.0585 (3)0.0126 (2)0.0094 (2)0.0207 (2)
F30.0981 (14)0.1209 (15)0.1660 (19)0.0536 (12)0.0649 (13)0.1092 (15)
F50.0931 (12)0.0951 (12)0.0853 (11)0.0077 (9)0.0564 (10)0.0269 (9)
F20.0790 (11)0.1126 (13)0.0617 (9)0.0061 (9)0.0342 (8)0.0286 (9)
F10.0443 (8)0.1515 (17)0.0847 (11)0.0079 (9)0.0016 (7)0.0586 (11)
F60.0760 (10)0.0695 (9)0.0981 (11)0.0058 (7)0.0193 (8)0.0500 (9)
F40.0522 (8)0.0690 (8)0.0724 (9)0.0055 (6)0.0123 (7)0.0238 (7)
N30.0483 (9)0.0479 (9)0.0439 (9)0.0075 (7)0.0187 (7)0.0225 (7)
N10.0332 (8)0.0421 (8)0.0402 (8)0.0094 (6)0.0078 (6)0.0193 (7)
N40.0391 (8)0.0433 (8)0.0436 (8)0.0111 (6)0.0153 (7)0.0205 (7)
N20.0325 (8)0.0400 (8)0.0429 (8)0.0076 (6)0.0113 (6)0.0197 (7)
O10.0350 (9)0.0409 (9)0.0411 (9)0.0076 (7)0.0104 (7)0.0185 (8)
P10.0402 (3)0.0644 (3)0.0516 (3)0.0071 (2)0.0144 (2)0.0312 (3)
Geometric parameters (Å, º) top
Mn1—O11.8034 (5)C6—N11.485 (3)
Mn1—N22.1227 (16)C6—C51.514 (3)
Mn1—N32.1341 (17)C6—H6A0.970
Mn1—N12.2280 (16)C6—H6B0.970
Mn1—N42.2893 (17)C3—C21.367 (3)
Mn1—Cl12.2944 (7)C3—C41.386 (3)
C16—C151.379 (4)C3—H30.930
C16—C171.390 (3)C1—N21.348 (2)
C16—H160.930C1—C21.375 (3)
C15—C141.361 (4)C1—H10.930
C15—H150.930C17—N31.341 (3)
C12—N11.491 (2)C17—C181.509 (3)
C12—C111.495 (3)C2—H20.930
C12—H12A0.970C4—C51.378 (3)
C12—H12B0.970C4—H40.930
C14—C131.377 (3)C18—N11.488 (2)
C14—H140.930C18—H18A0.970
C13—N31.346 (3)C18—H18B0.970
C13—H130.930C5—N21.343 (2)
C9—C81.372 (3)C11—N41.339 (2)
C9—C101.377 (3)F3—P11.5854 (18)
C9—H90.930F5—P11.5906 (16)
C7—N41.348 (3)F2—P11.5908 (16)
C7—C81.375 (3)F1—P11.5799 (16)
C7—H70.930F6—P11.5966 (16)
C10—C111.385 (3)F4—P11.6046 (15)
C10—H100.930O1—Mn1i1.8034 (5)
C8—H80.930
O1—Mn1—N290.82 (4)N2—C1—H1118.8
O1—Mn1—N392.87 (5)C2—C1—H1118.8
N2—Mn1—N3154.78 (6)N3—C17—C16121.2 (2)
O1—Mn1—N191.90 (5)N3—C17—C18116.09 (17)
N2—Mn1—N178.71 (6)C16—C17—C18122.6 (2)
N3—Mn1—N176.24 (6)C1—C2—C3118.3 (2)
O1—Mn1—N4166.67 (4)C1—C2—H2120.8
N2—Mn1—N482.20 (6)C3—C2—H2120.8
N3—Mn1—N488.79 (6)C5—C4—C3119.6 (2)
N1—Mn1—N475.64 (6)C5—C4—H4120.2
O1—Mn1—Cl1102.88 (3)C3—C4—H4120.2
N2—Mn1—Cl1103.45 (5)N1—C18—C17110.49 (15)
N3—Mn1—Cl1100.01 (5)N1—C18—H18A109.6
N1—Mn1—Cl1164.97 (4)C17—C18—H18A109.6
N4—Mn1—Cl189.83 (5)N1—C18—H18B109.6
C15—C16—C17118.5 (2)C17—C18—H18B109.6
C15—C16—H16120.7H18A—C18—H18B108.1
C17—C16—H16120.7N2—C5—C4120.59 (18)
C16—C15—C14120.3 (2)N2—C5—C6116.63 (17)
C16—C15—H15119.9C4—C5—C6122.56 (17)
C14—C15—H15119.9N4—C11—C10122.48 (18)
N1—C12—C11114.72 (15)N4—C11—C12117.29 (16)
N1—C12—H12A108.6C10—C11—C12120.17 (18)
C11—C12—H12A108.6C17—N3—C13119.35 (19)
N1—C12—H12B108.6C17—N3—Mn1114.96 (13)
C11—C12—H12B108.6C13—N3—Mn1124.77 (15)
H12A—C12—H12B107.6C12—N1—C6112.81 (17)
C13—C14—C15118.8 (2)C12—N1—C18109.20 (15)
C13—C14—H14120.6C6—N1—C18112.67 (15)
C15—C14—H14120.6C12—N1—Mn1113.32 (12)
N3—C13—C14121.8 (2)C6—N1—Mn1104.27 (11)
N3—C13—H13119.1C18—N1—Mn1104.25 (11)
C14—C13—H13119.1C7—N4—C11117.38 (17)
C8—C9—C10118.7 (2)C7—N4—Mn1125.96 (14)
C8—C9—H9120.7C11—N4—Mn1116.09 (12)
C10—C9—H9120.7C5—N2—C1119.34 (17)
N4—C7—C8123.0 (2)C5—N2—Mn1114.73 (12)
N4—C7—H7118.5C1—N2—Mn1125.63 (13)
C8—C7—H7118.5Mn1i—O1—Mn1180
C11—C10—C9119.3 (2)F3—P1—F191.72 (12)
C11—C10—H10120.3F3—P1—F290.05 (11)
C9—C10—H10120.3F1—P1—F290.83 (10)
C9—C8—C7119.1 (2)F3—P1—F6179.00 (10)
C9—C8—H8120.4F1—P1—F689.26 (10)
C7—C8—H8120.4F2—P1—F689.71 (10)
N1—C6—C5112.64 (15)F3—P1—F590.98 (11)
N1—C6—H6A109.1F1—P1—F590.78 (10)
C5—C6—H6A109.1F2—P1—F5178.06 (10)
N1—C6—H6B109.1F6—P1—F589.23 (10)
C5—C6—H6B109.1F3—P1—F490.10 (11)
H6A—C6—H6B107.8F1—P1—F4178.14 (11)
C2—C3—C4119.6 (2)F2—P1—F488.82 (9)
C2—C3—H3120.2F6—P1—F488.92 (9)
C4—C3—H3120.2F5—P1—F489.54 (9)
N2—C1—C2122.44 (19)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2O(C18H18ClN4)2](PF6)2
Mr1067.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5517 (12), 11.3128 (18), 12.914 (2)
α, β, γ (°)115.51 (2), 107.44 (2), 91.49 (2)
V3)1058.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.788, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
9180, 4125, 3801
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.00
No. of reflections4125
No. of parameters287
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

 

Acknowledgements

The authors thank Liaocheng University for financial support and Professor Jianmin Dou for his help.

References

First citationBruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–658.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds