organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-3-Di­methyl­amino-2-{(4S,5R)-5-[(R)-2,2-di­methyl-1,3-dioxolan-4-yl]-2,2-di­methyl-1,3-dioxolan-4-yl}-2-hy­droxy­propanoic acid

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 13 November 2007; accepted 12 December 2007; online 18 December 2007)

The Kiliani reaction on 1-de­oxy-(N,N-dimethyl­amino)-D-fructose, itself readily available from reaction of dimethyl­amine and D-glucose, proceeded to give access to the title β-sugar amino acid, C15H27NO7. X-ray crystallography determined the stereochemistry at the newly formed chiral center. There are two mol­ecules in the asymmetric unit; they are related by a pseudo-twofold rotation axis and have very similar geometries, differing only in the conformation of one of the acetonide rings. All the acetonide rings adopt envelope conformations; the flap atom is oxygen in three of the rings, but carbon in one of them. There are two strong hydrogen bonds between the two independent mol­ecules, and further weak hydrogen bonds link the mol­ecules to form infinite chains running parallel to the a axis.

Related literature

For related literature see: Risseeuw et al. (2007[Risseeuw, M. D. P., Overhand, M., Fleet, G. W. J. & Simone, M. I. (2007). Tetrahedron Asymmetry, 18, 2001-2010.]); Hotchkiss et al. (2004[Hotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.], 2008[Hotchkiss, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2008). Tetrahedron Lett. In preparation.]); Soengas et al. (2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]); Parker et al. (2006[Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961-o3963.]); Simone et al. (2007[Simone, M., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o799-o801.]). For the refinement weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C15H27NO7

  • Mr = 333.38

  • Monoclinic, P 21

  • a = 5.7881 (2) Å

  • b = 16.7077 (4) Å

  • c = 17.8572 (5) Å

  • β = 99.1141 (8)°

  • V = 1705.09 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.40 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 1.01 (expected range = 0.943–0.992)

  • 13496 measured reflections

  • 4000 independent reflections

  • 3474 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.033

  • S = 1.09

  • 3239 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O109 0.90 1.80 2.664 (3) 161
N102—H1021⋯O9 0.90 1.81 2.675 (3) 162
O110—H1101⋯O109i 0.81 2.69 3.348 (3) 140
O10—H101⋯O11i 0.83 2.50 3.187 (3) 141
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Sugar amino acids are a versatile class of conformationally biased building blocks, and have use as both glyco- and peptido-mimetics (Risseeuw et al., 2007). The Kiliani reaction on ketoses has been successfully utilized in the synthesis of branched carbohydrate building blocks (Hotchkiss et al., 2004; Soengas et al., 2005; Parker et al., 2006; Simone et al., 2007) to produce, for example, methyl or hydroxymethyl branched lactones. With Amadori products, 1-amino-1-deoxy-ketoses, as substrates, the Kiliani ascension should provide access to β-sugar amino acids. The reaction of 1-deoxy-1-(N,N-dimethylamino)-D-fructose, 2, an Amadori product readily available from D-glucose, 1, with sodium cyanide in water was found to give, after acetonide protection, the title compound, 3, as the major product. The stereochemistry at C-2 was unequivocally assigned by X-ray crystallography (Fig. 2) and the absolute stereochemistry was determined by the use of D-glucose as the starting material.

The asymmetric unit contains of two crystallographically distinct molecules which are related by a pseudo-2-fold rotation axis. These are similar in geometry with the exception of one of the isopropylidene rings: in the first molecule the atoms C20, O13, O14 and C28 are approximately coplanar while C21 is displaced from this plane, whereas in the second molecule C120, C121, O113 and C128 are approximately coplanar while O114 is displaced. The r.m.s. bond length deviation for the two molecules, excluding hydrogen atoms, is 0.007 Å.

Hydrogen bonding links molecules to form infinite chains running parallel to the crystallographic a axis (Fig. 3). There are two weak hydrogen bonds between the layers and two strong hydrogen bonds linking the two molecules in the asymmetric unit (Fig. 4).

Related literature top

For related literature see: Risseeuw et al. (2007); Hotchkiss et al. (2004, 2008); Soengas et al. (2005); Parker et al. (2006); Simone et al. (2007). For the refinement weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title compound was prepared as described by Hotchkiss et al. (2008) and shown in the reaction scheme of Fig. 1, and was recrystallized from ethyl acetate. m.p.: 453 K decomposed; [α]D23 +19.3 (c, 1.0 in water).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material. The refinement, on F values, used only data for which F2 > 3σ(F2).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Sugar amino acids are a versatile class of conformationally biased building blocks, and have use as both glyco- and peptido-mimetics (Risseeuw et al., 2007). The Kiliani reaction on ketoses has been successfully utilized in the synthesis of branched carbohydrate building blocks (Hotchkiss et al., 2004; Soengas et al., 2005; Parker et al., 2006; Simone et al., 2007) to produce, for example, methyl or hydroxymethyl branched lactones. With Amadori products, 1-amino-1-deoxy-ketoses, as substrates, the Kiliani ascension should provide access to β-sugar amino acids. The reaction of 1-deoxy-1-(N,N-dimethylamino)-D-fructose, 2, an Amadori product readily available from D-glucose, 1, with sodium cyanide in water was found to give, after acetonide protection, the title compound, 3, as the major product. The stereochemistry at C-2 was unequivocally assigned by X-ray crystallography (Fig. 2) and the absolute stereochemistry was determined by the use of D-glucose as the starting material.

The asymmetric unit contains of two crystallographically distinct molecules which are related by a pseudo-2-fold rotation axis. These are similar in geometry with the exception of one of the isopropylidene rings: in the first molecule the atoms C20, O13, O14 and C28 are approximately coplanar while C21 is displaced from this plane, whereas in the second molecule C120, C121, O113 and C128 are approximately coplanar while O114 is displaced. The r.m.s. bond length deviation for the two molecules, excluding hydrogen atoms, is 0.007 Å.

Hydrogen bonding links molecules to form infinite chains running parallel to the crystallographic a axis (Fig. 3). There are two weak hydrogen bonds between the layers and two strong hydrogen bonds linking the two molecules in the asymmetric unit (Fig. 4).

For related literature see: Risseeuw et al. (2007); Hotchkiss et al. (2004, 2008); Soengas et al. (2005); Parker et al. (2006); Simone et al. (2007). For the refinement weighting scheme, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The synthesis of the title compound.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. The packing diagram for the molecule showing the infinite hydrogen bonded chains of molecules lying parallel to the a axis.
[Figure 4] Fig. 4. The two molecules of the asymmetric unit are linked by two strong hydrogen bonds, O9···H21—N2 and O109···H1021-N102 and these dimeric units are linked by weak hydrogen bonds, O11···H101—O10 and O109···H1101-O110, to form a hydrogen bonded column.
(S)-3-Dimethylamino-2-{(4S,5R)-5-[(R)-2,2-dimethyl-1,3-dioxolan-4-yl]-2,2- dimethyl-1,3-dioxolan-4-yl}-2-hydroxypropanoic acid top
Crystal data top
C15H27NO7F(000) = 720
Mr = 333.38Dx = 1.299 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.7881 (2) ÅCell parameters from 13496 reflections
b = 16.7077 (4) Åθ = 5–28°
c = 17.8572 (5) ŵ = 0.10 mm1
β = 99.1141 (8)°T = 150 K
V = 1705.09 (9) Å3Fragment, colourless
Z = 40.40 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.96, Tmax = 1.01k = 2021
13496 measured reflectionsl = 2323
4000 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.033 w = [1-(Fo-Fc)2/36σ2(F)]2/[0.462T0(x) + 0.141T1(x) + 0.209T2(x)]
where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
S = 1.09(Δ/σ)max = 0.003
3239 reflectionsΔρmax = 0.18 e Å3
415 parametersΔρmin = 0.15 e Å3
1 restraint
Crystal data top
C15H27NO7V = 1705.09 (9) Å3
Mr = 333.38Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.7881 (2) ŵ = 0.10 mm1
b = 16.7077 (4) ÅT = 150 K
c = 17.8572 (5) Å0.40 × 0.10 × 0.08 mm
β = 99.1141 (8)°
Data collection top
Nonius KappaCCD
diffractometer
4000 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3474 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 1.01Rint = 0.034
13496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.033H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
3239 reflectionsΔρmin = 0.15 e Å3
415 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1160.4385 (4)0.61358 (13)0.18160 (11)0.0229
C1170.5150 (3)0.70044 (12)0.20298 (11)0.0214
C1180.3803 (4)0.75579 (12)0.14222 (11)0.0215
C1190.4380 (4)0.74189 (12)0.06211 (12)0.0245
C1200.2595 (4)0.69110 (13)0.01196 (12)0.0281
C1210.0366 (4)0.73492 (15)0.02378 (12)0.0309
O1080.5915 (3)0.56731 (10)0.16763 (11)0.0411
O1090.2243 (3)0.59883 (9)0.17987 (9)0.0291
O1100.7593 (2)0.70916 (9)0.20458 (9)0.0257
O1110.4370 (3)0.83813 (9)0.15861 (8)0.0247
O1120.4449 (3)0.82134 (10)0.03206 (8)0.0302
O1130.3587 (3)0.66311 (11)0.05185 (9)0.0356
O1140.0662 (3)0.74545 (10)0.10091 (9)0.0292
C1220.4465 (4)0.72297 (12)0.27944 (11)0.0222
N1020.5117 (3)0.66327 (11)0.34183 (9)0.0225
C1230.4395 (4)0.69477 (15)0.41273 (12)0.0308
C1240.7666 (4)0.64198 (15)0.35724 (14)0.0332
C1250.5228 (4)0.87319 (13)0.09473 (12)0.0254
C1260.7880 (4)0.87748 (14)0.11015 (14)0.0305
C1270.4103 (4)0.95410 (13)0.07883 (14)0.0308
C1280.1957 (4)0.67786 (13)0.11891 (12)0.0250
C1300.3287 (5)0.69882 (16)0.18191 (15)0.0372
C1290.0342 (5)0.60661 (16)0.13784 (16)0.0413
C160.3613 (4)0.46972 (13)0.33186 (11)0.0221
C170.2219 (3)0.39235 (12)0.30686 (11)0.0207
C180.0715 (3)0.37226 (12)0.36854 (11)0.0214
C190.2109 (4)0.35053 (13)0.44690 (12)0.0232
C200.2117 (4)0.41812 (14)0.50374 (13)0.0321
C210.0232 (5)0.45509 (17)0.51083 (14)0.0445
O80.5763 (3)0.46309 (11)0.34502 (12)0.0422
O90.2444 (3)0.53219 (9)0.33683 (9)0.0284
O100.3781 (2)0.32903 (9)0.29844 (9)0.0251
O110.0735 (2)0.30306 (9)0.34789 (8)0.0232
O120.0913 (3)0.28280 (9)0.47036 (9)0.0286
O130.2906 (3)0.38992 (10)0.57957 (8)0.0345
O140.0240 (4)0.48999 (11)0.58459 (10)0.0500
C220.0472 (3)0.40421 (12)0.23363 (11)0.0210
N20.1429 (3)0.44201 (10)0.16870 (9)0.0204
C230.0510 (4)0.45073 (13)0.10267 (12)0.0247
C240.3421 (4)0.39788 (14)0.14406 (13)0.0268
C250.0112 (4)0.24115 (13)0.40337 (12)0.0239
C260.1574 (4)0.18220 (13)0.37676 (13)0.0283
C270.2313 (4)0.20088 (15)0.41883 (14)0.0309
C280.1693 (5)0.43430 (14)0.63045 (13)0.0353
C290.0209 (5)0.37758 (18)0.66863 (17)0.0465
C300.3447 (6)0.48027 (18)0.68589 (16)0.0518
H11810.21440.74870.14230.0252*
H11910.59170.71680.06460.0293*
H12010.22070.64500.04080.0337*
H12110.02530.78670.00020.0376*
H12120.10330.70320.01990.0368*
H12210.52020.77350.29620.0258*
H12220.27680.72840.27320.0254*
H12310.47110.65370.45090.0459*
H12330.53030.74220.42670.0453*
H12320.27600.70720.40210.0450*
H12410.79780.60800.40120.0490*
H12430.85700.69110.36490.0489*
H12420.80730.61340.31410.0483*
H12610.84150.90000.06620.0460*
H12620.83420.91210.15350.0454*
H12630.85070.82520.12020.0451*
H12710.46190.97830.03520.0453*
H12720.45130.98880.12200.0449*
H12730.24250.94810.06870.0443*
H13010.22170.71500.22680.0566*
H13020.43700.74220.16610.0565*
H13030.41790.65360.19450.0565*
H12910.08090.61890.18220.0617*
H12920.04510.59550.09550.0615*
H12930.12580.56040.14870.0622*
H1810.02960.41720.37280.0237*
H1910.37100.33570.44290.0264*
H2010.32100.45830.49110.0357*
H2110.07010.49600.47300.0524*
H2120.14660.41450.50690.0521*
H2220.07910.43770.24560.0239*
H2210.01170.35140.21670.0247*
H2310.01180.47630.06240.0361*
H2320.17100.48310.11930.0354*
H2330.10990.39910.08720.0355*
H2410.37900.42320.09850.0408*
H2420.47510.39890.18480.0403*
H2430.28890.34360.13350.0399*
H2620.21160.14560.41720.0424*
H2610.28860.20900.36080.0418*
H2630.07430.15210.33500.0414*
H2720.18490.15700.45390.0465*
H2710.32770.23900.43950.0470*
H2730.31520.18170.37080.0462*
H2920.06850.40700.70110.0699*
H2910.12150.33980.69930.0692*
H2930.08620.35180.62950.0696*
H3020.26160.51290.71760.0760*
H3010.44570.44260.71780.0759*
H3030.43750.51410.65760.0749*
H210.19250.49200.18150.0296*
H10210.43000.61820.33040.0330*
H11010.81150.66620.19440.0382*
H1010.50880.34660.31640.0387*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1160.0305 (11)0.0199 (9)0.0184 (9)0.0035 (8)0.0043 (8)0.0006 (8)
C1170.0232 (9)0.0189 (9)0.0218 (9)0.0018 (8)0.0026 (7)0.0014 (8)
C1180.0266 (10)0.0171 (9)0.0207 (9)0.0018 (8)0.0038 (7)0.0003 (7)
C1190.0334 (11)0.0191 (10)0.0216 (10)0.0009 (9)0.0057 (8)0.0004 (8)
C1200.0402 (12)0.0235 (11)0.0205 (10)0.0002 (9)0.0045 (8)0.0002 (8)
C1210.0356 (12)0.0336 (12)0.0238 (11)0.0030 (10)0.0057 (9)0.0032 (9)
O1080.0392 (9)0.0231 (8)0.0630 (12)0.0017 (7)0.0145 (8)0.0123 (8)
O1090.0315 (8)0.0211 (7)0.0347 (8)0.0040 (6)0.0052 (6)0.0009 (6)
O1100.0237 (7)0.0214 (7)0.0329 (8)0.0007 (6)0.0066 (6)0.0003 (6)
O1110.0337 (8)0.0163 (7)0.0252 (7)0.0011 (6)0.0083 (6)0.0015 (6)
O1120.0463 (9)0.0225 (8)0.0215 (7)0.0075 (7)0.0049 (6)0.0010 (6)
O1130.0433 (9)0.0360 (9)0.0246 (8)0.0158 (8)0.0041 (7)0.0071 (7)
O1140.0378 (8)0.0225 (7)0.0265 (8)0.0059 (7)0.0023 (6)0.0008 (6)
C1220.0258 (10)0.0191 (9)0.0211 (10)0.0003 (8)0.0019 (8)0.0001 (8)
N1020.0253 (8)0.0209 (8)0.0205 (8)0.0055 (7)0.0009 (6)0.0000 (7)
C1230.0378 (12)0.0339 (12)0.0208 (10)0.0050 (10)0.0047 (9)0.0014 (9)
C1240.0248 (11)0.0348 (12)0.0375 (12)0.0002 (9)0.0026 (9)0.0089 (10)
C1250.0307 (11)0.0238 (10)0.0220 (10)0.0030 (9)0.0049 (8)0.0007 (8)
C1260.0321 (11)0.0257 (11)0.0347 (12)0.0004 (9)0.0084 (9)0.0003 (9)
C1270.0312 (11)0.0213 (10)0.0384 (12)0.0015 (9)0.0012 (9)0.0061 (9)
C1280.0330 (11)0.0203 (9)0.0210 (9)0.0019 (9)0.0023 (8)0.0004 (8)
C1300.0447 (14)0.0343 (13)0.0346 (12)0.0017 (11)0.0119 (10)0.0031 (10)
C1290.0507 (15)0.0291 (12)0.0448 (14)0.0097 (11)0.0097 (12)0.0110 (11)
C160.0237 (9)0.0210 (10)0.0210 (9)0.0016 (8)0.0015 (7)0.0022 (7)
C170.0197 (9)0.0168 (9)0.0253 (10)0.0013 (7)0.0029 (7)0.0006 (7)
C180.0212 (9)0.0196 (9)0.0227 (9)0.0017 (8)0.0009 (7)0.0007 (8)
C190.0250 (10)0.0200 (9)0.0233 (10)0.0024 (8)0.0004 (7)0.0017 (8)
C200.0452 (13)0.0225 (11)0.0253 (11)0.0027 (9)0.0044 (9)0.0000 (9)
C210.0644 (17)0.0374 (14)0.0273 (12)0.0278 (13)0.0060 (11)0.0032 (10)
O80.0214 (7)0.0275 (9)0.0734 (13)0.0021 (7)0.0059 (8)0.0020 (8)
O90.0265 (8)0.0200 (7)0.0380 (9)0.0021 (6)0.0034 (6)0.0022 (6)
O100.0206 (7)0.0203 (7)0.0342 (8)0.0025 (6)0.0041 (6)0.0014 (6)
O110.0242 (7)0.0210 (7)0.0234 (7)0.0037 (6)0.0011 (5)0.0042 (6)
O120.0394 (9)0.0208 (7)0.0239 (7)0.0009 (6)0.0004 (6)0.0027 (6)
O130.0485 (10)0.0305 (9)0.0212 (8)0.0106 (8)0.0046 (7)0.0022 (6)
O140.0876 (15)0.0320 (9)0.0267 (9)0.0296 (10)0.0026 (9)0.0032 (8)
C220.0207 (9)0.0189 (9)0.0237 (10)0.0026 (8)0.0044 (7)0.0000 (8)
N20.0216 (8)0.0173 (8)0.0222 (8)0.0018 (6)0.0027 (6)0.0013 (7)
C230.0254 (10)0.0253 (10)0.0222 (10)0.0005 (8)0.0005 (7)0.0006 (8)
C240.0252 (10)0.0264 (10)0.0298 (11)0.0013 (9)0.0072 (8)0.0029 (9)
C250.0280 (10)0.0213 (10)0.0218 (10)0.0016 (8)0.0020 (8)0.0028 (8)
C260.0275 (10)0.0226 (10)0.0348 (12)0.0018 (8)0.0050 (9)0.0009 (9)
C270.0295 (11)0.0295 (11)0.0350 (12)0.0010 (9)0.0089 (9)0.0061 (9)
C280.0532 (14)0.0247 (11)0.0253 (11)0.0118 (10)0.0018 (10)0.0021 (9)
C290.0488 (15)0.0429 (15)0.0475 (15)0.0105 (13)0.0072 (12)0.0063 (13)
C300.079 (2)0.0387 (15)0.0340 (14)0.0050 (15)0.0020 (13)0.0106 (12)
Geometric parameters (Å, º) top
C116—C1171.547 (3)C16—C171.552 (3)
C116—O1081.231 (3)C16—O81.234 (3)
C116—O1091.260 (3)C16—O91.255 (3)
C117—C1181.540 (3)C17—C181.545 (3)
C117—O1101.417 (2)C17—O101.415 (2)
C117—C1221.528 (3)C17—C221.534 (3)
C118—C1191.537 (3)C18—C191.544 (3)
C118—O1111.434 (2)C18—O111.442 (2)
C118—H11810.968C18—H1810.962
C119—C1201.515 (3)C19—C201.518 (3)
C119—O1121.435 (3)C19—O121.424 (3)
C119—H11910.978C19—H1910.973
C120—C1211.532 (3)C20—C211.517 (4)
C120—O1131.433 (3)C20—O131.438 (3)
C120—H12010.973C20—H2010.973
C121—O1141.425 (3)C21—O141.427 (3)
C121—H12110.969C21—H2110.969
C121—H12120.979C21—H2120.980
O110—H11010.810O10—H1010.828
O111—C1251.439 (2)O11—C251.438 (2)
O112—C1251.431 (3)O12—C251.429 (3)
O113—C1281.423 (3)O13—C281.439 (3)
O114—C1281.420 (3)O14—C281.423 (3)
C122—N1021.499 (3)C22—N21.501 (3)
C122—H12210.971C22—H2220.970
C122—H12220.975C22—H2210.976
N102—C1231.491 (3)N2—C231.500 (3)
N102—C1241.500 (3)N2—C241.492 (3)
N102—H10210.896N2—H210.900
C123—H12310.964C23—H2310.956
C123—H12330.962C23—H2320.964
C123—H12320.958C23—H2330.953
C124—H12410.962C24—H2410.971
C124—H12430.971C24—H2420.973
C124—H12420.967C24—H2430.967
C125—C1261.518 (3)C25—C261.515 (3)
C125—C1271.508 (3)C25—C271.504 (3)
C126—H12610.964C26—H2620.960
C126—H12620.969C26—H2610.963
C126—H12630.952C26—H2630.962
C127—H12710.966C27—H2720.974
C127—H12720.964C27—H2710.958
C127—H12730.965C27—H2730.971
C128—C1301.502 (3)C28—C291.512 (4)
C128—C1291.518 (3)C28—C301.511 (4)
C130—H13010.971C29—H2920.970
C130—H13020.970C29—H2910.968
C130—H13030.962C29—H2930.960
C129—H12910.973C30—H3020.967
C129—H12920.962C30—H3010.978
C129—H12930.973C30—H3030.974
C117—C116—O108116.90 (18)C17—C16—O8116.28 (18)
C117—C116—O109115.55 (18)C17—C16—O9116.84 (17)
O108—C116—O109127.5 (2)O8—C16—O9126.9 (2)
C116—C117—C118107.24 (15)C16—C17—C18107.57 (16)
C116—C117—O110110.29 (16)C16—C17—O10109.98 (15)
C118—C117—O110110.14 (16)C18—C17—O10110.78 (16)
C116—C117—C122110.32 (16)C16—C17—C22112.36 (16)
C118—C117—C122107.92 (16)C18—C17—C22105.42 (15)
O110—C117—C122110.84 (16)O10—C17—C22110.61 (16)
C117—C118—C119113.87 (17)C17—C18—C19115.13 (16)
C117—C118—O111111.02 (15)C17—C18—O11111.26 (16)
C119—C118—O111104.98 (16)C19—C18—O11104.04 (15)
C117—C118—H1181108.5C17—C18—H181107.8
C119—C118—H1181110.2C19—C18—H181110.4
O111—C118—H1181108.1O11—C18—H181108.0
C118—C119—C120113.97 (17)C18—C19—C20112.14 (17)
C118—C119—O112103.37 (16)C18—C19—O12104.19 (15)
C120—C119—O112110.72 (17)C20—C19—O12110.16 (18)
C118—C119—H1191110.7C18—C19—H191111.1
C120—C119—H1191108.5C20—C19—H191109.7
O112—C119—H1191109.5O12—C19—H191109.4
C119—C120—C121115.40 (19)C19—C20—C21116.8 (2)
C119—C120—O113109.34 (18)C19—C20—O13110.66 (17)
C121—C120—O113103.99 (16)C21—C20—O13102.13 (19)
C119—C120—H1201108.8C19—C20—H201107.0
C121—C120—H1201110.5C21—C20—H201111.3
O113—C120—H1201108.6O13—C20—H201108.8
C120—C121—O114103.85 (17)C20—C21—O14101.6 (2)
C120—C121—H1211110.8C20—C21—H211112.6
O114—C121—H1211109.7O14—C21—H211110.3
C120—C121—H1212111.3C20—C21—H212111.4
O114—C121—H1212111.2O14—C21—H212112.3
H1211—C121—H1212109.8H211—C21—H212108.6
C117—O110—H1101108.1C17—O10—H101104.7
C118—O111—C125108.99 (15)C18—O11—C25109.17 (14)
C119—O112—C125106.95 (15)C19—O12—C25107.31 (15)
C120—O113—C128108.48 (16)C20—O13—C28108.15 (16)
C121—O114—C128105.60 (16)C21—O14—C28105.86 (17)
C117—C122—N102115.47 (16)C17—C22—N2116.01 (15)
C117—C122—H1221109.1C17—C22—H222107.8
N102—C122—H1221107.6N2—C22—H222108.0
C117—C122—H1222108.6C17—C22—H221107.4
N102—C122—H1222106.1N2—C22—H221107.1
H1221—C122—H1222109.9H222—C22—H221110.6
C122—N102—C123108.96 (16)C22—N2—C23109.03 (15)
C122—N102—C124114.76 (17)C22—N2—C24114.62 (16)
C123—N102—C124109.14 (17)C23—N2—C24109.44 (16)
C122—N102—H1021109.2C22—N2—H21109.7
C123—N102—H1021106.4C23—N2—H21106.1
C124—N102—H1021108.1C24—N2—H21107.6
N102—C123—H1231107.6N2—C23—H231107.9
N102—C123—H1233107.2N2—C23—H232107.3
H1231—C123—H1233111.6H231—C23—H232111.1
N102—C123—H1232108.1N2—C23—H233109.2
H1231—C123—H1232111.4H231—C23—H233110.3
H1233—C123—H1232110.8H232—C23—H233110.8
N102—C124—H1241110.0N2—C24—H241108.3
N102—C124—H1243108.5N2—C24—H242109.1
H1241—C124—H1243110.9H241—C24—H242111.5
N102—C124—H1242109.1N2—C24—H243106.5
H1241—C124—H1242108.7H241—C24—H243110.6
H1243—C124—H1242109.5H242—C24—H243110.7
O111—C125—O112105.55 (16)O11—C25—O12104.59 (16)
O111—C125—C126109.99 (17)O11—C25—C26110.80 (17)
O112—C125—C126110.79 (18)O12—C25—C26112.11 (17)
O111—C125—C127108.73 (17)O11—C25—C27108.73 (17)
O112—C125—C127108.80 (17)O12—C25—C27108.40 (18)
C126—C125—C127112.70 (18)C26—C25—C27111.91 (18)
C125—C126—H1261108.5C25—C26—H262109.2
C125—C126—H1262108.4C25—C26—H261111.6
H1261—C126—H1262109.5H262—C26—H261109.9
C125—C126—H1263109.6C25—C26—H263108.4
H1261—C126—H1263110.4H262—C26—H263108.2
H1262—C126—H1263110.4H261—C26—H263109.5
C125—C127—H1271110.4C25—C27—H272107.4
C125—C127—H1272110.1C25—C27—H271109.5
H1271—C127—H1272109.0H272—C27—H271111.9
C125—C127—H1273109.5C25—C27—H273107.7
H1271—C127—H1273108.9H272—C27—H273111.6
H1272—C127—H1273109.0H271—C27—H273108.6
O113—C128—O114104.50 (16)O13—C28—O14106.07 (18)
O113—C128—C130108.70 (19)O13—C28—C29109.3 (2)
O114—C128—C130109.61 (18)O14—C28—C29110.1 (2)
O113—C128—C129110.74 (19)O13—C28—C30109.3 (2)
O114—C128—C129110.20 (18)O14—C28—C30108.6 (2)
C130—C128—C129112.7 (2)C29—C28—C30113.2 (2)
C128—C130—H1301110.4C28—C29—H292110.3
C128—C130—H1302109.9C28—C29—H291109.3
H1301—C130—H1302109.4H292—C29—H291108.8
C128—C130—H1303110.4C28—C29—H293107.5
H1301—C130—H1303108.7H292—C29—H293108.6
H1302—C130—H1303108.0H291—C29—H293112.4
C128—C129—H1291109.5C28—C30—H302109.0
C128—C129—H1292109.3C28—C30—H301109.4
H1291—C129—H1292109.3H302—C30—H301109.2
C128—C129—H1293109.3C28—C30—H303108.9
H1291—C129—H1293109.2H302—C30—H303110.0
H1292—C129—H1293110.3H301—C30—H303110.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1090.901.802.664 (3)161
N102—H1021···O90.901.812.675 (3)162
O110—H1101···O109i0.812.693.348 (3)140
O10—H101···O11i0.832.503.187 (3)141
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H27NO7
Mr333.38
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.7881 (2), 16.7077 (4), 17.8572 (5)
β (°) 99.1141 (8)
V3)1705.09 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.96, 1.01
No. of measured, independent and
observed [I > 2σ(I)] reflections
13496, 4000, 3474
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.033, 1.09
No. of reflections3239
No. of parameters415
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1090.901.802.664 (3)161
N102—H1021···O90.901.812.675 (3)162
O110—H1101···O109i0.812.693.348 (3)140
O10—H101···O11i0.832.503.187 (3)141
Symmetry code: (i) x+1, y, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2008). Tetrahedron Lett. In preparation.  Google Scholar
First citationHotchkiss, D. J., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62, o3961–o3963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.  Google Scholar
First citationRisseeuw, M. D. P., Overhand, M., Fleet, G. W. J. & Simone, M. I. (2007). Tetrahedron Asymmetry, 18, 2001–2010.  Web of Science CrossRef CAS Google Scholar
First citationSimone, M., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o799–o801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds