organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Propionylthio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: eliyanti84@yahoo.com.my

(Received 10 November 2007; accepted 18 November 2007; online 21 December 2007)

The mol­ecule of the title compound, C4H8N2OS, is essentially planar; it adopts a trans configuration with respect to the position of the propionyl group relative to the thiono S atom about the C—N bond. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond between the propionyl O atom and the amide H atom. Mol­ecules are linked into a two-dimensional network parallel to the (10[\overline{1}]) plane by N—H⋯O and N—H⋯S inter­molecular hydrogen bonds.

Related literature

For the crystal structures of thio­urea analogues, see: Yusof et al. (2007[Yusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241-o243.]); Rosli et al. (2006[Rosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A., Patil, P. S., Holla, B. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o5692-o5693.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N2OS

  • Mr = 132.19

  • Monoclinic, P 21 /n

  • a = 5.0790 (15) Å

  • b = 14.342 (4) Å

  • c = 9.273 (3) Å

  • β = 102.744 (6)°

  • V = 658.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 (2) K

  • 0.48 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.946

  • 3622 measured reflections

  • 1291 independent reflections

  • 910 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.02

  • 1291 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1 0.86 2.00 2.658 (3) 133
N1—H1D⋯O1i 0.86 2.11 2.935 (3) 160
N2—H2D⋯S1ii 0.86 2.57 3.409 (3) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Most carbonoylthiourea of the type, R1HNC(S)NHR2, such as N-butanoyl-N'- (4-nitrophenyl)thiourea (Yusof et al., 2007) can be prepared from the reaction of carbonoylchloride with ammonium thiocyanate which give carbonoyl- isothiocyanate, an intermediate for the formation of thiourea moiety when reacted with the amine compounds. However, the title compound (Fig.1) was unexpectedly obtained when the mixture of propionyl chloride and ammonium thiocyanate was stirred for 30 minutes before adding the amine compound.

The molecule is essentially planar, with a maximum deviation of 0.021 (3) Å for atom C1 from the mean plane. The propionyl group, C1/C2/C3/O1, is trans relative to the thiono C4?S1 group across the C4—N1 bond. The bond lengths and angles are in normal ranges (Allen et al., 1987). The molecular structure is stabilized by an intramolecular hydrogen bond, N2—H2C···O1 (Table 1), which forms a S(6) ring. In the crystal structure, the molecules are linked by N1—H1D···Oi and N2—H2D···S1ii intermolecular hydrogen bonds, forming a two-dimensional network (Fig. 2) parallel to the (1 0 1) plane.

Related literature top

For the crystal structures of thiourea analogues, see: Yusof et al. (2007); Rosli et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of ammonium thiocyanate (0.05 mol, 3.80 g) in acetone (30 ml) was added dropwise to a solution of propionyl chloride (0.05 mol, 4.63 g) in acetone (20 ml). The mixture was stirred for 30 min and the resulting light yellow solution was filtered. Single crystals of the title compound were obtained by slow evaporation of the solution (yield 90%; m.p. 420.2–421.0 K).

Refinement top

H atoms were positioned geometrically (C—H = 0.96 Å and N—H= 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5(methyl) Ueq(parent atom).

Structure description top

Most carbonoylthiourea of the type, R1HNC(S)NHR2, such as N-butanoyl-N'- (4-nitrophenyl)thiourea (Yusof et al., 2007) can be prepared from the reaction of carbonoylchloride with ammonium thiocyanate which give carbonoyl- isothiocyanate, an intermediate for the formation of thiourea moiety when reacted with the amine compounds. However, the title compound (Fig.1) was unexpectedly obtained when the mixture of propionyl chloride and ammonium thiocyanate was stirred for 30 minutes before adding the amine compound.

The molecule is essentially planar, with a maximum deviation of 0.021 (3) Å for atom C1 from the mean plane. The propionyl group, C1/C2/C3/O1, is trans relative to the thiono C4?S1 group across the C4—N1 bond. The bond lengths and angles are in normal ranges (Allen et al., 1987). The molecular structure is stabilized by an intramolecular hydrogen bond, N2—H2C···O1 (Table 1), which forms a S(6) ring. In the crystal structure, the molecules are linked by N1—H1D···Oi and N2—H2D···S1ii intermolecular hydrogen bonds, forming a two-dimensional network (Fig. 2) parallel to the (1 0 1) plane.

For the crystal structures of thiourea analogues, see: Yusof et al. (2007); Rosli et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed approximately down the c axis. Hydrogen bonds are shown as dashed lines.
N-Propionylthiourea top
Crystal data top
C4H8N2OSF(000) = 280
Mr = 132.19Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1291 reflections
a = 5.0790 (15) Åθ = 2.6–26.0°
b = 14.342 (4) ŵ = 0.40 mm1
c = 9.273 (3) ÅT = 298 K
β = 102.744 (6)°Block, yellow
V = 658.8 (3) Å30.48 × 0.19 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1291 independent reflections
Radiation source: fine-focus sealed tube910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scanh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1617
Tmin = 0.832, Tmax = 0.946l = 911
3622 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.293P]
where P = (Fo2 + 2Fc2)/3
1291 reflections(Δ/σ)max = 0.001
73 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C4H8N2OSV = 658.8 (3) Å3
Mr = 132.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0790 (15) ŵ = 0.40 mm1
b = 14.342 (4) ÅT = 298 K
c = 9.273 (3) Å0.48 × 0.19 × 0.14 mm
β = 102.744 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
910 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.946Rint = 0.029
3622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
1291 reflectionsΔρmin = 0.16 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01989 (18)0.06361 (6)0.28118 (8)0.0646 (3)
O10.7005 (4)0.22101 (13)0.58191 (18)0.0537 (5)
N10.4084 (4)0.18551 (14)0.3657 (2)0.0428 (6)
H1D0.36300.20090.27390.051*
C40.2638 (5)0.11286 (17)0.4084 (3)0.0413 (6)
N20.3300 (5)0.08712 (15)0.5470 (2)0.0514 (6)
H2C0.45870.11510.60720.062*
H2D0.24480.04220.57790.062*
C30.6154 (5)0.23647 (18)0.4506 (3)0.0431 (6)
C20.7271 (7)0.3102 (2)0.3675 (3)0.0635 (9)
H2A0.79590.28070.28920.076*
H2B0.58080.35120.32120.076*
C10.9454 (7)0.3677 (2)0.4578 (3)0.0706 (9)
H1A1.00510.41300.39580.106*
H1B1.09400.32820.50220.106*
H1C0.87850.39900.53400.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0696 (6)0.0701 (6)0.0465 (5)0.0255 (4)0.0038 (4)0.0050 (4)
O10.0653 (13)0.0566 (12)0.0324 (10)0.0098 (10)0.0040 (8)0.0002 (8)
N10.0498 (14)0.0479 (13)0.0273 (10)0.0060 (11)0.0013 (9)0.0028 (9)
C40.0445 (15)0.0408 (15)0.0385 (14)0.0040 (12)0.0089 (11)0.0008 (11)
N20.0633 (16)0.0523 (14)0.0357 (12)0.0122 (12)0.0045 (10)0.0034 (10)
C30.0473 (17)0.0420 (15)0.0373 (14)0.0028 (12)0.0032 (11)0.0015 (11)
C20.073 (2)0.063 (2)0.0484 (17)0.0223 (17)0.0002 (15)0.0073 (14)
C10.076 (2)0.069 (2)0.064 (2)0.0238 (18)0.0095 (17)0.0026 (16)
Geometric parameters (Å, º) top
S1—C41.668 (3)C3—C21.492 (4)
O1—C31.219 (3)C2—C11.483 (4)
N1—C31.377 (3)C2—H2A0.97
N1—C41.382 (3)C2—H2B0.97
N1—H1D0.86C1—H1A0.96
C4—N21.308 (3)C1—H1B0.96
N2—H2C0.86C1—H1C0.96
N2—H2D0.86
C3—N1—C4128.6 (2)C1—C2—C3115.1 (2)
C3—N1—H1D115.7C1—C2—H2A108.5
C4—N1—H1D115.7C3—C2—H2A108.5
N2—C4—N1117.2 (2)C1—C2—H2B108.5
N2—C4—S1124.4 (2)C3—C2—H2B108.5
N1—C4—S1118.37 (18)H2A—C2—H2B107.5
C4—N2—H2C120.0C2—C1—H1A109.5
C4—N2—H2D120.0C2—C1—H1B109.5
H2C—N2—H2D120.0H1A—C1—H1B109.5
O1—C3—N1122.2 (2)C2—C1—H1C109.5
O1—C3—C2123.6 (2)H1A—C1—H1C109.5
N1—C3—C2114.2 (2)H1B—C1—H1C109.5
C3—N1—C4—N20.7 (4)C4—N1—C3—C2179.8 (3)
C3—N1—C4—S1179.7 (2)O1—C3—C2—C12.5 (5)
C4—N1—C3—O10.7 (4)N1—C3—C2—C1178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O10.862.002.658 (3)133
N1—H1D···O1i0.862.112.935 (3)160
N2—H2D···S1ii0.862.573.409 (3)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H8N2OS
Mr132.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.0790 (15), 14.342 (4), 9.273 (3)
β (°) 102.744 (6)
V3)658.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.48 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.832, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
3622, 1291, 910
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.02
No. of reflections1291
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O10.862.002.658 (3)133
N1—H1D···O1i0.862.112.935 (3)160
N2—H2D···S1ii0.862.573.409 (3)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysian for the research grant UKM-OUP-BTT-28/2007.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRosli, M. M., Karthikeyan, M. S., Fun, H.-K., Razak, I. A., Patil, P. S., Holla, B. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o5692–o5693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Yaakob, W. N. A., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o241–o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds